Research directions in computational mechanics

Instituto Tecnológico de Aeronáutica (ITA) November 2014

Sondipon Adhikari

@ProfAdhikari, http://engweb.swan.ac.uk/~adhikaris/

Overview

- Introduction Swansea University
- College of Engineering Aerospace program
- My research overview
- Nanotubes, Graphene, Fullerenes: static and dynamic analysis, buckling, composites
- Nanobio sensors: vibrating nanotube and graphene based mass sensor
- DNA mechanics
- Conclusions

College of Engineering

Overview

- Introduction Swansea University
- College of Engineering Aerospace program
- > My research interests
- Stochastic dynamic analysis
- Vibration energy harvesting
- Nanotubes, Graphene, Fullerenes, DNA: static and dynamic analysis, buckling, composites
- Conclusions

Where is Swansea?

Swansea University

29th UK university to be established
King George V laid the foundation stone of the University in July 1920
Now over 12,500 students - 1,800 international

College of Engineering

The College of Engineering

- Engineering established at the Universities Inception in 1920
- Formed into Multidisciplinary College in 2001
- Offering 11 undergraduate disciplines
- Wide portfolio of postgraduate options, including MSc, MRes, PhD and EngD
- Professionally accredited degrees
- Extensive Industry links, including TATA Steel, Rolls Royce, Airbus, European Space Agency, BAe systems, Siemens, IBM, Motorola, BT, Ericsson, Esso, BP Chemicals
- Friendly and supportive study environment within the College and the Campus

College of Engineering www.swansea.ac.uk/engineering

The College of Engineering

- ~ 100 academic staff
- ~ 45 support staff
- ~ 500 research staff and postgraduate students
 - (~150 International)
- ~ 1600 undergraduates
 - (~300 International)

Undergraduate Degrees

Aerospace Chemical and Biological Process Civil Electrical and Electronic Materials Mechanical Product Design

Environmental Medical Sports Science & Engineering Sports Materials

College of Engineering

Undergraduate Degrees

Accreditation

Accreditation to the appropriate professional bodies:

Institute of Materials, Minerals and Mining (IOM3) Royal Aeronautical Society (RAeS) Institution of Chemical Engineers (IChemE) Institution of Mechanical Engineers (IMechE) Institute of Civil Engineers (ICE) Institution of Electrical Engineers (IEEE)

A graduate can achieve "Chartered" (CEng) Status with additional work experience.

College of Engineering

Postgraduate Degrees

Masters Degree Schemes:

Master of Science (MSc) Master of Science by Research (MScR) Master of Philosophy (MPhil) Master of Research (MRes)

Doctorate Degree Schemes:

Doctor of Philosophy (PhD)

Engineering Doctorate (EngD)

College of Engineering

World Class Research

RAE Ranking Source: Research Assessment Exercise 2008, overall summary of results using weighted averages www.rae.ac.uk

Institution name	Staff FTE's	Overall GPA	Position in UK
University of Cambridge	210	3.321	1
University of Oxford	122.7	3.07	2
Imperial College London	293.1	3.036	3
University of Manchester	180.22	2.963	4
University of Nottingham	114.51	2.948	5
University of Surrey	110.25	2.93	6
University of Leeds	132.7	2.911	7
Swansea University	63.5	2.902	8
University of Bristol	88.1	2.88	9
University of Warwick	69.45	2.85	10

College of Engineering

League Tables

The Guardian

Institution Name	Position in UK
University of Cambridge	1
University of Oxford	2
Durham University	3
Nottingham Trent	4
University of Warwick	5
Cardiff University	6
University of Exeter	7
University of Bristol	8
Leicester University	9
Swansea University	10

The Times

Institution Name	Position in UK
University of Oxford	1
Imperial College London	2
University of Camrbidge	3
Warwick University	4
Brunel University	5
Bournemouth University	6
Leicester University	7
Durham University	8
University of Exeter	9
Hull University	10
Swansea University	11

College of Engineering

Science and Innovation Campus Site

College of Engineering

Campws Gwyddoniaeth ac Arloesedd Arfaethedig Newydd

College of Engineering

BEng/MEng Aerospace Engineering

College of Engineering

Aerospace Engineering Structure

Aerospace Summary

Accreditation: BEng/MEng/MSc/EngD with minor changes BEng/MEng:

- 60% increase in L1 students from 10/11 to 11/12
- 192 FTEs overall (4 L0, 89 L1, 65 L2, 26 L3, 8 LM)
- Second highest UCAS entry (just behind Welsh)
- Highest conversion rate in Engineering

Current Student numbers

Level 1

Semester 1 Modules	Semester 2 Modules	
EG-106 Engineering Skills and Experiments I Masters (Co-ordinator) 20 credits	EG-120 Strength of Materials J Bonet 10 credits CORE	
	EG-144 Dynamic Systems R Daniels 10 credits	
EG-166 Engineering Mechanics Y Feng 10 credits CORE	EG-160 Fluid Mechanics I M. Webster 10 credits CORE	
EG-180 Introduction to Materials Engineering G Fourlaris 10 credits	EG-161 Thermodynamics I J Sienz 10 credits CORE	
EG-189 Engineering Analysis 1 PD Ledger 10 credits CORE	EG-165 Engineering Design 1 MJ Clee 10 credits	
EG-194 Introduction to Aerospace Engineering TN Croft 10 credits CORE	EG-190 Engineering Analysis 2 P Rees 10 credits CORE Total 60 credits	
Total 60 credits	Total 60 credits	

College of Engineering

www.swansea.ac.uk/engineering

.

Level 2

	Semester 1 Modules			Semester 2 Modules		
	EGA220			EG-243		
		Aerospace Systems		Control Systems		
		TBD		JSD Mason		
		10 credits		10 credits		
		EG-264		EG-260		
	c	omputer Aided Engineer	ing	Dynamics I		
		C Wang		S Adhikari		
		10 credits		10 credits		
				CORE		
		EG-261		EG-263		
		Thermodynamics 2		Engineering Design 2		
		RS Ransing		MJ Clee / BJ Evans		
		10 credits		10 credits		
		CORE				
	EG-221			EG-268		
		Structural Mechanics 2 (a	a)	Experimental Studies		
	C Li		AW Lees (co-ordinator)			
	10 credits		10 credits			
	EG-293		EG-294			
	Aerodynamics		Airframe Structures			
	R van Loon		W Dettmer			
	10 credits		10 credits			
		CORE		CORE		
		EG-296				
	Flight Mechanics		Module 1			
		W Dettmer		10 credits		
		10 credits		CORE		
	CORE					
	Total 60 credits		Total 60 credits			
+	1					
	Module	Structural/Compu-	EGA206: A	erospace Structural Mechanics and Materials;		
	1	tational Stream	KM Perkir	ns/A Gil (required for EG-323 and EG-396)		
		Materials/Propulsion	EG-213: M	echanical Properties of Materials 1; K.M.		
		Stream	Perkins (re	equired for EG-381 and EGA-301)		
		Space Stream	EGA215: F	Rocket and Space Technology; MR Brown		
	(required for		or EGA-321 and EGA-301)			

Level 3

Semester 1 Modules			Semester 2 Modules		
	Module 1 10 credits		EG-386 Engineering Management M Evans//D Fulford/I James (External) 10 credits		
	EG-360 Dynamics 2 M Friswell 10 credits		EGA320 High Performance Materials and Selection TBD 10 credits		
	EG-399 Engineering Analysis 3 M Webster 10 credits	;	Module 2 10 credits		
EG-335 Gas Dynamics I Sazonov 10 credits			EG-397 Propulsion MT Whittaker 10 credits		
	Aer	EGA ospace Engin MJ Clee/ 10 cr	A302 neering Design 3 BJ Evans edits		
		EG- Individuz 30 cr CO	353 al Project edits PRE		
	Total 60 credits		Total 60 credits		
Module 1	Structural/Compu- tational Stream Materials/Propulsion Stream Space Stream	EG-323: Fi EGA206) EG-381: Fi 213) EGA321: \$: Finite Element Method; D Peric (requires 6) : Fracture and Fatigue; R Johnston (requires EG- 1: Satellite Systems: I Sazonov		
Module 2	Structural/Compu- tational Stream Materials/Propulsion Stream	EG-396: C EGA206) EGA301: C	Computational Aerodynamics; P Ledger (requires)) : Composites; CJArnold		
	space Stream	EGA301: (Composites; CJ Arnold		

College of Engineering

Level M

Semester 1	Semester 2	
Modules	Modules	
EGIM02	EGEM07	
Numerical Methods	Fluid Structure Interaction	
MC Edwards	W Dettmer	
10 credits	10 credits	
io ticato	ib titults	
EG-M47	EGIM06	
Entrepreneurship for Engineers	Computational Fluid Dynamics	
K Board	P. Nithiarasu	
10 credits	10 credits	
EG-M81	EG-M82	
Flight Dynamics and Control	Rotary Wing Aircraft	
S Adhikari	MI Friswell	
10 credits	10 credits	
EG-M85		
Strategic Project Planning		
D Oatley		
10 credits		
O) (See no 10 c	ption tes below) credits	
EG	-M63	
Research	Dissertation	
TN Croft (aeros	pace co-ordinator)	
10 0	creuts	
EG	-M62	
Group) Project	
J Sienz (aerosp	ace co-ordinator)	
30 0	credits	
Total 1:	20 credits	

College of Engineering

Level M Design project

Winner of Merlin Design and Aircraft Handling Competition:

- IT FLIES UK 2011
- IT FLIES US 2012
- Swansea is the first university to hold both titles at the same time

Site visits

Site visits to GE and Airbus, and also to Bloodhound Technical Centre

Flight training

Progression/Award Statistics

	BEng/MEng Aero 2010/2011		BEng/MEng Aero 2011/2012	
	%	Number	%	Number
1st	19.35	6	25.9	7
2:1	41.9	13	37	10
2:2	38.7	12	33.3	9
3rd	0	0	3.7	1
Pass	0	0	0	0
other	0	0	0	0

% Good Honours 10/11 = (6+13)/(6+13+12) x 100 = 19/31 x 100 = 61.3

% Good Honours 11/12 = (7+10)/(7+10+9+1) x 100 = 17/27 x 100 = 62.96

College of Engineering

Executive Summary

5% improvement to 87% of students satisfied or very satisfied with the overall quality of their course.

- Swansea University climbed 38 positions in UK rankings for student satisfaction to 42^{nd.}
- Swansea has climbed 12 places in the Sunday Times League Table to 45th position.
- 11 subject areas now in upper quartile, with 3 ranked in 1st position.

89% of final year and 91% of taught postgraduate students would recommend Swansea to a friend or relative

Zienkiewicz Centre for Computational Engineering

- Computational Mechanics
- Optimisation
- Computational Fluid dynamics
- Computational electromagnetics
- Rotordynamics
- Morphing wing aircraft
- Energy harvesting
- Computational Biomechanics
- Uncertainty quantification

College of Engineering

My Research Areas

Uncertainty quantification in modelling and simulation

- Dynamic analysis of complex structures
- Vibration energy harvesting
- Atomistic finite element method
- Dynamics of nanoscale structures
- Nanoscale bio sensors

College of Engineering

Uncertainty quantification

Uncertainty in Structural Dynamics

Stochastic dynamical systems across the length-scale

Equation of Motion of Dynamical Systems

The Equation of motion of all these systems (and many other) about an equilibrium point can be expressed by:

 $\mathbf{M}(\theta)\ddot{\mathbf{u}}(\theta,t) + \mathbf{C}(\theta)\dot{\mathbf{u}}(\theta,t) + \mathbf{K}(\theta)\mathbf{u}(\theta,t) = \mathbf{f}(t)$

M(θ) ∈ ℝ^{n×n} is the random mass matrix, K(θ) ∈ ℝ^{n×n} is the random stiffness matrix, C(θ) ∈ ℝ^{n×n} is the random damping matrix and f(t) is the forcing vector. We use (θ) to denote that the quantity is random.

The uncertainty propagation problem:

Given the stochastic description of the three systems matrices and the input forcing function, obtain the stochastic description of the response

College of Engineering

www.swansea.ac.uk/engineering

College of Engineering

Dynamic Response

• For parametric uncertainty propagation:

$$\mathbf{u}(\omega,\theta) = \sum_{k=1}^{n_r} \frac{\phi_k^T \mathbf{f}(\omega)}{-\omega^2 + 2i\omega\zeta_k \omega_0^2 + \omega_{0_k}^2 + \sum_{i=1}^M \frac{\xi_i(\theta)}{\xi_i(\theta)} \Lambda_{i_k}(\omega)} \phi_k$$

• For nonparametric uncertainty propagation

$$\mathbf{u}(\omega,\theta) = \sum_{k=1}^{n_r} \frac{\mathbf{x}_{r_k}(\theta)^T \mathbf{f}(s)}{-\omega^2 + 2i\omega\zeta_k \omega_{r_k}(\theta) + \omega_{r_k}^2(\theta)} \mathbf{x}_{r_k}(\theta)$$

$$\mathbf{X}_r(\theta) = \mathbf{\Phi} \mathbf{\Psi}_r, \quad \mathbf{\Psi}_r^T \mathbf{W} \mathbf{\Psi}_r = \mathbf{\Omega}_r^2$$

Unified mathematical representation

 Can be useful for hybrid experimental-simulation approach for uncertainty quantification
 College of Engineering
 www.swansea.ac.uk/engineering

Plate with Stochastic Properties

- An Euler-Bernoulli cantilever beam with stochastic bending modulus (nominal properties 1m x 0.6m, t=03mm, E=2 x 10¹¹ Pa)
 We use n=1881, M=16
- We study the deflection of the beam under the action of a point load on the free end.
- The bending modulus is taken to be a homogeneous stationary Gaussian random field with exponential autocorrelation function (correlation lengths L/5)
- Constant modal damping is taken with 1% damping factor for all modes.

College of Engineering

Mean with $\sigma_a = 0.1$

Standard deviation with $\sigma_a = 0.1$

Proposed approach: 150 x 150 equations 4th order Polynomial Chaos: 9113445 x 9113445 equations

College of Engineering

Plate with randomly placed oscillators

10 oscillators with random stiffness values are attached at random locations in the plate by magnet

College of Engineering

Standard deviation of a cross-FRF

Standard deviation of the driving-point-FRF

Vibration modes

Mean of a cross-FRF

Standard deviation of a cross-FRF

Uncertainty quantification in Dynamics of Composite Plates and Shells

Energy harvesting under uncertainty

- Wireless sensor network for structural health monitoring
- Self-powered sustainable sensors vibration energy harvesting

Energy harvesting under uncertainty

3

2

α

 $\begin{array}{c} 0 \\ 0 \end{array}$

0.1

ζ

0.2

0

 $m\ddot{\mathbf{x}}(t) + c\dot{\mathbf{x}}(t) + k\mathbf{x}(t) - \theta\mathbf{v}(t) = -m\ddot{\mathbf{x}}_{b}(t)$ $\theta \dot{x}(t) + C_p \dot{v}(t) + \frac{1}{R_l} v(t) = 0$

The average harvested power due to white-noise base acceleration with a circuit without an inductor can be obtained as

$$\mathbf{E}\left[\widetilde{\boldsymbol{P}}\right] = \mathbf{E}\left[\frac{|\boldsymbol{V}|^2}{(\boldsymbol{R}_l\omega^4 \Phi_{\boldsymbol{X}_b\boldsymbol{X}_b})}\right]$$
$$= \frac{\pi \, \boldsymbol{m}\,\alpha\,\kappa^2}{(2\,\zeta\,\alpha^2 + \alpha)\,\kappa^2 + 4\,\zeta^2\alpha + (2\,\alpha^2 + 2)\,\zeta}$$

The optimal condition is

 $= R_l^2 C_p \left(k C_p + \theta^2 \right) = m.$

Vibration energy harvesting

College of Engineering

Vibration energy harvesting

- 1. Borowiec, B., Litak, G., Friswell, M. I., Ali, S. F., Adhikari, S. and Lees, A. W. and Bilgen, O., "Energy harvesting in piezoelastic systems driven by random excitations", International Journal of Structural Stability and Dynamics.
- 2. Ali, S. F. and Adhikari, S., "Energy harvesting dynamic vibration absorbers", Transactions of ASME, Journal of Applied Mechanics.
- 3. Friswell, M. I., Ali, S. F., Adhikari, S., Lees, A.W., Bilgen, O. and Litak, G., "Nonlinear piezoelectric vibration energy harvesting from an inverted cantilever beam with tip mass", Journal of Intelligent Material Systems and Structures, 23[3] (2012), pp. 1505-1521.
- 4. Litak, G., Friswell, M. I., Kitio Kwuimy, C. A., Adhikari, S. and Borowiec, B., "Energy harvesting by two magnetopiezoelastic oscillators with mistuning", Theoretical & Applied Mechanics Letters, 2[4] (2012), pp. 043009.
- 5. Ali, S. F., Friswell, M. I. and Adhikari, S., "Analysis of energy harvesters for highway bridges", Journal of Intelligent Material Systems and Structures, 22[16] (2011), pp. 1929-1938.
- 6. Jacquelin, E., Adhikari, S. and Friswell, M. I., "Piezoelectric device for impact energy harvesting", *Smart Materials and Structures*, 20[10] (2011), pp. 105008:1-12.
- 7. Ali, S. F., Adhikari, S., Friswell, M. I. and Narayanan, S., "The analysis of piezomagnetoelastic energy harvesters under broadband random excitations", *Journal of Applied Physics*, 109[7] (2011), pp. 074904:1-8.
- 8. Ali, S. F., Friswell, M. I. and Adhikari, S., "Piezoelectric energy harvesting with parametric uncertainty", *Smart Materials & Structures*, 19[10] (2010), pp. 105010:1-9.
- 9. Friswell, M. I. and Adhikari, S., "Sensor shape design for piezoelectric cantilever beams to harvest vibration energy", *Journal of Applied Physics*, 108[1] (2010), pp. 014901:1-6.
- 10. Litak, G., Friswell, M. I. and Adhikari, S., "Magnetopiezoelastic energy harvesting driven by random excitations", *Applied Physics Letters*, 96[5] (2010), pp. 214103:1-3.
- 11. Adhikari, S., Friswell, M. I. and Inman, D. J., "Piezoelectric energy harvesting from broadband random vibrations", *Smart Materials & Structures*, 18[11] (2009), pp. 115005:1-7.

College of Engineering

Stochastic multiscale method

- New generation of structural materials
- Nano-composites, bio-composites
- Self-sensing, multifunctional, self-healing and sustainable materials high strength to weight ratio
- Structural mechanics community needs to embrace new materials and develop next generation of analysis and design tools
 - Requires multiscale and multiphysics approach

College of Engineering

Nano-scale stochastic mechanics

- Uncertainty in modeling (geometry, boundary condition, system parameters)
- There are defects which may not be known a-priori
- Analysis using the principles of structural mechanics,

dynamics, stochastic finite element method

• Propagation of uncertainty across the length and time-scale College of Engineering www.swansea.ac.uk/engineering

Acknowledgments

College of Engineering