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My research interests

Development of fundamental computational methods for structural
dynamics and uncertainty quantification

A. Dynamics of complex systems
B. Inverse problems for linear and non-linear dynamics

C. Uncertainty quantification in computational mechanics

Applications of computational mechanics to emerging multidisciplinary
research areas

D. Vibration energy harvesting / dynamics of wind turbines
E. Computational nanomechanics
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Stochastic dynamic systems - ensemble behaviour
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Introduction

Few general questions

How does system stochasticity impact the dynamic response? Does it
matter?

What is the underlying physics?

How can we efficiently quantify uncertainty in the dynamic response for
large dynamic systems?

What about using ‘black box’ type response surface methods?

Can we use modal analysis for stochastic systems?
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Single degree of freedom damped stochastic systems

Stochastic SDOF systems
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Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (1)

Here ωn =
√

k/m is the natural frequency and ξ = c/2
√

km is the damping

ratio.

We are interested in understanding the motion when the natural
frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.
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Single degree of freedom damped stochastic systems

Frequency variability
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(a) Pdf: σa = 0.1
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(b) Pdf: σa = 0.2

Figure: We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where ωn0

is

deterministic frequency and r is a random variable with a given
probability distribution function.
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Single degree of freedom damped stochastic systems

Frequency samples
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(a) Frequencies: σa = 0.1
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(b) Frequencies: σa = 0.2

Figure: 1000 sample realisations of the frequencies for the three distributions
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Single degree of freedom damped stochastic systems

Response in the time domain
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(a) Response: σa = 0.1
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(b) Response: σa = 0.2

Figure: Response due to initial velocity v0 with 5% damping
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Single degree of freedom damped stochastic systems

Frequency response function
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Figure: Normalised frequency response function |u/ust |
2, where ust = f/k
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Single degree of freedom damped stochastic systems

Key observations

The mean response response is more damped compared to deterministic
response.

The higher the randomness, the higher the “effective damping”.

The qualitative features are almost independent of the distribution the

random natural frequency.

We often use averaging to obtain more reliable experimental results - is it
always true?

Assuming uniform random variable, we aim to explain some of these

observations.
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Single degree of freedom damped stochastic systems Equivalent damping factor

Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + ǫx), where

x has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m

[−ω2 + ω2
n0
(1 + ǫx)] + 2iξωωn0

√
1 + ǫx

(2)

Considering ωn0
=
√

k/m and frequency ratio r = ω/ωn0
we have

u

f/k
=

1

[(1 + ǫx)− r2] + 2iξr
√

1 + ǫx
(3)
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Single degree of freedom damped stochastic systems Equivalent damping factor

Equivalent damping

The squared-amplitude of the normalised dynamic response at ω = ωn0

(that is r = 1) can be obtained as

Û =

( |u|
f/k

)2

=
1

ǫ2x2 + 4ξ2(1 + ǫx)
(4)

Since x is zero mean unit standard deviation uniform random variable, its

pdf is given by px (x) = 1/2
√

3,−
√

3 ≤ x ≤
√

3

The mean is therefore

E
[
Û
]
=

∫
1

ǫ2x2 + 4ξ2(1 + ǫx)
px (x)dx

=
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
− ξ√

1 − ξ2

)

+
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
+

ξ√
1 − ξ2

)
(5)
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Single degree of freedom damped stochastic systems Equivalent damping factor

Equivalent damping

Note that

1

2

{
tan−1(a + δ) + tan−1(a − δ)

}
= tan−1(a) + O(δ2) (6)

Provided there is a small δ, the mean response

E
[
Û
]
≈ 1

2
√

3ǫζn

√
1 − ζ2

n

tan−1

( √
3ǫ

2ζn

√
1 − ζ2

n

)
+ O(ζ2

n ). (7)

Considering light damping (that is, ζ2 ≪ 1), the validity of this
approximation relies on the following inequality

√
3ǫ

2ζn
≫ ζ2

n or ǫ ≫ 2√
3
ζ3

n . (8)

Since damping is usually quite small (ζn < 0.2), the above inequality will

normally hold even for systems with very small uncertainty. To give an
example, for ζn = 0.2, we get ǫmin = 0.0092, which is less than 0.1%
randomness.
In practice we will be interested in randomness of more than 0.1% and

consequently the criteria in Eq. (8) is likely to be met.
Adhikari (Swansea) Stochastic dynamics / vibration energy harvesting January 15, 2016 16



Single degree of freedom damped stochastic systems Equivalent damping factor

Equivalent damping

For small damping, the maximum determinestic amplitude at ω = ωn0
is

1/4ξ2
e where ξe is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given by

(2ξe)
2 =

2
√

3ǫξ

tan−1(
√

3ǫ/2ξ)
(9)

For small damping, taking the limit we can obtain1

ξe ≈ 31/4
√
ǫ√

π

√
ξ (10)

The equivalent damping factor of the mean system is proportional to the
square root of the damping factor of the underlying baseline system

1
Adhikari, S. and Pascual, B., ”The ’damping effect’ in the dynamic response of stochastic oscillators”, Probabilistic Engineering Mechanics, in press.
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Single degree of freedom damped stochastic systems Equivalent damping factor

Equivalent frequency response function
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Figure: Normalised frequency response function with equivalent damping (ξe = 0.05

in the ensembles). For the two cases ξe = 0.0643 and ξe = 0.0819 respectively.
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Multiple degree of freedom damped stochastic systems

Equation for motion

The equation for motion for stochastic linear MDOF dynamic systems:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (11)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi )Ki ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix, u(θ, t) is the dynamic

response and f(t) is the forcing vector.

The mass and stiffness matrices have been expressed in terms of their
deterministic components (M0 and K0) and the corresponding random

contributions (Mi and Ki). These can be obtained from discretising

stochastic fields with a finite number of random variables (µi(θi ) and
νi(θi)) and their corresponding spatial basis functions.

Proportional damping model is considered for which
C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.
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Spectral function approach

Frequency domain representation

For the harmonic analysis of the structural system, taking the Fourier

transform [
−ω2M(θ) + iωC(θ) + K(θ)

]
u(ω, θ) = f(ω) (12)

where u(ω, θ) ∈ C
n is the complex frequency domain system response

amplitude, f(ω) is the amplitude of the harmonic force.

For convenience we group the random variables associated with the

mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1
(θ) = νj(θ) for i = 1, 2, . . . , p1

and j = 1, 2, . . . , p2
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Spectral function approach

Frequency domain representation

Using M = p1 + p2 which we have

(
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

)
u(ω, θ) = f(ω) (13)

where A0 and Ai ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the damping

matrices ensemble.

For the case of proportional damping the matrices A0 and Ai can be

written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0, (14)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1, 2, . . . , p1 (15)

and Aj+p1
(ω) = [iωζ2 + 1]Kj for j = 1, 2, . . . , p2 .
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Spectral function approach

Possibilities of solution types

The dynamic response u(ω, θ) ∈ C
n is governed by

[
−ω2M(ξ(θ)) + iωC(ξ(θ)) + K(ξ(θ))

]
u(ω, θ) = f(ω).

Some possibilities for the solutions are

u(ω, θ) =

P1∑

k=1

Hk (ξ(θ))uk (ω) (PCE)

or =

P2∑

k=1

Hk (ω))uk (ξ(θ))

or =

P3∑

k=1

ak (ω)Hk (ξ(θ))uk

or =

P4∑

k=1

Hk (ω, ξ(θ))uk . . . etc.

(16)
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Spectral function approach

Deterministic classical modal analysis?

For a deterministic system, the response vector u(ω) can be expressed as

u(ω) =

P∑

k=1

Γk (ω)uk

where Γk(ω) =
φT

k f

−ω2 + 2iζkωkω + ω2
k

uk = φk and P ≤ n (number of dominantmodes)

(17)

Can we extend this idea to stochastic systems?
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Spectral function approach Projection in the modal space

Projection in the modal space

There exist a finite set of complex frequency dependent functions Γk (ω, ξ(θ))
and a complete basis φk ∈ R

n for k = 1, 2, . . . , n such that the solution of the

discretized stochastic finite element equation (11) can be expiressed by the

series

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (18)

Outline of the derivation: In the first step a complete basis is generated with

the eigenvectors φk ∈ R
n of the generalized eigenvalue problem

K0φk = λ0k
M0φk ; k = 1, 2, . . . n (19)
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Spectral function approach Projection in the modal space

Projection in the modal space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ R

n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R
n×n (20)

Eigenvalues are ordered in the ascending order: λ01
< λ02

< . . . < λ0n
.

We use the orthogonality property of the modal matrix Φ as

Φ
T K0Φ = λ0, and Φ

T M0Φ = I (21)

Using these we have

Φ
T A0Φ = Φ

T
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (22)

This gives Φ
T A0Φ = Λ0 and A0 = Φ

−T
Λ0Φ

−1, where

Λ0 =
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.
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Spectral function approach Projection in the modal space

Projection in the modal space

Hence, Λ0 can also be written as

Λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ C

n×n (23)

where λ0j
=
(
−ω2 + iωζ1

)
+ (iωζ2 + 1) λj and λj is as defined in

Eqn. (20). We also introduce the transformations

Ãi = Φ
T AiΦ ∈ C

n×n; i = 0, 1, 2, . . . ,M. (24)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ
−T ÃiΦ

−1 ∈ C
n×n; i = 1, 2, . . . ,M. (25)
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Spectral function approach Projection in the modal space

Projection in the modal space

Suppose the solution of Eq. (11) is given by

û(ω, θ) =

[
A0(ω) +

M∑

i=1

ξi (θ)Ai(ω)

]−1

f(ω) (26)

Using Eqs. (20)–(25) and the mass and stiffness orthogonality of Φ one has

û(ω, θ) =

[
Φ

−T
Λ0(ω)Φ

−1 +

M∑

i=1

ξi(θ)Φ
−T Ãi(ω)Φ

−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑

i=1

ξi (θ)Ãi(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ
−T f(ω)

(27)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T
.
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Spectral function approach Projection in the modal space

Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i , i = 1, 2, . . . ,M (28)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag [λi1 , λi2 , . . . , λin ] ∈ R

n×n (29)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =



Λ0(ω) +

M∑

i=1

ξi(θ)Λi(ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+

M∑

i=1

ξi(θ)∆i(ω)

︸ ︷︷ ︸
∆(ω,ξ(θ))




−1

(30)

where Λ (ω, ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an

off-diagonal only matrix.
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Spectral function approach Projection in the modal space

Projection in the modal space

We rewrite Eq. (30) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In + Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]]−1

(31)

The above expression can be represented using a Neumann type of matrix

series as

Ψ (ω, ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]s

Λ
−1 (ω, ξ(θ)) (32)
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Spectral function approach Projection in the modal space

Projection in the modal space

Taking an arbitrary r -th element of û(ω, θ), Eq. (27) can be rearranged to have

ûr (ω, θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

 (33)

Defining

Γk (ω, ξ(θ)) =

n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(34)

and collecting all the elements in Eq. (33) for r = 1, 2, . . . , n one has2

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (35)

2
Kundu, A. and Adhikari, S., ”Dynamic analysis of stochastic structural systems using frequency adaptive spectral functions”, Probabilistic Engineering

Mechanics, 39[1] (2015), pp. 23-38.
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Spectral function approach Properties of the spectral functions

Spectral functions

Definition

The functions Γk (ω, ξ(θ)) , k = 1, 2, . . . n are the frequency-adaptive spectral
functions as they are expressed in terms of the spectral properties of the

coefficient matrices at each frequency of the governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number of terms

and they are highly nonlinear functions of the random variables ξi(θ).

For computational purposes, it is necessary to truncate the series after

certain number of terms.

Different order of spectral functions can be obtained by using truncation

in the expression of Γk (ω, ξ(θ))
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Spectral function approach Properties of the spectral functions

First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1, 2, . . . , n are

obtained by retaining as many terms in the series expansion in Eqn. (32).

Retaining one and two terms in (32) we have

Ψ
(1) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) (36)

Ψ
(2) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) − Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ)) (37)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are

non-Gaussian random variables even if ξi (θ) are Gaussian random

variables.
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Spectral function approach Properties of the spectral functions

Nature of the spectral functions
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(a) Spectral functions for σa = 0.1.
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(b) Spectral functions for σa = 0.2.

The amplitude of first seven spectral functions of order 4 for a particular

random sample under applied force. The spectral functions are obtained for

two different standard deviation levels of the underlying random field:
σa = {0.10, 0.20}.
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Spectral function approach Properties of the spectral functions

Summary of the basis functions (frequency-adaptive spectral functions)

The basis functions are:

1 not polynomials in ξi(θ) but ratio of polynomials.

2 independent of the nature of the random variables (i.e. applicable to
Gaussian, non-Gaussian or even mixed random variables).

3 not general but specific to a problem as it utilizes the eigenvalues and

eigenvectors of the system matrices.

4 such that truncation error depends on the off-diagonal terms of the matrix

∆ (ω, ξ(θ)).

5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial functions
within a Galerkin error minimization scheme.
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Spectral function approach Error minimization

The Galerkin approach

One can obtain constants ck ∈ C such that the error in the following

representation

û(ω, θ) =

n∑

k=1

ck(ω)Γ̂k (ω, ξ(θ))φk (38)

can be minimised in the least-square sense. It can be shown that the vector

c = {c1, c2, . . . , cn}T
satisfies the n × n complex algebraic equations

S(ω) c(ω) = b(ω) with

Sjk =

M∑

i=0

Ãijk Dijk ; ∀ j, k = 1, 2, . . . , n; Ãijk = φT
j Aiφk , (39)

Dijk = E
[
ξi(θ)Γ̂k (ω, ξ(θ))

]
, bj = E

[
φT

j f(ω)
]
. (40)
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Spectral function approach Error minimization

The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ck Γ̂k (ω, ξ(θ))φk

)
− f(ω) ∈ C

N×N (41)

The solution is viewed as a projection where φk ∈ R
n are the basis

functions and ck are the unknown constants to be determined. This is
done for each frequency step.

The coefficients ck are evaluated using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε(ω, θ)⊥φj ⇛
〈
φj , ε(ω, θ)

〉
= 0 ∀ j = 1, 2, . . . , n (42)
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Spectral function approach Error minimization

The Galerkin approach

Imposing the orthogonality condition and using the expression of the

error one has

E

[
φT

j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− φT

j f

]
= 0, ∀j (43)

Interchanging the E [•] and summation operations, this can be simplified
to

n∑

k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi(θ)Γ̂k (ξ(θ))

])
ck = E

[
φT

j f
]

(44)

or

n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (45)
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Spectral function approach Error minimization

Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing order such
that

λ01
< λ02

< . . . < λ0n
(46)

From the expression of the spectral functions observe that the

eigenvalues ( λ0k
= ω2

0k
) appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φT
k f(ω)

Λ0k
(ω) +

∑M
i=1 ξi (θ)Λik (ω)

(47)

where Λ0k
(ω) = −ω2 + iω(ζ1 + ζ2ω

2
0k
) + ω2

0k

The series can be truncated based on the magnitude of the eigenvalues

relative to the frequency of excitation. Hence for the frequency domain
analysis all the eigenvalues that cover almost twice the frequency range

under consideration can be chosen.
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Spectral function approach Error minimization

Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑

k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (48)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ) − ū) (û(θ)− ū)

T
]
=

p∑

k=1

p∑

j=1

ck cjΣΓkj
φkφ

T
j (49)

where the elements of the covariance matrix of the spectral functions are

given by

ΣΓkj
= E

[(
Γ̂k (ξ(θ)) − E

[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]
(50)
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Spectral function approach Error minimization

Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the mean

mass and stiffness matrices to generate the orthonormal basis vectors:

K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of basic

random variables ξi(θ), i = 1, 2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φT

k
f(ω)

Λ0k
(ω)+

∑
M
i=1 ξi (θ)Λik

(ω)
, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S
−1(ω)b(ω) ∈ R

n, where

b(ω) = f̃(ω)⊙ Γ(ω), S(ω) = Λ0(ω)⊙ D0(ω) +
∑M

i=1 Ãi(ω)⊙ Di(ω) and

Di(ω) = E
[
Γ(ω, θ)ξi (θ)Γ

T (ω, θ)
]
, ∀ i = 0, 1, 2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω, θ) =

∑p
k=1 ck(ω)Γk (ξ(ω, θ))φk
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Numerical illustrations

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending modulus for a

specified value of the correlation length and for different degrees of
variability of the random field.

F

(c) Euler-Bernoulli beam
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(e) Eigenvalue ratio of KL de-
composition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus: 2 ×
1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.
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Numerical illustrations

Problem details

The bending modulus EI(x , θ) of the cantilever beam is taken to be a

homogeneous stationary lognormal random field of the form

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (51)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present numerical

study.
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Numerical illustrations

Problem details

The random field is assumed to be lognormal. The results are compared with

the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such that 90%
variability is retained.

direct MCS have been performed with 10,000 random samples and for

three different values of standard deviation of the random field,
σa = 0.05, 0.1, 0.2.

Constant modal damping is taken with 1% damping factor for all modes.

Time domain response of the free end of the beam is sought under the

action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the present
problem. Comparison have been made with 4th order Polynomial chaos

results.
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Numerical illustrations

Mean of the response

(f) Mean, σa = 0.05. (g) Mean, σa = 0.1. (h) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever for

three values of standard deviation σa of the underlying random field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC results
increases.3

3
Kundu, A., Adhikari, S., ”Transient response of structural dynamic systems with parametric uncertainty”, ASCE Journal of Engineering Mechanics,

140[2] (2014), pp. 315-331.
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Numerical illustrations

Standard deviation of the response

(i) Standard deviation of de-
flection, σa = 0.05.

(j) Standard deviation of de-
flection, σa = 0.1.

(k) Standard deviation of de-
flection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products of the
Hermite polynomials associated with the PC expansion, the higher order

moments are less accurately replicated and tend to deviate more
significantly.
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Numerical illustrations

Frequency domain response: mean
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(l) Beam deflection for σa = 0.1.
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(m) Beam deflection for σa = 0.2.

4 5 The frequency domain response of the deflection of the tip of the Euler-Bernoulli

beam under unit amplitude harmonic point load at the free end. The response is

obtained with 10,000 sample MCS and for σa = {0.10, 0.20}.
4

Jacquelin, E., Adhikari, S., Sinou, J.-J., and Friswell, M. I., ”Polynomial chaos expansion and steady-state response of a class of random dynamical

systems”, ASCE Journal of Engineering Mechanics, 141[4] (2015), pp. 04014145:1-9.

5
Jacquelin, E., Adhikari, S., Sinou, J.-J., and Friswell, M. I., ”Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the

first two statistical moment sequences”, Journal of Sound and Vibration, 356[11] (2015), pp. 144-154.
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Numerical illustrations

Frequency domain response: standard deviation

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(d
am

pe
d)

, 
σ f : 

0.
1

 

 

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin
4th order PC

(n) Standard deviation of the response for
σa = 0.1.
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(o) Standard deviation of the response for
σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam under

unit amplitude harmonic point load at the free end. The response is obtained
with 10, 000 sample MCS and for σa = {0.10, 0.20}.
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Numerical illustrations

Experimental investigations

Figure: A cantilever plate with randomly attached oscillators6

6
Adhikari, S., Friswell, M. I., Lonkar, K. and Sarkar, A., ”Experimental case studies for uncertainty quantification in structural dynamics”, Probabilistic

Engineering Mechanics, 24[4] (2009), pp. 473-492.
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Numerical illustrations

Measured frequency response function
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Piezoelectric vibration energy harvesting

Piezoelectric vibration energy harvesting

The harvesting of ambient vibration energy for use in powering low
energy electronic devices has formed the focus of much recent research.

Of the published results that focus on the piezoelectric effect as the
transduction method, most have focused on harvesting using cantilever

beams and on single frequency ambient energy, i.e., resonance based

energy harvesting. Several authors have proposed methods to optimize
the parameters of the system to maximize the harvested energy.

Some authors have considered energy harvesting under wide band
excitation.
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Piezoelectric vibration energy harvesting The role of uncertainty

Why uncertainty is important for energy harvesting?

In the context of energy harvesting from ambient vibration, the input

excitation may not be always known exactly.

There may be uncertainties associated with the numerical values

considered for various parameters of the harvester. This might arise, for

example, due to the difference between the true values and the assumed
values.

If there are several nominally identical energy harvesters to be
manufactured, there may be genuine parametric variability within the

ensemble.

Any deviations from the assumed excitation may result an optimally

designed harvester to become sub-optimal.
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Piezoelectric vibration energy harvesting The role of uncertainty

Types of uncertainty

Suppose the set of coupled equations for energy harvesting:

L{u(t)} = f(t) (52)

Uncertainty in the input excitations

For this case in general f(t) is a random function of time. Such functions
are called random processes.

f(t) can be Gaussian/non-Gaussian stationary or non-stationary random

processes

Uncertainty in the system

The operator L{•} is in general a function of parameters

θ1, θ2, · · · , θn ∈ R.

The uncertainty in the system can be characterised by the joint

probability density function pΘ1,Θ2,··· ,Θn
(θ1, θ2, · · · , θn).

Adhikari (Swansea) Stochastic dynamics / vibration energy harvesting January 15, 2016 52



Single Degree of Freedom Electromechanical Models Linear systems

Cantilever piezoelectric energy harvesters

x tb( )
PZT Layers

v t( )Rl

x t x tb( )+ ( )Tip Mass

(a) Harvesting circuit without an inductor

x tb( )
PZT Layers

L v t( )Rl

x t x tb( )+ ( )Tip Mass

(b) Harvesting circuit with an inductor

Figure: Schematic diagrams of piezoelectric energy harvesters with two different

harvesting circuits.
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Single Degree of Freedom Electromechanical Models Linear systems

Governing equations

For the harvesting circuit without an inductor, the coupled electromechanical
behavior can be expressed by the linear ordinary differential equations

mẍ(t) + cẋ(t) + kx(t)− θv(t) = f (t) (53)

θẋ(t) + Cpv̇(t) +
1

Rl

v(t) = 0 (54)

For the harvesting circuit with an inductor, the electrical equation becomes

θẍ(t) + Cpv̈(t) +
1

Rl

v̇(t) +
1

L
v(t) = 0 (55)
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Single Degree of Freedom Electromechanical Models Nonlinear systems

Simplified piezomagnetoelastic model

Schematic of the piezomagnetoelastic device. The beam system is also

referred to as the ‘Moon Beam’.
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Single Degree of Freedom Electromechanical Models Nonlinear systems

Governing equations

The nondimensional equations of motion for this system are

ẍ + 2ζẋ − 1

2
x(1 − x2)− χv = f (t), (56)

v̇ + λv + κẋ = 0, (57)

Here x is the dimensionless transverse displacement of the beam tip, v is

the dimensionless voltage across the load resistor, χ is the dimensionless

piezoelectric coupling term in the mechanical equation, κ is the
dimensionless piezoelectric coupling term in the electrical equation,

λ ∝ 1/RlCp is the reciprocal of the dimensionless time constant of the

electrical circuit, Rl is the load resistance, and Cp is the capacitance of
the piezoelectric material.

The force f (t) is proportional to the base acceleration on the device.

If we consider the inductor, then the second equation will be

v̈ + λv̇ + βv + κẍ = 0.
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Single Degree of Freedom Electromechanical Models Nonlinear systems

Possible physically realistic cases

Depending on the system and the excitation, several cases are possible:

Linear system excited by harmonic excitation

Linear system excited by stochastic excitation

Linear stochastic system excited by harmonic/stochastic excitation

Nonlinear system excited by harmonic excitation

Nonlinear system excited by stochastic excitation

Nonlinear stochastic system excited by harmonic/stochastic excitation

Multiple degree of freedom vibration energy harvesters

We focus on the application of random vibration theory to various energy

harvesting problems
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Our equations:

mẍ(t) + cẋ(t) + kx(t)− θv(t) = −mẍb(t) (58)

θẋ(t) + Cpv̇(t) +
1

Rl

v(t) = 0 (59)

Transforming both the equations into the frequency domain and dividing the

first equation by m and the second equation by Cp we obtain

(
−ω2 + 2iωζωn + ω2

n

)
X(ω)− θ

m
V (ω) = ω2Xb(ω) (60)

iω
θ

Cp
X(ω) +

(
iω +

1

CpRl

)
V (ω) = 0 (61)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

The natural frequency of the harvester, ωn, and the damping factor, ζ, are

defined as

ωn =

√
k

m
and ζ =

c

2mωn
. (62)

Dividing the preceding equations by ωn and writing in matrix form one has

[(
1 − Ω2

)
+ 2iΩζ − θ

k

iΩαθ
Cp

(iΩα+ 1)

]{
X

V

}
=

{
Ω2Xb

0

}
, (63)

where the dimensionless frequency and dimensionless time constant are
defined as

Ω =
ω

ωn
and α = ωnCpRl . (64)

α is the time constant of the first order electrical system, non-dimensionalized

using the natural frequency of the mechanical system.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Inverting the coefficient matrix, the displacement and voltage in the frequency

domain can be obtained as

{
X
V

}
=

1

∆1

[
(iΩα+1) θ

k

−iΩαθ
Cp

(1−Ω2)+2iΩζ

]{
Ω2Xb

0

}
=

{
(iΩα+1)Ω2Xb/∆1

−iΩ3 αθ
Cp

Xb/∆1

}
, (65)

where the determinant of the coefficient matrix is

∆1(iΩ) = (iΩ)
3
α+ (2 ζ α+ 1) (iΩ)

2
+
(
α+ κ2α+ 2 ζ

)
(iΩ) + 1 (66)

and the non-dimensional electromechanical coupling coefficient is

κ2 =
θ2

kCp
. (67)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Mean power

The average harvested power due to the white-noise base acceleration with a
circuit without an inductor can be obtained as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φxbxb

)

]

=
π mακ2

(2 ζ α2 + α)κ2 + 4 ζ2α+ (2α2 + 2) ζ
.

From Equation (65) we obtain the voltage in the frequency domain as

V =
−iΩ3 αθ

Cp

∆1(iΩ)
Xb. (68)

We are interested in the mean of the normalized harvested power when
the base acceleration is Gaussian white noise, that is |V |2/(Rlω

4Φxbxb
).
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

The spectral density of the acceleration ω4Φxbxb
and is assumed to be

constant. After some algebra, from Equation (68), the normalized power is

P̃ =
|V |2

(Rlω4Φxbxb
)
=

kακ2

ω3
n

Ω2

∆1(iΩ)∆∗
1(iΩ)

. (69)

Using linear stationary random vibration theory, the average normalized

power can be obtained as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φxbxb

)

]
=

kακ2

ω3
n

∫ ∞

−∞

Ω2

∆1(iΩ)∆∗
1(iΩ)

dω (70)

From Equation (66) observe that ∆1(iΩ) is a third order polynomial in (iΩ).
Noting that dω = ωndΩ and from Equation (66), the average harvested power

can be obtained from Equation (70) as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φxbxb

)

]
= mακ2I(1) (71)

Adhikari (Swansea) Stochastic dynamics / vibration energy harvesting January 15, 2016 62



Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

I(1) =

∫ ∞

−∞

Ω2

∆1(iΩ)∆∗
1(iΩ)

dΩ. (72)

After some algebra, this integral can be evaluated as

I
(1) =

π

α

det









0 1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1









det









2 ζ α+ 1 −1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1









(73)

Combining this with Equation (71) we obtain the average harvested power
due to white-noise base acceleration.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Normalised mean power: numerical illustration
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The normalized mean power of a harvester without an inductor as a function

of α and ζ, with κ = 0.6. Maximizing the average power with respect to α
gives the condition α2

(
1 + κ2

)
= 1 or in terms of physical quantities

R2
l Cp

(
kCp + θ2

)
= m.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Circuit with an inductor

The electrical equation becomes

θẍ(t) + Cpv̈(t) +
1

Rl

v̇(t) +
1

L
v(t) = 0 (74)

where L is the inductance of the circuit. Transforming equation (74) into the
frequency domain and dividing by Cpω

2
n one has

− Ω2 θ

Cp
X +

(
−Ω2 + iΩ

1

α
+

1

β

)
V = 0 (75)

where the second dimensionless constant is defined as

β = ω2
nLCp, (76)

Two equations can be written in a matrix form as

[
(1−Ω2)+2iΩζ − θ

k

−Ω2 αβθ
Cp

α(1−βΩ2)+iΩβ

]{
X
V

}
=
{

Ω2Xb

0

}
. (77)
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Circuit with an inductor

Inverting the coefficient matrix, the displacement and voltage in the frequency
domain can be obtained as

{
X
V

}
=

1

∆2

[
α(1−βΩ2)+iΩβ θ

k

Ω2 αβθ
Cp

(1−Ω2)+2iΩζ

]{
Ω2Xb

0

}

=

{
(α(1−βΩ2)+iΩβ)Ω2Xb/∆2

Ω4 αβθ
Cp

Xb/∆2

}
(78)

where the determinant of the coefficient matrix is

∆2(iΩ) = (iΩ)
4
β α+ (2 ζ β α+ β) (iΩ)

3

+
(
β α+ α+ 2 ζ β + κ2β α

)
(iΩ)

2
+ (β + 2 ζ α) (iΩ) + α. (79)
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Circuit with an inductor

Mean power

The average harvested power due to the white-noise base acceleration with a

circuit with an inductor can be obtained as

E
[
P̃
]
=

mαβκ2π (β + 2αζ)

β (β + 2αζ) (1 + 2αζ) (ακ2 + 2ζ) + 2α2ζ (β − 1)2
.

We can determine optimum values for α and β. Dividing both the

numerator and denominator of the above expression by β (β + 2αζ)
shows that the optimum value of β for all values of the other parameters
is β = 1. This value of β implies that ω2

nLCp = 1, and thus the mechanical

and electrical natural frequencies are equal.

With β = 1 the average normalized harvested power is

E
[
P̃
]
=

mακ2π

(1 + 2αζ) (ακ2 + 2ζ)
. (80)

If κ and ζ are fixed then the maximum power with respect to α is obtained
when α = 1/κ.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Normalised mean power: numerical illustration
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The normalized mean power of a harvester with an inductor as a function of α
and β, with ζ = 0.1 and κ = 0.6.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a function of β
for α = 0.6, ζ = 0.1 and κ = 0.6. The * corresponds to the optimal value of
β(= 1) for the maximum mean harvested power.
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Optimal Energy Harvester Under Gaussian Excitation Circuit with an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a function of α
for β = 1, ζ = 0.1 and κ = 0.6. The * corresponds to the optimal value of
α(= 1.667) for the maximum mean harvested power.
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Nonlinear Energy Harvesting Under Random Excitations Equivalent linearisation approach

Nonlinear coupled equations

ẍ + 2ζẋ + g(x)− χv = f (t) (81)

v̇ + λv + κẋ = 0, (82)

The nonlinear stiffness is represented as g(x) = − 1
2
(x − x3). Assuming a

non-zero mean random excitation (i.e., f (t) = f0(t) +mf ) and a non-zero mean
system response (i.e., x(t) = x0(t) + mx ), the following equivalent linear

system is considered,

ẍ0 + 2ζẋ0 + a0x0 + b0 − χv = f0(t) + mf (83)

where f0(t) and x0(t) are zero mean random processes. mf and mx are the

mean of the original processes f (t) and x(t) respectively. a0 and b0 are the

constants to be determined with b0 = mf and a0 represents the square of the
natural frequency of the linearized system ω2

eq.
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Nonlinear Energy Harvesting Under Random Excitations Equivalent linearisation approach

Linearised equations

We minimise the expectation of the error norm i.e.,

(E
[
ǫ2
]
,with ǫ = g(x)− a0x0 − b0). To determine the constants a0 and b0 in

terms of the statistics of the response x , we take partial derivatives of the

error norm w.r.t. a0 and b0 and equate them to zero individually.

∂

∂a0
E
[
ǫ2
]
=E [g(x)x0]− a0E

[
x2

0

]
− b0E [x0] (84)

∂

∂b0
E
[
ǫ2
]
=E [g(x)]− a0E [x0]− b0 (85)

Equating (84) and (85) to zero, we get,

a0 =
E [g(x)x0]

E
[
x2

0

] =
E [g(x)x0]

σ2
x

(86)

b0 = E [g(x)] = mf (87)

Adhikari (Swansea) Stochastic dynamics / vibration energy harvesting January 15, 2016 72



Nonlinear Energy Harvesting Under Random Excitations Equivalent linearisation approach

Responses of the piezomagnetoelastic oscillator
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Simulated responses of the piezomagnetoelastic oscillator in terms of the standard

deviations of displacement and voltage (σx and σv ) as the standard deviation of the random excitation σf varies. (a) gives the ratio of the displacement

and excitation; (b) gives the ratio of the voltage and excitation; and (c) shows the variance of the voltage, which is proportional to the mean power.
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Nonlinear Energy Harvesting Under Random Excitations Monte Carlo simulations

Phase portraits
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Phase portraits for λ = 0.05, and the stochastic force for (a) σf = 0.025, (b)

σf = 0.045, (c) σf = 0.065. Note that the increasing noise level overcomes the potential barrier resulting in a significant increase in the displacement x .
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Nonlinear Energy Harvesting Under Random Excitations Monte Carlo simulations

Voltage output
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Voltage output due to Gaussian white noise (ζ = 0.01, χ = 0.05, and κ = 0.5
and λ = 0.01.
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Nonlinear Energy Harvesting Under Random Excitations Monte Carlo simulations

Voltage output
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Voltage output due to Lévy noise (ζ = 0.01, χ = 0.05, and κ = 0.5 and

λ = 0.01.
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Nonlinear Energy Harvesting Under Random Excitations Monte Carlo simulations

Inverted beam harvester
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(a) Schematic diagram of inverted beam harvester, (b) a typical phase portrait

of the tip mass.
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

Fokker-Planck (FP) equation analysis for nonlinear EH

Ẍ + cẊ + k(−X + αX3)− χV = σW (t), (88)

V̇ + λV + βẊ = 0 (89)

W (t) is a stationary, zero mean unit Gaussian white noise process with

E [W (t)W (t + τ )] = δ(τ ), σ is the intensity of excitation. The two sided power spectral

density of the white noise excitation on the RHS of Eq. (88) corresponding to this

intensity is σ2/2π.
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

State-space form

Eqs. (88) and (89) can be expressed in state space form by introducing the

variables X1 = X , X2 = Ẋ and X3 = V , as







dX1(t)
dX2(t)
dX3(t)







=







X2

k(X1 − αX 3
1 )− cX2 + χX3

−βX2 − λX3







dt +







0

σ
0







dB(t). (90)

where B(t) is the unit Wiener process.

The FP equation can be derived from the Itô SDE of the form

dX(t) = m[X, t ]dt + h[X, t ]dB, (91)

where B(t) is the normalized Wiener process and the corresponding FP equation

of X(t) is given by

∂p(X, t |X0, t0)

∂t
=

[

−

N
∑

i=1

∂[mi(X, t)]

∂Xi

+
1

2

N
∑

i=1

N
∑

j=1

∂2[hij(X, t)]

∂Xi∂Xj

]

p(X, t |X0, t0) (92)

where p(X, t) is the joint PDF of the N-dimensional system state X
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

FP equation for nonlinear stochastic EH problems

Eqs. (90) of the energy harvesting system are of the form of the SDE (91) and the

corresponding FP equation can be expressed as per Eq. (92) as

∂p

∂t
= −X2

∂p

∂X1

+ (cX2 − k(X1 + αX
3
1 )− χX3)

∂p

∂X2

+

(βX2 + λX3)
∂p

∂X3

+
σ2

2

∂2p

∂X 2
2

+ (c + λ)p

(93)

where p = p(X, t |X0, t0) the joint transition PDF of the state variables is used for

notational convenience satisfying the conditions

∫

∞

−∞

p(X, t |X0, t0) dX = 1,
lim

t → 0
p(X, t |X0, t0) = δ(X − X

0), (94)

p(X, t |X0, t0)|Xi→±∞ = 0, (i = 1, . . . , n). (95)

A finite element (FE) based method is developed for the solution of the FP

equation.
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

FEM for FP equations

The weak form of the FP equation can be obtained as

Mṗ + Kp = 0, (96)

subject to the initial condition p(0) = p, where, p is a vector of the joint PDF at

the nodal points.

M = [< ψr , ψs >]Ω, (97)

K =

∫

Ω

[

N
∑

i=1

ψr (X)
∂[mi(X)ψs(X)]

∂Xj

]

dX +

∫

Ω

[

N
∑

i=1

N
∑

j=1

∂[ψr (X)]

∂Xi

∂[hijψs(X)]

∂Xj

dX
]

.

(98)

A solution of Eq. (96) is obtained using the Crank-Nicholson method, which is an

implicit time integration scheme with second order accuracy and unconditional

stability:

[M −∆t(1 − θ)K]p(t +∆t) = [M +∆tθK]p(t). (99)

The parameter θ = 0.5 and ∆t is the time step.
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

Joint PDF of the response
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(b) Contour plot comparison

Figure: Joint PDF and contour plots of piezomagnetoelastic Energy Harvester

(c = 0.02, λ = 0.01, σ = 0.04)
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Nonlinear Energy Harvesting Under Random Excitations Fokker-Planck equation analysis

Joint PDF of the response
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Figure: Joint PDF and contour plots of piezomagnetoelastic Energy Harvester

(c = 0.02, λ = 0.01, σ = 0.12)
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Conclusions

Conclusions

The mean response of a damped stochastic system is more damped
than the underlying baseline system

For small damping, ξe ≈ 31/4√ǫ√
π

√
ξ

Conventional response surface based methods fails to capture the

physics of damped dynamic systems
Proposed spectral function approach uses the undamped modal basis

and can capture the statistical trend of the dynamic response of

stochastic damped MDOF systems
The solution is projected into the modal basis and the associated

stochastic coefficient functions are obtained at each frequency step (or

time step).
The coefficient functions, called as the spectral functions, are expressed

in terms of the spectral properties (natural frequencies and mode
shapes) of the system matrices.

The proposed method takes advantage of the fact that for a given

maximum frequency only a small number of modes are necessary to
represent the dynamic response. This modal reduction leads to a

significantly smaller basis.

Adhikari (Swansea) Stochastic dynamics / vibration energy harvesting January 15, 2016 84



Conclusions

Conclusions

Vibration energy based piezoelectric and magnetopiezoelectric energy

harvesters are expected to operate under a wide range of ambient
environments. This talk considers energy harvesting of such systems

under harmonic and random excitations.

Optimal design parameters were obtained using the theory of linear
random vibration

Nonlinearity of the system can be exploited to scavenge more energy
over wider operating conditions

The Fokker-Planck equation corresponding to the nonlinear
piezomagnetoe- lastic energy harvester excited by Gaussian white noise

was derived and solved using the finite element method
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Conclusions

Future works / possible collaborations

Coupled fluid-structure-piezo systems with parametric uncertainties -

enhancing the spectral function method

Reduced model approach for stochastically parameter coupled

fluid-structure-piezo systems

Quantification of harvested energy for general piezo systems with
random excitations
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