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Fuzzy variables

The consideration of uncertainties in numerical models to obtain the
variability of response is becoming more common for finite element

models arising in practical problems.

When substantial statistical information exists, the theory of probability

and stochastic processes offer a rich mathematical framework to

represent such uncertainties.

In a probabilistic setting, uncertainty associated with the system

parameters, such as the geometric properties and constitutive relations
(i.e. Young’s modulus, mass density, Poisson’s ratio, damping

coefficients), can be modeled as random variables or stochastic

processes.

These uncertainties can be quantified and propagated, for example,

using the stochastic finite element method



Fuzzy variables

The reliable application of probabilistic approaches requires information
to construct the probability density functions of uncertain parameters.

This information may not be easily available for many complex practical

problems.

In such situations, non-probabilistic approaches such as interval algebra,

convex modelsand fuzzy set based methods can be used.

Fuzzy finite element analysis aims to combine the power of finite element

method and uncertainty modelling capability of fuzzy variables.

In the context of computational mechanics, the aim of a fuzzy finite
element analysis is to obtain the range of certain output quantities (such

as displacement, acceleration and stress) given the membership of data
in the set of input variables.

This problem, known as the uncertainty propagation problem, has taken

the centre stage in recent research activities in the field.



Membership functions of a fuzzy variable

Membership functions of a fuzzy variable; (a) symmetric triangular
membership function; (b) asymmetric triangular membership function; (c)

general membership function. The value corresponding to α = 1 is the crisp

(or deterministic) value. The range corresponding to α = 0 is the widest
interval. Any intermediate value of 0 < α < 1, yields an interval variable with a

finite lower and upper bound.



Uncertainty propagation

We are interested in the propagation of a m-dimensional vector of Fuzzy

variables, which can be expressed as

y = f̂(x) ∈ R
n (1)

where f̂(•) : Rm → R
n is a smooth nonlinear function of the input fuzzy

vector x.

The fuzzy uncertainty propagation problem can be formally defined as

the solution of the following set of optimisation problems

yjkmin
= min

(
f̂j (xαk

)
)

yjkmax
= max

(
f̂j (xαk

)
)


 ∀ j = 1, 2, . . . , n; k = 1, 2, . . . , r (2)

Two ways the solution can be made efficient: (1) evaluate f̂(x) in Eq (1)
fast, and/or (2) do a better job with the optimisation in Eq (2).

The main idea proposed here is based on efficient and accurate
construction of a (hopefully cheaper!) ‘response surface’ for every α-cut

followed by an optimization approach.



Transformation of a fuzzy variable

Transformation of a Fuzzy variable x to ζ ∈ [−1, 1] for different α-cuts. The

transformation ϕ(•) maps the interval
[
x
(α)
l , x

(α)
h

]
→ [−1, 1].



Transformation of a fuzzy variable

Suppose the transformation ϕ(•) maps the interval
[
x
(α)
il

, x
(α)
ih

]
→ [−1, 1].

Here x
(α)
il

and x
(α)
ih

denotes the lower and upper bound of the Fuzzy

variable xi for a given α-cut.

Denote ζi as the variable bounded between [−1, 1].

Considering the variable x
(α)
i lies between

[
x
(α)
il

, x
(α)
ih

]
, the linear

transformation ϕ(•) can be identified as

ζi = ϕ(x
(α)
i ) = 2





(
x
(α)
i − x

(α)
il

)

(
x
(α)
ih

− x
(α)
il

) −
1

2



 (3)

The inverse transformation of (3) can be obtained as

x
(α)
i =

(
x
(α)
ih

− x
(α)
il

2

)
ζi +

(
x
(α)
ih

+ x
(α)
il

)

2
(4)



Transformation of a fuzzy variable

Substituting x
(α)
i in Eq. (1) for all α and i, we can can formally express

the uncertainty propagation problem in terms of the vector valued

variable ζ = {ζi}∀i=1,··· ,m ∈ [−1, 1]m as

y(α) = f
(α)(ζ) ∈ R

n (5)

Now we utilise the orthogonal property of Legendre polynomials in [−1, 1]
for this uncertainty propagation problem1.

1Adhikari, S. and Khodaparast, H. H., ”A spectral approach for fuzzy uncertainty propagation
in finite element analysis”, Fuzzy Sets and Systems, 243[1] (2014), pp. 1-24.



Univariate Legendre polynomials

In [−1, 1], Legendre polynomials are orthogonal with respect to the L2

inner product norm

∫ 1

−1

Lj (ζ)Lk (ζ)dζ =
2

2k + 1
δjk (6)

δjk denotes the Kronecker delta (equal to 1 if j = k and to 0 otherwise)

and Lj(ζ) is the jth order Legendre polynomial.

Each Legendre polynomial Lj(ζ) is an k th-degree polynomial and can be

expressed using Rodrigues’ formula as

Lk (ζ) =
1

2k k !

dk

dζk

{
(1 − ζ2)k

}
; k = 0, 1, 2, · · · (7)



Univariate Legendre polynomials

Table : One dimensional Legendre Polynomials upto order 10

k Legendre Polynomials of order k : Lk (ζ); ζ ∈ [−1, 1]
0 1

1 ζ
2 1

2

(
3ζ2 − 1

)

3 1
2

(
5ζ3 − 3ζ

)

4 1
8

(
35ζ4 − 15ζ2 + 3

)

5 1
8

(
63ζ5 − 70ζ3 + 15ζ

)

6 1
16

(
231ζ6 − 315ζ4 + 105ζ2 − 5

)

7 1
16

(
429ζ7 − 693ζ5 + 325ζ3 − 35ζ

)

8 1
128

(
6435ζ8 − 12012ζ6 + 6930ζ4 − 1260ζ2 + 35

)

9 1
128

(
12155ζ9 − 25740ζ7 + 18018ζ5 − 4620ζ3 + 315ζ

)

10 1
256

(
46189ζ10 − 109395ζ8 + 90090ζ6 − 30030ζ4 + 3465ζ2 − 63

)



Multivariate Legendre polynomials

Multivariate Legendre polynomials can be defined as products of
univariate Legendre polynomials, similar to that of Hermite polynomials.

This can be constructed by considering products of different orders. We
consider following sets of integers

i = {i1, i2, · · · ip} , ik ≥ 1 (8)

β = {β1, β2, · · ·βp} , βk ≥ 0 (9)

The multivariate Legendre polynomial associated with sequence (i,β) as

the products of univariate Legendre polynomials

Li,β(ζ) =

p∏

k=1

Lβk
(ζk ) (10)

The multivariate Legendre polynomials also satisfy the orthogonality
condition with respect to the L2 inner product norm in the respective

dimension.



Projection approach

We follow the idea of homogeneous chaos proposed by Wienner

involving Hermite polynomials.

If a function f (ζ) is square integrable, it can be expanded in

Homogeneous Chaos as

f (ζ) = ŷi0h0 +

∞∑

i1=1

ŷi1Γ1(ζi1)

+

∞∑

i1=1

i1∑

i2=1

ŷi1,i2Γ2(ζi1 , ζi2) +

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ŷi1 i2 i3Γ3(ζi1 , ζi2 , ζi3)

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ŷi1i2 i3 i4 Γ4(ζi1 , ζi2 , ζi3 , ζi4) + . . . ,

(11)

Γp(ζi1 , ζi2 , · · · ζim) is m-dimensional homogeneous chaos of order p
(obtained by products of one-dimensional Legendre polynomials).



Projection approach

We can concisely write

f (ζ) =

P−1∑

j=0

yjΨj(ζ) (12)

where the constant yj and functions Ψj(•) are effectively constants ŷk and

functions Γk (•) for corresponding indices.

Equation (12) can be viewed as the projection in the basis functions Ψj(ζ)
with corresponding ‘coordinates’ yj . The number of terms P in Eq. (12)
depends on the number of variables m and maximum order of

polynomials p as

P =

p∑

j=0

(m + j − 1)!

j!(m − 1)!
=

(
m + p

p

)
(13)



Univariate Legendre polynomials

Table : Two dimensional Legendre polynomial based homogeneous chaos basis up to

4th order

j p Construction of Ψj Ψj
0 p = 0 L0 1

1 p = 1 L1(ζ1) ζ1
2 L1(ζ2) ζ2
3 L2(ζ1) 3/2 ζ1

2
− 1/2

4 p = 2 L1(ζ1)L1(ζ2) ζ1ζ2
5 L2(ζ2) 3/2 ζ2

2
− 1/2

6 L3(ζ1) 5/2 ζ1
3
− 3/2 ζ1

7 p = 3 L2(ζ1)L1(ζ2)
(

3/2 ζ1
2
− 1/2

)

ζ2

8 L1(ζ1)L2(ζ2) ζ1

(

3/2 ζ2
2
− 1/2

)

9 L3(ζ2) 5/2 ζ2
3
− 3/2 ζ2

10 L4(ζ1)
35
8

ζ1
4
−

15
4

ζ1
2 + 3/8

11 L3(ζ1)L1(ζ2)
(

5/2 ζ1
3
− 3/2 ζ1

)

ζ2

12 p = 4 L2(ζ1)L2(ζ2)
(

3/2 ζ1
2
− 1/2

) (

3/2 ζ2
2
− 1/2

)

13 L1(ζ1)L3(ζ2) ζ1

(

5/2 ζ2
3
− 3/2 ζ2

)

14 L4(ζ2)
35
8

ζ2
4
−

15
4

ζ2
2 + 3/8



Least square method

The unknown coefficients are obtains using a least-square method with
respect to the inner product norm in [−1, 1]m as

< •, • >=
1

Vm

∫ 1

−1

∫ 1

−1

· · ·

∫ 1

−1︸ ︷︷ ︸
m−fold

(•)(•)dζ1dζ2 · · ·dζm (14)

Here the volume
Vm = 2m (15)

Using this we have

f̂ (ζ) =

P−1∑

j=0

[ 〈
Ψj(ζ), f (ζ)

〉
〈
Ψj(ζ),Ψj(ζ)

〉
]
Ψj(ζ) (16)

Here f̂ (ζ) is an approximation to the original function f (ζ) for polynomial
order upto p.



An example with two variables

We consider the ‘Camelback’ function (−3 ≤ x1 ≤ 3;−2 ≤ x2 ≤ 2)

f1 (x) = (4 − 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (4x2

2 − 4)x2
2 (17)

Transform the variables in [−1, 1]: Omitting the notation α for
convenience, we have

x1 = 3ζ1 and x2 = 2ζ2 (18)

The function in the transformed variables

f1 (ζ) = 9

(
4 −

189

10
ζ1

2 + 27ζ1
4

)
ζ1

2 + 6ζ1ζ2 + 4
(
−4 + 16ζ2

2
)
ζ2

2 (19)

The values of yj can be obtained as

y1 =
21169

1050
, y4 =

1488

35
, y5 = 6, y6 =

544

21
, y11 =

70956

1925
, y15 =

512

35
(20)

with all other values 0.



Original and fitted function
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(b) Fitted function using Legendre polynomials



Fuzzy finite element

(c) Subdomains Di with Fuzzy parameter ai for
i = 1, 2, · · · ,M

(d) Finite element mesh

We define the discretised fuzzy variables ai for all the subdomains as

ai = a(r); r ∈ Di , ∀i = 1, 2, · · · ,M (21)



Fuzzy FE formulation

A particular subdomain Di is expected to contain several finite elements.

The element stiffness matrix can be obtained following the finite element
approach as

Ke =

∫

De

a(r)B(e)T

(r)B(e)(r)dr = ai

∫

De

B(e)T

(r)B(e)(r)dr; r ∈ Di , (22)

where B(e)(r) is a deterministic matrix related to the shape function used
to interpolate the solution within the element e.

Suppose a
(α)
il

and a
(α)
ih

denotes the lower and upper bound of the Fuzzy

variable ai for a given α-cut. We transform ai into the standard variable

ζi ∈ [−1, 1] for every α-cut as

a
(α)
i =

(
a
(α)
ih

− x
(α)
il

2

)
ζi +

(
a
(α)
ih

+ a
(α)
il

)

2
(23)



Fuzzy FE formulation

Substituting this into Eq. (22) we have

K(α)
e = K(α)

e0
+ ζi K

(α)
ei

(24)

where the crisp and fuzzy parts of the element stiffness matrix is given by

K(α)
e0

=

(
a
(α)
ih

+ a
(α)
il

)

2

∫

De

B(e)T

(r)B(e)(r)dr (25)

and K(α)
ei

=

(
a
(α)
ih

− a
(α)
il

)

2

∫

De

B(e)T

(r)B(e)(r)dr; r ∈ Di , (26)

The global stiffness matrix can be obtained by the usual finite element
assembly procedure and taking account of the domains of the discretised

fuzzy variables. Similar approach as be used for the mass and damping

matrices also.



Fuzzy FE formulation

The finite element equation for a given α-cut can be expressed as

M(α)Ü
(α)

(t) + C
(α)

U̇
(α)

(t) + K(α)U(α)(t) = F(t) (27)

In the preceding equation F ∈ R
n is the global forcing vector and U(α)(t) is the

dynamic response for a given α-cut.
The global stiffness, mass and damping matrices can be expressed as

K
(α) = K

(α)
0 +

mK
∑

i=1

+ζiK
(α)
i , M

(α) = M
(α)
0 +

mM
∑

i=1

+ζiM
(α)
i , C

(α) = C
(α)
0 +

mC
∑

i=1

+ζiC
(α)
i (28)

Considering the stiffness matrix for example, the crisp part can be obtained as

K
(α)
0 =

⊕

e

K(α)
e0

(29)

where
⊕

e denotes the summation over all the elements.



Fuzzy FE formulation

The fuzzy parts of the stiffness matrix related to the variable ζj can be
given by

K
(α)
i =

⊕

e:r∈Di

K(α)
ei

; i = 1, 2, · · · ,mK (30)

where
⊕

e:r∈Di
denotes the summation over those elements for which the

domain belongs to Di .

An expression of the stiffness matrix similar to Eq. (28) can alternatively

obtained directly for complex systems where different subsystems may

contain different fuzzy variables. In that case K
(α)
i would be block

matrices, influenced by only the transformed fuzzy variable ζi within a

particular subsystem.



Frequency domain analysis

Considering that the initial conditions are zero for all the coordinates,

taking the Fourier transformation of Eq. (27) we have

[
−ω2M(α) + iωC

(α) + K(α)
]

u(α)(ω) = f(ω) (31)

Here ω is the frequency parameter and f(ω) and u(α)(ω) are the Fourier

transforms of F(t) and U(α)(t) respectively.

Equation (31) can be conveniently rewritten as

D(ω)(α)u(α)(ω, ζ) = f(ω) (32)

where the dynamic stiffness matrix

D(α) = D
(α)
0 (ω) +

M∑

i=1

+ζiD
(α)
i (ω) (33)

Note that u(α)(ω, ζ) is effectivly a function of the frequency ω and well as
the variables ζ.



Frequency domain analysis

The crisp part of the dynamic stiffness matrix is given by

D
(α)
0 = −ω2M0 + iωC0 + K0 (34)

and M is the total number of variables so that

M = mK + mM + mC (35)

The matrices D
(α)
i becomes the deviatoric part of the system matrices for

the corresponding values of the index i.

The elements of the solution vector u(α) in the fuzzy finite element

equation (32) can be viewed as nonlinear functions of the variables
ζj ∈ [−1, 1] for each value of the frequency ω.



Galerkin error minimisation

We project the solution vector u(α)(ω, ζ) in the basis of Legendre
polynomials as

u(α)(ω, ζ) =
P−1∑

j=0

u
(α)
j (ω)Ψj(ζ) (36)

The aim to obtain the coefficient vectors uj ∈ C
N×N using a Galerkin type

of error minimisation approach.

Substituting expansion of u(α)(ω, ζ) in the governing equation (27), the

error vector can be obtained as

ε(α)(ω) =

(
M∑

i=0

D
(α)
i (ω)ζi

)


P−1∑

j=1

u
(α)
j (ω)Ψj(ζ)


 − f(ω) (37)

where ζ0 = 1 is used to simplify the first summation expression.



Galerkin error minimisation

The coefficients can be obtained by solving













D
(α)
0,0 (ω) D

(α)
0,1 (ω) · · · D

(α)
0,P−1(ω)

D
(α)
1,0 (ω) D

(α)
1,1 (ω) · · · D

(α)
1,P−1(ω)

...
...

...

D
(α)
P−1,0(ω) D

(α)
P−1,1(ω) · · · D

(α)
P−1,P−1(ω)



































u
(α)
0 (ω)

u
(α)
1 (ω)

...

u
(α)
P−1(ω)























=



















f0(ω)
f1(ω)

...

fP−1(ω)



















(38)

or in a compact notation

D
(α)(ω)U (α)(ω) = F(ω) (39)

where D
(α)(ω) ∈ C

nP×nP , U (α)(ω),F(ω) ∈ C
nP .

This equation needs to be solved for every α-cut. Once all u
(α)
j (ω) for

j = 0, 1, . . . ,P − 1 are obtained, the solution vector can be obtained from

(36) for every α-cut.



Problem description

The generalised eigenvalue problem for a given α-cut can be expressed
as

K(α)yj = λ
(α)
j M(α)y

(α)
j , j = 1, 2, 3, · · · (40)

where λ
(α)
j and y

(α)
j denote the eigenvalues and eigenvectors of the

system.

The eigenvalues and eigenvectors can be expressed by spectral
decomposition as2

λ(j)(ξ1, . . . ξM) =

P∑

k=1

λjkΨk(ξ1, . . . ξM) (41)

y(j)(ξ1, . . . ξM) =

P∑

k=1

y
(j)
k Ψk(ξ1, . . . ξM) (42)

where λjk and y
(j)
k are unknowns and the basis functions considered here

are multivariate Legendre’s polynomials.

2
Pascual, B., Adhikari, S., ”Hybrid perturbation-polynomial chaos approaches to the random algebraic eigenvalue problem”, Computer Methods in

Applied Mechanics and Engineering, 217-220[1] (2012), pp. 153-167.



Problem description

Figure : A cantilever rod subjected to an axial force modelled using two fuzzy

variables. L1 = 1m, L2 = 1m, crisp values EA1 = 20 × 107N, EA2 = 5 × 107N,

F = 1kN. The linear (triangular) membership functions for the two variables are shown

in the figure.



Fuzzy variables

At α = 0 we have the maximum variability

18 × 107 ≤ EA1 ≤ 26 × 107
and 4 × 107 ≤ EA2 ≤ 6 × 107 (43)

This implies a variability between −10% and 30% for EA1 and ±20% for

EA2. The maximum and minimum values of the interval for a given α-cut
can be described for the two fuzzy variables as

EA1min
= EA1(0.9 + 0.1α) andEA1max

= EA1(1.3 − 0.3α) (44)

EA2min
= EA2(0.8 + 0.2α) andEA2max

= EA2(1.2 − 0.2α) (45)

The stiffness matrix:

K = K0 + ζ1K
(α)
1 + ζ2K

(α)
2 (46)

Here K0 ∈ R
100×100 is the stiffness matrix corresponding to the crisp

values, K
(α)
1 and K

(α)
2 are the coefficient matrices corresponding to a

given α-cut.



Static Results
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1.8 2 2.2 2.4 2.6 2.8 3 3.2

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deflection at the end point (m)

α−
le

ve
l

 

 

Direct simulation
Orthogonal polynomial (1st order)
Orthogonal polynomial (2nd order)
Orthogonal polynomial (4th order)

(b) Response at the end point

Fuzzy description of the response of the rod at two points computed using

different order of Legendre polynomial based homogeneous chaos and direct
simulation.



Percentage error in the mid point: Static analysis

1st order 2nd order 4th order

α-cut min max min max min max

0.0 2.4136 2.0837 0.2669 0.2280 0.0026 0.0026
0.1 1.9713 1.7254 0.1976 0.1713 0.0016 0.0016

0.2 1.5711 1.3944 0.1410 0.1241 0.0009 0.0009
0.3 1.2138 1.0925 0.0961 0.0858 0.0005 0.0005

0.4 0.9001 0.8219 0.0615 0.0558 0.0002 0.0002

0.5 0.6312 0.5848 0.0362 0.0334 0.0001 0.0001
0.6 0.4081 0.3837 0.0189 0.0177 0.0000 0.0000

0.7 0.2320 0.2214 0.0081 0.0077 0.0000 0.0000

0.8 0.1042 0.1010 0.0025 0.0024 0.0000 0.0000
0.9 0.0264 0.0259 0.0003 0.0003 0.0000 0.0000

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Percentage error at the end point: Static analysis

1st order 2nd order 4th order

α-cut min max min max min max

0.0 2.8522 2.4338 0.3426 0.2891 0.0039 0.0040
0.1 2.2891 1.9846 0.2471 0.2121 0.0023 0.0023

0.2 1.7931 1.5795 0.1719 0.1500 0.0013 0.0013
0.3 1.3618 1.2187 0.1141 0.1013 0.0007 0.0007

0.4 0.9930 0.9028 0.0713 0.0644 0.0003 0.0003

0.5 0.6848 0.6325 0.0410 0.0376 0.0001 0.0001
0.6 0.4354 0.4086 0.0208 0.0195 0.0000 0.0000

0.7 0.2435 0.2321 0.0087 0.0083 0.0000 0.0000

0.8 0.1076 0.1043 0.0026 0.0025 0.0000 0.0000
0.9 0.0268 0.0264 0.0003 0.0003 0.0000 0.0000

1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Frequency response function: mid point

(c) α = 0.75 (d) α = 0.5

Variability of the frequency response of the rod at the mid-point computed

using Legendre polynomial based homogeneous chaos (4th order) and direct

simulation.



Frequency response function: mid point

(e) α = 0.25 (f) α = 0

Variability of the frequency response of the rod at the mid-point computed

using Legendre polynomial based homogeneous chaos (4th order) and direct

simulation.



Frequency response function: end point

(g) α = 0.75 (h) α = 0.5

Variability of the frequency response of the rod at the end-point computed
using Legendre polynomial based homogeneous chaos (4th order) and direct

simulation.



Frequency response function: end point

(i) α = 0.25 (j) α = 0

Variability of the frequency response of the rod at the end-point computed

using Legendre polynomial based homogeneous chaos (4th order) and direct

simulation.



Summary and conclusions

Uncertainty propagation in complex systems with Fuzzy variables is

considered. An orthogonal function expansion approach in conjunction
with Galerkin type error minimisation is proposed.

The method proposed has three major steps: (a) transformation of a

fuzzy variable into a set of interval variables for different α-cuts via the
membership function, (b) transformation of interval variables into a

standard interval variable between [−1, 1] for each α-cut, and (c)
projection of the response function in the basis of multivariate orthogonal

Legendre polynomials in terms of the transformed standard interval

variables.

The coefficients associated with the basis functions are obtained using a

Galerkin type of error minimisation. Depending on the number of basis

retained in the series expansion, it is shown that various order of
approximation can be obtained.



Summary and conclusions

A computational method is proposed for fuzzy finite element problems in

structural dynamics, where the technique is generalised to vector valued
functions with multiple fuzzy variables in the frequency domain.

For a given α-cut, the complex dynamic stiffness matrix is expressed as a
series involving standard interval variables and coefficient matrices. This

representation significantly simplify the problem of response prediction

via the proposed multivariate orthogonal Legendre polynomials
expansion technique.

The coefficient vectors in the polynomial expansion are calculated from

the solution of an extended set of linear algebraic equations.

A numerical example of axial deformation of a rod with fuzzy axial

stiffness is considered to illustrate the proposed methods. The results are
compared with direct numerical simulation results.



Summary and conclusions

The spectral method proposed in this paper enables to propagate fuzzy
uncertainty in a mathematically rigorous and general manner similar to

what is available for propagation of probabilistic uncertainty.

The main computational cost involves the solution of an extended set of
linear algebraic equations necessary to obtain the coefficients associated

with the polynomial basis functions. Future research is necessary to
develop computationally efficient methods to deal with this problem

arising in systems with large number of fuzzy variables.
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