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Mathematical models for dynamic systems
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A general overview of computational mechanics
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Uncertainty in structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nom-

inally identical systems). On the other hand, some models are complex! Com-
plex models can have ‘errors’ and/or ‘lack of knowledge’ in its formulation.



Model quality

The quality of a model of a dynamic system depends on the following three
factors:

Fidelity to (experimental) data:

The results obtained from a numerical or mathematical model undergoing
a given excitation force should be close to the results obtained from the

vibration testing of the same structure undergoing the same excitation.

Robustness with respect to (random) errors:

Errors in estimating the system parameters, boundary conditions and

dynamic loads are unavoidable in practice. The output of the model
should not be very sensitive to such errors.

Predictive capability:
In general it is not possible to experimentally validate a model over the

entire domain of its scope of application. The model should predict the

response well beyond its validation domain.



Sources of uncertainty

Different sources of uncertainties in the modeling and simulation of dynamic

systems may be attributed, but not limited, to the following factors:

Mathematical models: equations (linear, non-linear), geometry, damping
model (viscous, non-viscous, fractional derivative), boundary

conditions/initial conditions, input forces.

Model parameters: Young’s modulus, mass density, Poisson’s ratio,

damping model parameters (damping coefficient, relaxation modulus,

fractional derivative order).

Numerical algorithms: weak formulations, discretisation of displacement

fields (in finite element method), discretisation of stochastic fields (in
stochastic finite element method), approximate solution algorithms,

truncation and roundoff errors, tolerances in the optimization and iterative

methods, artificial intelligent (AI) method (choice of neural networks).

Measurements: noise, resolution (number of sensors and actuators),

experimental hardware, excitation method (nature of shakers and
hammers), excitation and measurement point, data processing

(amplification, number of data points, FFT), calibration.



Few general questions

How does system uncertainty impact the dynamic response? Does it
matter?

What is the underlying physics?

How can we model uncertainty in dynamic systems? Do we ‘know’ the

uncertainties?

How can we efficiently quantify uncertainty in the dynamic response for

large multi degrees of freedom systems?

What about using ‘black box’ type response surface methods?

Can we use modal analysis for stochastic systems? Does stochastic

systems has natural frequencies and mode shapes?



Stochastic SDOF systems
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Consider a normalised single degree of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (1)

Here ωn =
√

k/m is the natural frequency and ξ = c/2
√

km is the damping
ratio.

We are interested in understanding the motion when the natural
frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.



Frequency variability
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(b) Pdf: σa = 0.2

Figure: We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where ωn0

is

deterministic frequency and r is a random variable with a given

probability distribution function.

Several probability distribution function can be used.

We use uniform, normal and lognormal distribution.



Frequency samples
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(a) Frequencies: σa = 0.1
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(b) Frequencies: σa = 0.2

Figure: 1000 sample realisations of the frequencies for the three distributions



Response in the time domain
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Figure: Response due to initial velocity v0 with 5% damping



Frequency response function
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Figure: Normalised frequency response function |u/ust |
2, where ust = f/k



Experimental investigations - MDOF systems

Figure: A cantilever plate with randomly attached oscillators - Adhikari, S., Friswell, M. I., Lonkar, K. and

Sarkar, A., ”Experimental case studies for uncertainty quantification in structural dynamics”, Probabilistic Engineering Mechanics, 24[4] (2009), pp. 473-492.



Measured frequency response function statistics
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Key observations

The mean response is more damped compared to deterministic
response.

The higher the randomness, the higher the “effective damping”.

The qualitative features are almost independent of the distribution the
random natural frequency.

We often use averaging to obtain more reliable experimental results - is it
always true?

Assuming uniform random variable, we aim to explain some of these

observations.



Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + ǫx), where

x has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m

[−ω2 + ω2
n0
(1 + ǫx)] + 2iξωωn0

√
1 + ǫx

(2)

Considering ωn0
=
√

k/m and frequency ratio r = ω/ωn0
we have

u

f/k
=

1

[(1 + ǫx)− r2] + 2iξr
√

1 + ǫx
(3)



Equivalent damping

The squared-amplitude of the normalised dynamic response at ω = ωn0

(that is r = 1) can be obtained as

Û =

( |u|
f/k

)2

=
1

ǫ2x2 + 4ξ2(1 + ǫx)
(4)

Since x is zero mean unit standard deviation uniform random variable, its

pdf is given by px (x) = 1/2
√

3,−
√

3 ≤ x ≤
√

3

The mean is therefore

E
[
Û
]
=

∫
1

ǫ2x2 + 4ξ2(1 + ǫx)
px (x)dx

=
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
− ξ√

1 − ξ2

)

+
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
+

ξ√
1 − ξ2

)
(5)



Equivalent damping

Note that

1

2

{
tan−1(a + δ) + tan−1(a − δ)

}
= tan−1(a) + O(δ2) (6)

Neglecting terms of the order O(ξ2) we have

E
[
Û
]
≈ 1

2
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2

)
=

tan−1(
√

3ǫ/2ξ)

2
√

3ǫξ
(7)



Equivalent damping

For small damping, the maximum deterministic amplitude at ω = ωn0
is

1/4ξ2
e where ξe is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given by

(2ξe)
2 =

2
√

3ǫξ

tan−1(
√

3ǫ/2ξ)
(8)

For small damping, taking the limit we can obtain

ξe ≈ 31/4
√
ǫ√

π

√
ξ (9)

The equivalent damping factor of the mean system is proportional to the
square root of the damping factor of the underlying baseline system



Equivalent frequency response function
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(a) Response: σa = 0.1
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Figure: Normalised frequency response function with equivalent damping (ξe = 0.05

in the ensembles). For the two cases ξe = 0.0643 and ξe = 0.0819 respectively.



Can we extend the ideas based on stochastic SDOF systems to stochastic
MDOF systems?



Stochastic modal analysis

Stochastic modal analysis to obtain the dynamic response needs further

thoughts

Consider the following 3DOF example:

m1

m2

m3
k4 k5k1 k3

k2

k6

Figure: A 3DOF system with parametric uncertainty in mi and ki



Statistical overlap
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Figure: Scatter of the eigenvalues due to parametric uncertainties

The SDOF based approach cannot be applied when there is statistical
overlap in the eigenvalues.



Stochastic partial differential equation

We consider a stochastic partial differential equation (PDE) for a linear

dynamic system

ρ(r, θ)
∂2U(r, t , θ)

∂t2
+ Lα

∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (10)

The stochastic operator Lβ can be

Lβ ≡ ∂
∂x

AE(x , θ) ∂
∂x

axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams

Lα denotes the stochastic damping, which is mostly proportional in nature.
Here α, β : Rd ×Θ → R are stationary square integrable random fields, which

can be viewed as a set of random variables indexed by r ∈ R
d . Based on the

physical problem the random field a(r, θ) can be used to model different
physical quantities (e.g., AE(x , θ), EI(x , θ)).



Discretisation of random fields

The random process a(r, θ) can be expressed in a generalized Fourier
type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +

∞∑

i=1

√
νiξi(θ)ϕi (r) (11)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard

Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1, 2, · · · (12)



Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (13)

The underlying random process H(x , θ) can be expanded using the
Karhunen-Loève (KL) expansion in the interval −a ≤ x ≤ a as

H(x , θ) =

∞∑

j=1

ξj (θ)
√
λjϕj(x) (14)

Using the notation c = 1/b, the corresponding eigenvalues and
eigenfunctions for odd j and even j are given by

λj =
2c

ω2
j + c2

, ϕj(x) =
cos(ωjx)√

a +
sin(2ωja)

2ωj

, where tan(ωja) =
c

ωj

,

(15)

λj =
2c

ωj
2 + c2

, ϕj(x) =
sin(ωjx)√

a − sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c
.

(16)



KL expansion
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The eigenvalues of the Karhunen-Loève expansion for different correlation

lengths, b, and the number of terms, N, required to capture 90% of the infinite
series. An exponential correlation function with unit domain (i.e., a = 1/2) is

assumed for the numerical calculations. The values of N are obtained such

that λN/λ1 = 0.1 for all correlation lengths. Only eigenvalues greater than λN

are plotted.



Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L with

random bending stiffness and mass distribution:

∂2

∂x2

[
EI(x , θ)

∂2Y (x , t)

∂x2

]
+ ρA(x , θ)

∂2Y (x , t)

∂t2
= p(x , t). (17)

Y (x , t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x): mass
per unit length, and p(x , t): applied forcing. Consider

EI(x , θ) = EI0 (1 + ǫ1F1(x , θ)) (18)

and ρA(x , θ) = ρA0 (1 + ǫ2F2(x , θ)) (19)

The subscript 0 indicates the mean values, 0 < ǫi << 1 (i=1,2) are

deterministic constants and the random fields Fi(x , θ) are taken to have zero
mean, unit standard deviation and covariance Rij(ξ).



Random beam element
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Realisations of the random field
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Some random realizations of the bending rigidity EI of the beam for

correlation length b = L/3 and strength parameter ǫ1 = 0.2 (mean 2.0 × 105).
Thirteen terms have been used in the KL expansion.



Example: A beam with random properties

We express the shape functions for the finite element analysis of

Euler-Bernoulli beams as

N(x) = Γ s(x) (20)

where

Γ =




1 0
−3

ℓe
2

2

ℓe
3

0 1
−2

ℓe
2

1

ℓe
2

0 0
3

ℓe
2

−2

ℓe
3

0 0
−1

ℓe
2

1

ℓe
2




and s(x) =
[
1, x , x2, x3

]T
. (21)

The element stiffness matrix:

Ke(θ) =

∫ ℓe

0

N
′′

(x)EI(x , θ)N
′′T

(x)dx =

∫ ℓe

0

EI0 (1 + ǫ1F1(x , θ))N
′′

(x)N
′′T

(x)dx .

(22)



Example: A beam with random properties

Expanding the random field F1(x , θ) in KL expansion

Ke(θ) = Ke0 +∆Ke(θ) (23)

where the deterministic and random parts are

Ke0 = EI0

∫ ℓe

0

N
′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKej . (24)

The constant NK is the number of terms retained in the Karhunen-Loève

expansion and ξKj(θ) are uncorrelated Gaussian random variables with zero
mean and unit standard deviation. The constant matrices Kej can be

expressed as

Kej = EI0

∫ ℓe

0

ϕKj(xe + x)N
′′

(x)N
′′T

(x) dx (25)



Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0
+∆Me(θ) (26)

The deterministic and random parts is given by

Me0
= ρA0

∫ ℓe

0

N(x)NT (x) dx and ∆Me(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√

λMjMej . (27)

The constant NM is the number of terms retained in Karhunen-Loève

expansion and the constant matrices Mej can be expressed as

Mej = ρA0

∫ ℓe

0

ϕMj(xe + x)N(x)NT (x) dx . (28)

Both Kej and Mej can be obtained in closed-form.



Example: A beam with random properties

These element matrices can be assembled to form the global random

stiffness and mass matrices of the form

K(θ) = K0 +∆K(θ) and M(θ) = M0 +∆M(θ). (29)

Here the deterministic parts K0 and M0 are the usual global stiffness and

mass matrices obtained form the conventional finite element method. The

random parts can be expressed as

∆K(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKj and ∆M(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√

λMj Mj (30)

The element matrices Kej and Mej can be assembled into the global matrices

Kj and Mj . The total number of random variables depend on the number of

terms used for the truncation of the infinite series. This in turn depends on the
respective correlation lengths of the underlying random fields.



Stochastic equation of motion

The equation for motion for stochastic linear MDOF dynamic systems:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (31)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi )Ki ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing vector

The mass and stiffness matrices have been expressed in terms of their

deterministic components (M0 and K0) and the corresponding random
contributions (Mi and Ki). These can be obtained from discretising

stochastic fields with a finite number of random variables (µi(θi ) and

νi(θi)) and their corresponding spatial basis functions.

Proportional damping model is considered for which

C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.



Frequency domain representation

For the harmonic analysis of the structural system, taking the Fourier

transform [
−ω2M(θ) + iωC(θ) + K(θ)

]
ũ(ω, θ) = f̃(ω) (32)

where ũ(ω, θ) is the complex frequency domain system response

amplitude, f̃(ω) is the amplitude of the harmonic force.

For convenience we group the random variables associated with the

mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1
(θ) = νj(θ) for i = 1, 2, . . . , p1

and j = 1, 2, . . . , p2



Frequency domain representation

Using M = p1 + p2 which we have

(
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

)
ũ(ω, θ) = f̃(ω) (33)

where A0 and Ai ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the damping

matrices ensemble.

For the case of proportional damping the matrices A0 and Ai can be

written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0, (34)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1, 2, . . . , p1 (35)

and Aj+p1
(ω) = [iωζ2 + 1]Kj for j = 1, 2, . . . , p2 .



Time domain representation

If the time steps are fixed to ∆t, then the equation of motion can be written as

M(θ)üt+∆t (θ) + C(θ)u̇t+∆t (θ) + K(θ)ut+∆t (θ) = pt+∆t . (36)

Following the Newmark method based on constant average acceleration
scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)]ut+∆t (θ) = p
eqv
t+∆t (θ) (37)

and, p
eqv
t+∆t (θ) = pt+∆t + f (ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (38)

where p
eqv
t+∆t (θ) is the equivalent force at time t +∆t which consists of

contributions of the system response at the previous time step.



Newmark’s method

The expressions for the velocities u̇t+∆t (θ) and accelerations üt+∆t (θ) at each
time step is a linear combination of the values of the system response at

previous time steps (Newmark method) as

üt+∆t (θ) = a0 [ut+∆t (θ)− ut(θ)] − a2u̇t (θ)− a3üt (θ) (39)

and, u̇t+∆t (θ) = u̇t(θ) + a6üt (θ) + a7üt+∆t (θ) (40)

where the integration constants ai , i = 1, 2, . . . , 7 are independent of system
properties and depends only on the chosen time step and some constants:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1; (41)

a4 =
δ

α
− 1; a5 =

∆t

2

(
δ

α
− 2

)
; a6 = ∆t(1 − δ); a7 = δ∆t (42)



Newmark’s method

Following this development, the linear structural system in (37) can be
expressed as [

A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t (θ) = p
eqv
t+∆t (θ). (43)

where A0 and Ai represent the deterministic and stochastic parts of the

system matrices respectively. For the case of proportional damping, the

matrices A0 and Ai can be written similar to the case of frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (44)

and, Ai = [a0 + a1ζ1]Mi for i = 1, 2, . . . , p1 (45)

= [a1ζ2 + 1]Ki for i = p1 + 1, p1 + 2, . . . , p1 + p2 .



General mathematical representation

Whether time-domain or frequency domain methods were used, in

general the main equation which need to be solved can be expressed as

(
A0 +

M∑

i=1

ξi (θ)Ai

)
u(θ) = f(θ) (46)

where A0 and Ai represent the deterministic and stochastic parts of the
system matrices respectively. These can be real or complex matrices.

Generic response surface based methods have been used in literature -
for example the Polynomial Chaos Method



Polynomial Chaos expansion

After the finite truncation, the polynomial chaos expansion can be written as

u(θ) =

P∑

k=1

Hk (ξ(θ))uk (47)

where Hk (ξ(θ)) are the polynomial chaoses. We need to solve a nP × nP

linear equation to obtain all uk ∈ R
n.




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1

...
...

...
AP−1,0 · · · AP−1,P−1








u0

u1

...
uP−1





=





f0

f1

...
fP−1





(48)

The number of terms P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150

3rd order PC 9 19 55 285 1770 23425 176850



Some Observations

The basis is a function of the pdf of the random variables only. For

example, Hermite polynomials for Gaussian pdf, Legender’s polynomials

for uniform pdf.

The physics of the underlying problem (static, dynamic, heat conduction,

transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the projection

can be more than n (depends on the number of random variables). This

implies that many of the vectors uk are linearly dependent.

The physical interpretation of the coefficient vectors uk is not immediately

obvious.

The functional form of the response is a pure polynomial in random

variables.



Possibilities of solution types

As an example, consider the frequency domain response vector of the

stochastic system u(ω, θ) governed by[
−ω2M(ξ(θ)) + iωC(ξ(θ)) + K(ξ(θ))

]
u(ω, θ) = f(ω). Some possibilities are

u(ω, θ) =

P1∑

k=1

Hk(ξ(θ))uk (ω)

or =

P2∑

k=1

Γk (ω, ξ(θ))φk

or =

P3∑

k=1

ak (ω)Hk (ξ(θ))φk

or =

P4∑

k=1

ak (ω)Hk (ξ(θ))Uk (ξ(θ)) . . . etc.

(49)



Deterministic classical modal analysis?

For a deterministic system, the response vector u(ω) can be expressed as

u(ω) =

P∑

k=1

Γk (ω)uk

where Γk(ω) =
φT

k f

−ω2 + 2iζkωkω + ω2
k

uk = φk and P ≤ n (number of dominantmodes)

(50)

Can we extend this idea to stochastic systems?



Projection in the modal space

There exist a finite set of complex frequency dependent functions Γk (ω, ξ(θ))
and a complete basis φk ∈ R

n for k = 1, 2, . . . , n such that the solution of the
discretized stochastic finite element equation (31) can be expressed by the

series

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (51)

Outline of the derivation:1 In the first step a complete basis is generated with
the eigenvectors φk ∈ R

n of the generalized eigenvalue problem

K0φk = λ0k
M0φk ; k = 1, 2, . . . n (52)

1
Kundu, A. and Adhikari, S., ”Dynamic analysis of stochastic structural systems using frequency adaptive spectral functions”, Probabilistic Engineering

Mechanics, 39[1] (2015), pp. 23-38.



Projection in the modal space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ R

n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R
n×n (53)

Eigenvalues are ordered in the ascending order: λ01
< λ02

< . . . < λ0n
.

We use the orthogonality property of the modal matrix Φ as

Φ
T K0Φ = λ0, and Φ

T M0Φ = I (54)

Using these we have

Φ
T A0Φ = Φ

T
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (55)

This gives Φ
T A0Φ = Λ0 and A0 = Φ

−T
Λ0Φ

−1, where

Λ0 =
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.



Projection in the modal space

Hence, Λ0 can also be written as

Λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ C

n×n (56)

where λ0j
=
(
−ω2 + iωζ1

)
+ (iωζ2 + 1) λj and λj is as defined in

Eqn. (53). We also introduce the transformations

Ãi = Φ
T AiΦ ∈ C

n×n; i = 0, 1, 2, . . . ,M. (57)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ
−T ÃiΦ

−1 ∈ C
n×n; i = 1, 2, . . . ,M. (58)



Projection in the modal space

Suppose the solution of Eq. (31) is given by

û(ω, θ) =

[
A0(ω) +

M∑

i=1

ξi (θ)Ai(ω)

]−1

f(ω) (59)

Using Eqs. (53)–(58) and the mass and stiffness orthogonality of Φ one has

û(ω, θ) =

[
Φ

−T
Λ0(ω)Φ

−1 +

M∑

i=1

ξi(θ)Φ
−T Ãi(ω)Φ

−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑

i=1

ξi (θ)Ãi(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ
−T f(ω)

(60)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T
.



Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i , i = 1, 2, . . . ,M (61)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag [λi1 , λi2 , . . . , λin ] ∈ R

n×n (62)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =



Λ0(ω) +

M∑

i=1

ξi(θ)Λi(ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+

M∑

i=1

ξi(θ)∆i(ω)

︸ ︷︷ ︸
∆(ω,ξ(θ))




−1

(63)

where Λ (ω, ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an

off-diagonal only matrix.



Projection in the modal space

We rewrite Eq. (63) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In + Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]]−1

(64)

The above expression can be represented using a Neumann type of matrix

series as

Ψ (ω, ξ(θ)) =

∞∑

s=0

(−1)s
[
Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]s

Λ
−1 (ω, ξ(θ)) (65)



Projection in the modal space

Taking an arbitrary r -th element of û(ω, θ), Eq. (60) can be rearranged to have

ûr (ω, θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

 (66)

Defining

Γk (ω, ξ(θ)) =

n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(67)

and collecting all the elements in Eq. (66) for r = 1, 2, . . . , n one has

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (68)



Spectral functions

Definition

The functions Γk (ω, ξ(θ)) , k = 1, 2, . . . n are the frequency-adaptive spectral
functions as they are expressed in terms of the spectral properties of the

coefficient matrices at each frequency of the governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number of terms

and they are highly nonlinear functions of the random variables ξi(θ).

For computational purposes, it is necessary to truncate the series after

certain number of terms.

Different order of spectral functions can be obtained by using truncation

in the expression of Γk (ω, ξ(θ))



First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1, 2, . . . , n are

obtained by retaining as many terms in the series expansion in Eqn. (65).

Retaining one and two terms in (65) we have

Ψ
(1) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) (69)

Ψ
(2) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) − Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ)) (70)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are

non-Gaussian random variables even if ξi (θ) are Gaussian random
variables.



Nature of the spectral functions
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(a) Spectral functions for σa = 0.1.
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(b) Spectral functions for σa = 0.2.

The amplitude of first seven spectral functions of order 4 for a particular
random sample under applied force. The spectral functions are obtained for

two different standard deviation levels of the underlying random field:
σa = {0.10, 0.20}.



Summary of the basis functions (frequency-adaptive spectral functions)

The basis functions are:

1 not polynomials in ξi(θ) but ratio of polynomials.

2 independent of the nature of the random variables (i.e. applicable to

Gaussian, non-Gaussian or even mixed random variables).

3 not general but specific to a problem as it utilizes the eigenvalues and

eigenvectors of the system matrices.

4 such that truncation error depends on the off-diagonal terms of the matrix

∆ (ω, ξ(θ)).

5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial functions

within a Galerkin error minimization scheme.



The Galerkin approach

One can obtain constants ck ∈ C such that the error in the following
representation

û(ω, θ) =
n∑

k=1

ck(ω)Γ̂k (ω, ξ(θ))φk (71)

can be minimised in the least-square sense. It can be shown that the vector

c = {c1, c2, . . . , cn}T
satisfies the n × n complex algebraic equations

S(ω) c(ω) = b(ω) with

Sjk =
M∑

i=0

Ãijk Dijk ; ∀ j, k = 1, 2, . . . , n; Ãijk = φT
j Aiφk , (72)

Dijk = E
[
ξi(θ)Γ̂k (ω, ξ(θ))

]
, bj = E

[
φT

j f(ω)
]
. (73)



The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ck Γ̂k (ω, ξ(θ))φk

)
− f(ω) ∈ C

N×N (74)

The solution is viewed as a projection where φk ∈ R
n are the basis

functions and ck are the unknown constants to be determined. This is

done for each frequency step.

The coefficients ck are evaluated using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε(ω, θ)⊥φj ⇛
〈
φj , ε(ω, θ)

〉
= 0 ∀ j = 1, 2, . . . , n (75)



The Galerkin approach

Imposing the orthogonality condition and using the expression of the

error one has

E

[
φ

T
j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− φ

T
j f

]
= 0, ∀j (76)

Interchanging the E [•] and summation operations, this can be simplified
to

n∑

k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi(θ)Γ̂k (ξ(θ))

])
ck =

E
[
φ

T
j f
]

(77)

or

n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (78)



Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing order such
that

λ01
< λ02

< . . . < λ0n
(79)

From the expression of the spectral functions observe that the
eigenvalues ( λ0k

= ω2
0k

) appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φT
k f(ω)

Λ0k
(ω) +

∑M
i=1 ξi (θ)Λik (ω)

(80)

where Λ0k
(ω) = −ω2 + iω(ζ1 + ζ2ω

2
0k
) + ω2

0k

The series can be truncated based on the magnitude of the eigenvalues

relative to the frequency of excitation. Hence for the frequency domain
analysis all the eigenvalues that cover almost twice the frequency range

under consideration can be chosen.



Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑

k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (81)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ) − ū) (û(θ)− ū)

T
]
=

p∑

k=1

p∑

j=1

ck cjΣΓkj
φkφ

T
j (82)

where the elements of the covariance matrix of the spectral functions are

given by

ΣΓkj
= E

[(
Γ̂k (ξ(θ)) − E

[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]
(83)



Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the mean

mass and stiffness matrices to generate the orthonormal basis vectors:

K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of basic

random variables ξi(θ), i = 1, 2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φT

k
f(ω)

Λ0k
(ω)+

∑
M
i=1 ξi (θ)Λik

(ω)
, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S
−1(ω)b(ω) ∈ R

n, where

b(ω) = f̃(ω)⊙ Γ(ω), S(ω) = Λ0(ω)⊙ D0(ω) +
∑M

i=1 Ãi(ω)⊙ Di(ω) and

Di(ω) = E
[
Γ(ω, θ)ξi (θ)Γ

T (ω, θ)
]
, ∀ i = 0, 1, 2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω, θ) =

∑p
k=1 ck(ω)Γk (ξ(ω, θ))φk



The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending modulus for a

specified value of the correlation length and for different degrees of

variability of the random field.

F

(c) Euler-Bernoulli beam
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(e) Eigenvalue ratio of KL de-
composition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus: 2 ×
1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.



Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (84)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean stationary

random field.

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (85)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present numerical

study.



Problem details

The random field is assumed to be Gaussian. The results are compared with

the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such that 90%
variability is retained.

direct MCS have been performed with 10,000 random samples and for

three different values of standard deviation of the random field,

σa = 0.05, 0.1, 0.2.

Constant modal damping is taken with 1% damping factor for all modes.

Time domain response of the free end of the beam is sought under the
action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the present
problem. Comparison have been made with 4th order Polynomial chaos

results.



Mean of the response

(f) Mean, σa = 0.05. (g) Mean, σa = 0.1. (h) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever for

three values of standard deviation σa of the underlying random field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC results

increases.



Standard deviation of the response

(i) Standard deviation of de-
flection, σa = 0.05.

(j) Standard deviation of de-
flection, σa = 0.1.

(k) Standard deviation of de-
flection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products of the
Hermite polynomials associated with the PC expansion, the higher order

moments are less accurately replicated and tend to deviate more

significantly.



Frequency domain response: mean
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(l) Beam deflection for σa = 0.1.
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(m) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the beam under
unit amplitude harmonic point load at the free end. The response is obtained

with 10, 000 sample MCS and for σa = {0.10, 0.20}.2

2
PC oscillations are explained in - Jacquelin, E., Adhikari, S., Sinou, J.-J., and Friswell, M. I., ”Polynomial chaos expansion and steady-state response

of a class of random dynamical systems”, ASCE Journal of Engineering Mechanics, in press.



Frequency domain response: standard deviation

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(d
am

pe
d)

, 
σ f : 

0.
1

 

 

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin
4th order PC

(n) Standard deviation of the response for
σa = 0.1.
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(o) Standard deviation of the response for
σa = 0.2.

The standard deviation of the tip deflection of the beam under unit amplitude

harmonic point load at the free end.



Frequency domain response: pdf
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(p) Probability density function for σa =
0.1.
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(q) Probability density function for σa =
0.2.

The Probability density function of the tip deflection of the beam under unit

amplitude harmonic point load at the free end at 418 Hz.



Error propagation
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(s) L2 error at 400 Hz.

Convergence of the L2 error of the response vector at 276 Hz (resonance
frequency) and 400 Hz with increasing order of spectral functions for the

random parameter for two different values of standard deviation

σa = {0.15, 0.20}.



Conclusions

The mean response of a damped stochastic system is more damped
than the underlying baseline system

For small damping, ξe ≈ 31/4√ǫ√
π

√
ξ

Random modal analysis (based on perturbation from the baseline

modes) may not be practical or physically intuitive for stochastic multiple

degrees of freedom systems

Conventional response surface based methods fails to capture the

physics of damped dynamic systems

Proposed spectral function approach uses the undamped modal basis

and can capture the statistical trend of the dynamic response of

stochastic damped MDOF systems



Conclusions

The solution is projected into the modal basis and the associated

stochastic coefficient functions are obtained at each frequency step (or
time step).

The coefficient functions, called as the spectral functions, are expressed
in terms of the spectral properties (natural frequencies and mode

shapes) of the system matrices.

The proposed method takes advantage of the fact that for a given

maximum frequency only a small number of modes are necessary to

represent the dynamic response. This modal reduction leads to a
significantly smaller basis.

Possibility of considering nonlinear dynamic systems with stochastic

parameters?
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