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Introduction

Lattice structures

Lattice structures are abundant in man-made and natural systems at
various length scales
Lattice structures are made of periodic identical/near-identical geometric
units
Among various lattice geometries (triangle, square, rectangle, pentagon,
hexagon), hexagonal lattice is most common (note that hexagon is the
highest “space filling” pattern in 2D).
This talk is about in-plane elastic properties of 2D hexagonal lattice
structures - commonly known as “honeycombs”
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Introduction

Lattice structures - nano scale

Single layer graphene sheet and born nitride nano sheet
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Introduction

Lattice structures - nature

Top left: cork, top right: balsa, next down left: sponge, next down right: trabecular bone, next down left: coral, next down right: cuttlefish bone, bottom left:
leaf tissue, bottom right: plant stem, third column - epidermal cells (from web.mit.edu)
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Introduction

Lattice structures - man made

(a) Automotive: BMW i3 (b) Aerospace carbon fibre

(c) Civil engineering: building frame (d) Architecture
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Introduction

Some questions of general interest

Shall we consider lattices as “structures” or “materials” from a mechanics
point of view?
At what relative length-scale a lattice structure can be considered as a
material with equivalent elastic properties?
In what ways structural irregularities “mess up” equivalent elastic
properties? Can we evaluate it in a quantitative as well as in a qualitative
manner?
What is the consequence of random structural irregularities on the
homogenisation approach in general? Can we obtain statistical
measures?
Is there any underlying ergodic behaviour for “large” random lattices so
that ensemble statistics is close to a sample statistics? How large is
“large”?
How can we efficiently compute equivalent elastic properties of random
lattice structures?
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Introduction

Regular lattice structures

Honeycombs have been modelled as a continuous solid with an
equivalent elastic moduli throughout its domain.
This approach eliminates the need of detail finite element modelling of
honeycombs in complex structural systems like sandwich structures.
Extensive amount of research has been carried out to predict the
equivalent elastic properties of regular honeycombs consisting of
perfectly periodic hexagonal cells (El-Sayed et al., 1979; Gibson and
Ashby, 1999; Goswami, 2006; Masters and Evans, 1996; Zhang and
Ashby, 1992).
Analysis of two dimensional honeycombs dealing with in-plane elastic
properties are commonly based on unit cell approach, which is applicable
only for perfectly periodic cellular structures.
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Introduction Regular Honeycomb

Equivalent elastic properties of regular honeycombs

Unit cell approach - Gibson and Ashby (1999)

(e) Regular hexagon (θ = 30◦) (f) Unit cell

We are interested in homogenised equivalent in-plane elastic properties
This way, we can avoid a detailed structural analysis considering all the
beams and treat it as a material
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Introduction Regular Honeycomb

Equivalent elastic properties of regular honeycombs

The cell walls are treated as beams of thickness t , depth b and Young’s
modulus Es. l and h are the lengths of inclined cell walls having
inclination angle θ and the vertical cell walls respectively.
The equivalent elastic properties are:
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Introduction Regular Honeycomb

Finite element modelling and verification

A finite element code has been developed to obtain the in-plane elastic
moduli numerically for honeycombs.
Each cell wall has been modelled as an Euler-Bernoulli beam element
having three degrees of freedom at each node.
For E1 and ν12: two opposite edges parallel to direction-2 of the entire
honeycomb structure are considered. Along one of these two edges,
uniform stress parallel to direction-1 is applied while the opposite edge is
restrained against translation in direction-1. Remaining two edges
(parallel to direction-1) are kept free.
For E2 and ν21: two opposite edges parallel to direction-1 of the entire
honeycomb structure are considered. Along one of these two edges,
uniform stress parallel to direction-2 is applied while the opposite edge is
restrained against translation in direction-2. Remaining two edges
(parallel to direction-2) are kept free.
For G12: uniform shear stress is applied along one edge keeping the
opposite edge restrained against translation in direction-1 and 2, while
the remaining two edges are kept free.
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Introduction Regular Honeycomb

Finite element modelling and verification
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θ = 30◦, h/l = 1.5. FE results converge to analytical predictions after 1681
cells.
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Equivalent elastic properties of random irregular honeycombs

Irregular lattice structures

(g) Cedar wood (h) Manufactured honeycomb core

(i) Graphene image (j) Fabricated CNT surface
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Equivalent elastic properties of random irregular honeycombs

Irregular lattice structures

A significant limitation of the aforementioned unit cell approach is that it
cannot account for the spatial irregularity, which is practically inevitable.
Spatial irregularity in honeycomb may occur due to manufacturing
uncertainty, structural defects, variation in temperature, pre-stressing and
micro-structural variability in honeycombs.
To include the effect of irregularity, voronoi honeycombs have been
considered in several studies (Li et al., 2005; Zhu et al., 2001, 2006).
The effect of different forms of irregularity on elastic properties and
structural responses of honeycombs are generally based on direct finite
element (FE) simulation.
In the FE approach, a small change in geometry of a single cell may
require completely new geometry and meshing of the entire structure. In
general this makes the entire process time-consuming and tedious.
The problem becomes even worse for uncertainty quantification of the
responses associated with irregular honeycombs, where the expensive
finite element model is needed to be simulated for a large number of
samples while using a Monte Carlo based approach.
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Equivalent elastic properties of random irregular honeycombs

Irregular lattice structures

Direct numerical simulation to deal with irregularity in honeycombs may
not necessarily provide proper understanding of the underlying physics of
the system. An analytical approach could be a simple, insightful, yet an
efficient way to obtain effective elastic properties of honeycombs.
This work develops a structural mechanics based analytical framework
for predicting equivalent in-plane elastic properties of irregular
honeycomb having spatially random variations in cell angles.
Closed-form analytical expressions will be derived for equivalent in-plane
elastic properties.

Adhikari (Swansea) Homogenization and ergodicity of random lattices May 26, 2015 15



Equivalent elastic properties of random irregular honeycombs

The philosophy of the analytical approach for irregular honeycombs

The key idea to obtain the effective in-plane elastic moduli of the entire
irregular honeycomb structure is that it is considered to be consisted of
several Representative Unit Cell Elements (RUCE) having different
individual elastic moduli.

The expressions for elastic moduli of a RUCE is derived first and
subsequently the expressions for effective in-plane elastic moduli of the
entire irregular honeycomb are derived by assembling the individual
elastic moduli of these RUCEs using basic principles of mechanics
(divide and concur!).
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Longitudinal Young’s modulus (E1)

To derive the expression of longitudinal Young’s modulus for a RUCE
(E1U ), stress σ1 is applied in direction-1 as shown below:

(k) (l)

Figure: RUCE and free-body diagram used in the analysis for E1
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of a representative unit cell element (RUCE)

The inclined cell walls having inclination angle α and β do not have any
contribution in the analysis, as the stresses applied on them in two
opposite directions neutralise each other. The remaining structure except
these two inclined cell walls is symmetric.
The applied stresses cause the inclined cell walls having inclination angle
θ to bend.
From the condition of equilibrium, the vertical forces C in the free-body
diagram of these cell walls need to be zero. The cell walls are treated as
beams of thickness t , depth b and Young’s modulus Es. l and h are the
lengths of inclined cell walls having inclination angle θ and the vertical cell
walls respectively.
Therefore, we have

M =
Pl sin θ

2
(6)

where
P = σ1(h + l sin θ)b (7)
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of a representative unit cell element (RUCE)

From the standard beam theory, the deflection of one end compared to
the other end of the cell wall can be expressed as

δ =
Pl3 sin θ
12EsI

(8)

where I is the second moment of inertia of the cell wall, that is I = bt3/12.
The component of δ parallel to direction-1 is δ sin θ. The strain parallel to
direction-1 becomes

ε1 =
δ sin θ
l cos θ

(9)

Thus the Young’s modulus in direction-1 for a RUCE can be expressed as

E1U =
σ1

ε1
= Es

(
t
l

)3 cos θ(
h
l

+ sin θ
)

sin2 θ

(10)

Next we use this to obtain E1 for the entire structure.
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of the entire irregular honeycomb

(a) Entire idealized irregular honeycomb structure

(b) Idealized j th strip

(c) Idealized i th cell in j th strip

Figure: Free-body diagrams of idealized irregular honeycomb structure in the
proposed analysis of E1

The entire irregular honeycomb structure is assumed to have m and n
number of RUCEs in direction-1 and direction-2 respectively. A particular
cell having position at i th column and j th row is represented as (i ,j), where
i = 1,2, ...,m and j = 1,2, ...,n.
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of the entire irregular honeycomb

To obtain E1eq , stress σ1 is applied in direction-1. If the deformation
compatibility condition of j th strip (as highlighted in the figure) is
considered, the total deformation due to stress σ1 of that particular strip
(∆1) is the summation of individual deformations of each RUCEs in
direction-1, while deformation of each of these RUCEs in direction-2 is
the same.
Thus for the j th strip

∆1 =
m∑

i=1

∆1ij (11)

The equation (11) can be rewritten as

ε1L =
m∑

i=1

ε1ijLij (12)

where ε1 and L represent strain and dimension in direction-1 of
respective elements.
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of the entire irregular honeycomb

Equation (12) leads to
σ1L
Ê1j

=
m∑

i=1

σ1Lij

E1Uij
(13)

From equation (13), equivalent Young’s modulus of j th strip (Ê1j ) can be
expressed as

Ê1j =

m∑
i=1

lij cos θij

m∑
i=1

lij cos θij

E1Uij

(14)

where θij is the inclination angle of the cell walls having length lij in the
RUCE positioned at (i ,j).
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of the entire irregular honeycomb

After obtaining the Young’s moduli of n number of strips, they are
assembled to achieve the equivalent Young’s modulus of the entire
irregular honeycomb structure (E1eq) using force equilibrium and
deformation compatibility conditions.

σ1Bb =
n∑

j=1

σ1jBjb (15)

where Bj is the dimension of j th strip in direction-2 and B =
n∑

j=1
Bj . b

represents the depth of honeycomb.
As strains in direction-1 for each of the n strips are same to satisfy the
deformation compatibility condition, equation (15) leads to n∑

j=1

Bj

E1eq =
n∑

j=1

Ê1jBj (16)
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Equivalent elastic properties of random irregular honeycombs Longitudinal Young’s modulus (E1)

Elastic property of the entire irregular honeycomb

Using equation (14) and equation (16), equivalent Young’s modulus in
direction-1 of the entire irregular honeycomb structure (E1eq) can be
expressed as:

Equivalent E1

E1eq =
1

n∑
j=1

Bj

n∑
j=1


m∑

i=1
lij cos θij

m∑
i=1

lij cos θij

E1Uij

Bj (17)

Here Young’s modulus in direction-1 of a RUCE positioned at (i ,j) is E1Uij ,
which can be obtained from equation (10) as

E1Uij = Es

(
t
lij

)3 cos θij(
h
lij

+ sin θij

)
sin2 θij

(18)
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Transverse Young’s modulus (E2)

To derive the expression of transverse Young’s modulus for a RUCE
(E2U ), stress σ2 is applied in direction-2 as shown below:

(a) (b) (c)

Figure: RUCE and free-body diagram used in the proposed analysis for E2
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of a representative unit cell element (RUCE)

Total deformation of the RUCE in direction-2 consists of three
components, namely deformation of the cell wall having inclination angle
α, deformation of the cell walls having inclination angle θ and deformation
of the cell wall having inclination angle β.
If the remaining structure except the two inclined cell walls having
inclination angle α and β is considered, two forces that act at joint B are
W and M1. For the cell wall having inclination angle α, effect of the
bending moment M1 generated due to application of W at point D is only
to create rotation (φ) at the joint B.
Vertical deformation of the cell wall having inclination angle α has two
components, bending deformation in direction-2 and rotational
deformation due the rotation of joint B.

Adhikari (Swansea) Homogenization and ergodicity of random lattices May 26, 2015 26



Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of a representative unit cell element (RUCE)

After some algebra and mechanics, the total deformation in direction-2 of
the RUCE due to the application of stresses σ2 is

δv =
σ2l cos θ

Est3(
2l3 cos2 θ + 8s3

(
cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2s2l(cot2 α + cot2 β)

)
(19)

The strain in direction-2 can be obtained as

ε2 =
δv

h + 2s + 2l sin θ
(20)
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of a representative unit cell element (RUCE)

Therefore, the Young’s modulus in direction-2 of a RUCE can be
expressed as

E2U =
σ2

ε2
= Es

(
t
l

)3

× (
h
l

+ 2
s
l

+ 2 sin θ
)

cos θ
(

2 cos2 θ + 8
(s

l

)3
(

cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2

(s
l

)2
(cot2 α + cot2 β)

) (21)
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of the entire irregular honeycomb

To derive the expression of equivalent Young’s modulus in direction-2 for
the entire irregular honeycomb structure (E2eq), the Young’s moduli for
the constituting RUCEs (E2U ) are “assembled”.

(a) Entire idealized irregular
honeycomb structure

(b) Idealized j th
strip

(c) Ideal-
ized i th cell
in j th strip

Figure: Free-body diagrams of idealized irregular honeycomb structure
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of the entire irregular honeycomb

When the force equilibrium under the application of stress σ2 of j th strip
(as highlighted in 4(b)) is considered:

σ2

(
m∑

i=1

2lij cos θij

)
b =

(
m∑

i=1

σ2ij2lij cos θij

)
b (22)

By deformation compatibility condition, strains of each RUCE in
direction-2 of the j th strip are same. Equation (22), rewritten as

Ê2j

(
m∑

i=1

lij cos θij

)
ε =

(
m∑

i=1

E2Uij lij cos θijεij

)
(23)

where εij = ε, for i = 1,2...m in the j th strip.
Ê2j is the equivalent elastic modulus in direction-2 of the j th strip:

Ê2j =

m∑
i=1

E2Uij lij cos θij

m∑
i=1

lij cos θij

(24)
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of the entire irregular honeycomb

Total deformation of the entire honeycomb in direction-2 (∆2) is the sum
of deformations of each strips in that direction,

∆2 =
n∑

j=1

∆2ij (25)

Equation (25) can be rewritten as

ε2B =
n∑

j=1

ε2jBj (26)

where ε2, ε2j and Bj represent total strain of the entire honeycomb
structure in direction-2, strain of j th strip in direction-2 and dimension in
direction-2 of j th strip respectively.
From equation (26) we have

σ2

n∑
j=1

Bj

E2eq
=

n∑
j=1

σ2Bj

Ê2j
(27)
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Elastic property of the entire irregular honeycomb

From equation (24) and equation (27), the Young’s modulus in direction-2
of the entire irregular honeycomb structure can be expressed as

Equivalent E2

E2eq =
1 n∑

j=1
Bj

m∑
i=1

lij cos θij

m∑
i=1

E2Uij lij cos θij


n∑

j=1

Bj (28)

Here Young’s modulus in direction-2 of a RUCE positioned at (i ,j) is E2Uij ,
which can be obtained from equation (21).
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Equivalent elastic properties of random irregular honeycombs Transverse Young’s modulus (E2)

Special case: classical deterministic results

The expressions of Young’s moduli for randomly irregular honeycombs
(equation (17) and (28)) reduces to the formulae provided by Gibson and
Ashby (Gibson and Ashby, 1999) in case of uniform honeycombs (i.e.
B1 = B2 = ... = Bn; s = h/2; α = β = 90◦; lij = l and θij = θ, for all i and
j).
By applying the conditions B1 = B2 = ... = Bn; lij = l and θij = θ,
equation (17) and (28) reduce to E1U and E2U respectively.
For s = h/2 and α = β = 90◦, E1U and E2U produce the same
expressions for Young’s moduli of uniform honeycomb as presented by
Gibson and Ashby (Gibson and Ashby, 1999).
In the case of regular uniform honeycombs (θ = 30◦)

E∗
1

Es
=

E∗
2

Es
= 2.3

(
t
l

)3

(29)

where E∗
1 and E∗

2 denote the Young moduli of uniform regular
honeycombs in longitudinal and transverse direction respectively.
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν12

Poisson’s ratio ratio ν12

Poisson’s ratios are calculated by taking the negative ratio of strains
normal to, and parallel to, the loading direction.
Poisson’s ratio of a RUCE for the loading direction-1 (ν12U ) is obtained as

ν12U = −ε2
ε1

(30)

where ε1 and ε2 represent the strains of a RUCE in direction-1 and
direction-2 respectively due to loading in direction-1.
ε1 can be obtained from equation (9). From 1(l), ε2 can be expressed as

ε2 = − 2δ cos θ
h + 2l sin θ + 2s

(31)

Thus the expression for Poisson’s ratio of a RUCE for the loading
direction-1 becomes

ν12U =
2 cos2 θ(

2 sin θ + 2
s
l

+
h
l

)
sin θ

(32)
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν12

Poisson’s ratio of the entire irregular honeycomb

To derive the expression of equivalent Poisson’s ratio for loading
direction-1 of the entire irregular honeycomb structure (ν12eq), the
Poisson’s ratios for the constituting RUCEs (ν12U ) are “assembled”.
For obtaining ν12eq , stress σ1 is applied in direction-1. If the application of
stress σ1 in the j th strip is considered, total deformation of the j th strip in
direction-1 is summation of individual deformations of the RUCEs in
direction-1 of that particular strip.
Thus from equation (12), using the basic definition of ν12,

− ε2
ν̂12j

L = −
m∑

i=1

ε2ijLij

νU12ij
(33)

where ε2 and ε2ij are the strains in direction-2 of j th strip and individual
RUCEs of j th strip respectively.
νU12ij represents the Poisson’s ratio for loading direction-1 of a RUCE
positioned at (i ,j). ν̂12j denotes the equivalent Poisson’s ratio for loading
direction-1 of the j th strip.
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν12

Poisson’s ratio of the entire irregular honeycomb

Ensuring the deformation compatibility condition ε2 = ε2ij for i = 1,2, ...,m
in the j th strip, equation (33) leads to

ν̂12j =
L

m∑
i=1

Lij

ν12Uij

(34)

Total deformation of the entire honeycomb structure in direction-2 under
the application of stress σ1 along the two opposite edges parallel to
direction-2 is summation of the individual deformations in direction-2 of n
number of strips. Thus

ε2B =
n∑

j=1

ε2jBj (35)
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν12

Poisson’s ratio of the entire irregular honeycomb

Using the basic definition of ν12 equation (35) becomes

ν12eqε1B =
n∑

j=1

ν12jε1jBj (36)

where ν12eq represents the equivalent Poisson’s ratio for loading
direction-1 of the entire irregular honeycomb structure.
ε1 and ε1j denote the strain of entire honeycomb structure in direction-1
and strain of j th strip in direction-1 respectively.
From the condition of deformation comparability ε1 = ε1j for j = 1,2, ...,n.
Thus from equation (34) and equation (36):

Equivalent ν12

ν12eq =
1

n∑
j=1

Bj

n∑
j=1


m∑

i=1
lij cos θij

m∑
i=1

lij cos θij

ν12Uij

Bj (37)

Here ν12Uij can be obtained from equation (32).
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν21

Poisson’s ratio ν21

Poisson’s ratio of a RUCE for the loading direction-2 (ν21U ) is obtained as

ν21U = −ε1
ε2

(38)

where ε1 and ε2 represent the strains of a RUCE in direction-1 and
direction-2 respectively due to loading in direction-2.
ε2 can be obtained from equation (19) and equation (20) as

ε2 =
σ2l cos θ

Est3(h + 2s + 2l sin θ)(
2l3 cos2 θ + 8s3

(
cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2s2l(cot2α + cot2β)

)
(39)

We have
ε1 = −δ1 sin θ

l cos θ
(40)

with δ1 =

(
W
2

cos θ
)

l3

12EsI
and W = 2σ2lb cos θ.
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν21

Poisson’s ratio of a representative unit cell element (RUCE)

Thus equation (40) reduces to

ε1 = −σ2l3 sin θ cos θ
Est3 (41)

Thus the expression for Poisson’s ratio of a RUCE for the loading
direction-2 becomes

ν21U =

sin θ
(

h
l

+ 2
s
l

+ 2 sin θ
)

2 cos2 θ + 8
(s

l

)3
(

cos2 α

sin3 α
+

cos2 β

sin3 β

)
+ 2

(s
l

)2
(cot2 α + cot2 β)

(42)
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν21

Poisson’s ratio of the entire irregular honeycomb

To derive the expression of equivalent Poisson’s ratio for loading
direction-2 of the entire irregular honeycomb structure (ν21eq), the
Poisson’s ratios for the constituting RUCEs (ν21U ) are assembled.
For obtaining ν21eq , stress σ2 is applied in direction-2. If the application of
stress σ2 in the j th strip is considered, total deformation of the j th strip in
direction-1 is summation of individual deformations of the RUCEs in
direction-1 of that particular strip. Thus,

ε1L =
m∑

i=1

ε1ijLij (43)

Using the basic definition of ν21 equation (43) leads to

ν̂21jε2L =
m∑

i=1

ν21Uijε2ijLij (44)

where ν̂21j represents the equivalent Poisson’s ratio for loading
direction-2 of the j th strip.
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν21

Poisson’s ratio of the entire irregular honeycomb

ε2 and ε2ij are the strains in direction-2 of j th strip and individual RUCEs of
j th strip respectively. ν21Uij represents the Poisson’s ratio for loading
direction-2 of a RUCE positioned at (i ,j).
To ensure the deformation compatibility condition ε2 = ε2ij for
i = 1,2, ...,m in the j th strip. Thus equation (44) leads to

ˆν21j =

m∑
i=1

ν21Uij lij cos θij

m∑
i=1

lij cos θij

(45)

Total deformation of the entire honeycomb structure in direction-2 under
the application of stress σ2 along the two opposite edges parallel to
direction-1 is summation of the individual deformations in direction-2 of n
number of strips. Thus

ε2B =
n∑

j=1

ε2jBj (46)
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Equivalent elastic properties of random irregular honeycombs Poisson’s ratio ν21

Poisson’s ratio of the entire irregular honeycomb

By definition of ν21 equation (46) leads to

ε1
ν21eq

B =
n∑

j=1

ε1j

ˆν21j
Bj (47)

From the condition of deformation comparability ε1 = ε1j for j = 1,2, ...,n.
Thus the equivalent Poisson’s ratio for loading direction-2 of the entire
irregular honeycomb structure:

Equivalent ν12

ν21eq =
1 n∑

j=1
Bj

m∑
i=1

lij cos θij

m∑
i=1

ν21Uij lij cos θij


n∑

j=1

Bj (48)

Here ν21Uij can be obtained from equation (42).
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Shear modulus (G12)

To derive the expression of shear modulus (G12U ) for a RUCE, shear
stress τ is applied as shown below:

(a) (b) (c)

Figure: RUCE and free-body diagram used in the proposed analysis for G12
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of a representative unit cell element (RUCE)

Total lateral movement of point D with respect to point H can be obtained
as

δL =

2τ l cos θ
Et3

(
2ls2 +

h3

2
+ 4s3

(
1

sinα
+

1
sinβ

)
+ (s + l sin θ)h2

) (49)

The shear strain γ for a RUCE can be expressed as

γ =
δL

2s + h + 2l sin θ
=

2τ l cos θ
Et3(2s + h + 2l sin θ)

×(
2ls2 +

h3

2
+ 4s3

(
1

sinα
+

1
sinβ

)
+ (s + l sin θ)h2

) (50)
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of a representative unit cell element (RUCE)

Thus the expression for shear modulus of a RUCE becomes

G12U =
τ

γ
= Es

(
t
l

)3

× (
2

s
l

+
h
l

+ 2 sin θ
)

2 cos θ

(
2
(s

l

)2
+ 4

(s
l

)3
(

1
sinα

+
1

sinβ

)
+

1
2

(
h
l

)3

+
(s

l
+ sin θ

)(h
l

)2
)

(51)
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of the entire irregular honeycomb

To derive the expression of equivalent shear modulus of the entire
irregular honeycomb structure (G12eq), the shear moduli for the
constituting RUCEs (G12U ) are “assembled”:

(a) Entire idealized irregular honeycomb structure

(b) Idealized j th strip

(c) Idealized i th cell in j th strip

Figure: Free-body diagrams of idealized irregular honeycomb structure in the
proposed analysis of G12
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of the entire irregular honeycomb

For obtaining G12eq , shear stress τ is applied parallel to direction
direction-1. If the equilibrium of forces for application of stress τ in the j th

strip is considered:

τL =
m∑

i=1

τijLij (52)

By definition of shear modulus equation (52) can be rewritten as

Ĝ12jγL =
m∑

i=1

G12UijγijLij (53)

where Ĝ12j represents the equivalent shear modulus of the j th strip.
γ and γij are the shear strains of j th strip and individual RUCEs of the j th

strip respectively. G12Uij represents the shear modulus of a RUCE
positioned at (i ,j).
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of the entire irregular honeycomb

To ensure the deformation compatibility condition γ = γij for i = 1,2, ...,m
in the j th strip. Thus equation (53) leads to

Ĝ12j =

m∑
i=1

G12Uij lij cos θij

m∑
i=1

lij cos θij

(54)

Total lateral deformation of one edge compared to the opposite edge of
the entire honeycomb structure under the application of shear stress τ is
the summation of the individual lateral deformations of n number of strips.
Thus

γB =
n∑

j=1

γjBj (55)

By definition of G12 equation (55) leads to

τ

G12eq
B =

n∑
j=1

τj

Ĝ12j
Bj (56)
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Equivalent elastic properties of random irregular honeycombs Shear modulus (G12)

Elastic property of the entire irregular honeycomb

From equation (54) and (56), the equivalent shear modulus of the entire
irregular honeycomb structure can be expressed as:

Equivalent G12

G12eq =
1 n∑

j=1
Bj

m∑
i=1

lij cos θij

m∑
i=1

G12Uij lij cos θij


n∑

j=1

Bj (57)

Here G12Uij can be obtained from equation (51).
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Uncertainty modelling and simulation

Computational model and validation

The analytical approach is capable of obtaining equivalent in-plane
elastic properties for irregular honeycombs from known random spatial
variation of cell angle and material properties of the honeycomb cells.
The homogenised properties depend on the ratios h/l , t/l , s/l and the
angles θ, α, β. In addition, the two Young’s moduli and shear modulus
also depend on Es.
We show results for h/l = 1.5 and three values of cell angle θ, namely:
30◦, 45◦ and 60◦.
As the two Young’s moduli and shear modulus of low density honeycomb
are proportional to Esρ

3 (Zhu et al., 2001), the non-dimensional results
for elastic moduli E1, E2, ν12, ν21 and G12 have been obtained using

Ē1 =
E1eq

Esρ3 , Ē2 =
E2eq

Esρ3 , ν̄12 = ν12eq , ν̄21 = ν21eq and Ḡ12 =
G12eq

Esρ3

respectively, where ‘ .̄ ’ represents the non-dimensional elastic modulus
and ρ is the relative density of honeycomb (ratio of the planar area of
solid to the total planar area of the honeycomb).
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Uncertainty modelling and simulation

Computational model and validation

(a) θ = 60◦ (b) θ = 45◦

Figure: Regular honeycomb with different θ values
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Uncertainty modelling and simulation

Computational model and validation

For the purpose of finding the range of variation in elastic moduli due to
spatial uncertainty, cell angles and material properties can be perturbed
following a random distribution within specific bounds. We show results
for spatial irregularity in the cell angles only.
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(a) Distribution of cell angle (θ)
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(b) Distribution of the inclination angle (α)

Figure: Typical statistical distribution of cell angle (θ) and inclination angle α
(number of RUCE: 1681)
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Uncertainty modelling and simulation

Computational model and validation

The maximum, minimum and mean values of non-dimensional in-plane
elastic moduli for different degree of spatially random variations in cell
angles (∆θ = 0◦,1◦,3◦,5◦,7◦) are calculated using both direct finite
element simulation and the derived closed-form expressions.
For a particular cell angle θ, results have been obtained using a set of
uniformly distributed 1000 random samples in the range of
[θ − ∆θ, θ + ∆θ].
The set of input parameter for a particular sample consists of N number
of cell angles in the specified range, where N(= n × m) is the total
number of RUCEs in the entire irregular honeycomb structure. We used
1681 RUCEs (as this was needed for convergence of the deterministic
case).
The quantities h and θ have been considered as the two random input
parameters while α, β and l are dependent features.
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Results and discussions Numerical results for the homogenised in-plane properties

Longitudinal elastic modulus (E1)
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Results and discussions Numerical results for the homogenised in-plane properties

Transverse elastic modulus (E2)
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Results and discussions Numerical results for the homogenised in-plane properties

Poisson’s ratio ν12
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Results and discussions Numerical results for the homogenised in-plane properties

Poisson’s ratio ν21
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Results and discussions Numerical results for the homogenised in-plane properties

Shear modulus (G12)
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Results and discussions Numerical results for the homogenised in-plane properties

Probability density function of E2
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Results and discussions Numerical results for the homogenised in-plane properties

Ergodic behaviour of E2: spread of values

h/l = 1.5, Ē2 = E2eq/Eregular , θ = 45◦, ∆θ = 5◦
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Results and discussions Numerical results for the homogenised in-plane properties

Ergodic behaviour of E2: coefficient of variation

h/l = 1.5, θ = 45◦, ∆θ = 5◦
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Results and discussions Numerical results for the homogenised in-plane properties

Ergodic behaviour of ν21: coefficient of variation

h/l = 1.5, θ = 45◦, ∆θ = 5◦
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Results and discussions Numerical results for the homogenised in-plane properties

Ergodic behaviour of G12: coefficient of variation

h/l = 1.5, θ = 45◦, ∆θ = 5◦

Adhikari (Swansea) Homogenization and ergodicity of random lattices May 26, 2015 63



Results and discussions Main observations

Main observations

The elastic moduli obtained using the analytical method and by finite
element simulation are in good agreement - establishing the validity of
the closed-form expressions.
The number of input random variables (cell angle) increase with the
number of cells.
The variation in E1 and ν12 due to spatially random variations in cell
angles is very less, while there is considerable amount of reductions in
the values of E2, ν21 and G12 with increasing degree of irregularity.
Longitudinal Young’s modulus, transverse Young’s modulus and shear
modulus are functions of both structural geometry and material properties
of the irregular honeycomb (i.e. ratios h/l , t/l , s/l and angles θ, α, β and
Es), while the Poisson’s ratios depend only on structural geometry of
irregular honeycombs (i.e. ratios h/l , t/l , s/l and angles θ, α, β)
For large number of random cells (≈1700), we observe the emergence of
an effective ergodic behaviour - ensemble statistics become close to
single sample “statistics”.
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Conclusions

Conclusions
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