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Nanoscale systems

@ Nanoscale systems have length-scale in the order of O(10~%)m.

@ Nanoscale systems, such as those fabricated from simple and complex
nanorods, nanobeams' and nanoplates have attracted keen interest
among scientists and engineers.

@ Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes?, zinc oxide (ZnO) nanowires and boron
nitride (BN) nanotubes, while two-dimensional nanoscale objects include
graphene sheets® and BN nanosheets®.

@ These nanostructures are found to have exciting mechanical, chemical,
electrical, optical and electronic properties.

@ Nanostructures are being used in the field of nanoelectronics,
nanodevices, nanosensors, nano-oscillators, nano-actuators,
nanobearings, and micromechanical resonators, transporter of drugs,
hydrogen storage, electrical batteries, solar cells, nanocomposites and
nanooptomechanical systems (NOMS).

@ Understanding the dynamics of nanostructures is crucial for the
development of future generation applications in these areas.



Nanoscale systems
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Continuum mechanics at the nanoscale

@ Experiments at the nanoscale are generally difficult at this point of time.

@ On the other hand, atomistic computation methods such as molecular
dynamic (MD) simulations® are computationally prohibitive for
nanostructures with large numbers of atoms.

@ Continuum mechanics can be an important tool for modelling,
understanding and predicting physical behaviour of nanostructures.

@ Although continuum models based on classical elasticity are able to
predict the general behaviour of nanostructures, they often lack the
accountability of effects arising from the small-scale.

@ To address this, size-dependent continuum based methods®° are
gaining in popularity in the modelling of small sized structures as they
offer much faster solutions than molecular dynamic simulations for
various nano engineering problems.

@ Currently research efforts are undergoing to bring in the size-effects
within the formulation by modifying the traditional classical mechanics.



Nonlocal continuum mechanics

One popularly used size-dependant theory is the nonlocal elasticity
theory pioneered by Eringen'?, and has been applied to nanotechnology.

Nonlocal continuum mechanics is being increasingly used for efficient
analysis of nanostructures viz. nanorods '>'3, nanobeams 4,
nanoplates ' nanorings'”, carbon nanotubes 1819, graphenes 292",
nanoswitches?? and microtubules23. Nonlocal elasticity accounts for the
small-scale effects at the atomistic level.

In the nonlocal elasticity theory the small-scale effects are captured by
assuming that the stress at a point as a function of the strains at all points
in the domain:

oi(x) = /v¢(|x _ x|, a)taV(xX)

where ¢(|x — x|, a) = (21(2a2)Ko(v/X ® X /£Q)
Nonlocal theory considers long-range inter-atomic interactions and yields
results dependent on the size of a body.

Some of the drawbacks of the classical continuum theory could be
efficiently avoided and size-dependent phenomena can be explained by
the nonlocal elasticity theory.



FEM for nonlocal dynamic systems

@ The majority of the reported works on nonlocal finite element analysis
consider free vibration studies where the effect of non-locality on the
undamped eigensolutions has been studied.

@ Damped nonlocal systems and forced vibration response analysis have
received little attention.

@ On the other hand, significant body of literature is available?*=2% on finite
element analysis of local dynamical systems.

@ |tis necessary to extend the ideas of local modal analysis to nonlocal
systems to gain qualitative as well as quantitative understanding.
@ This way, the dynamic behaviour of general nonlocal discretised systems

can be explained in the light of well known established theories of
discrete local systems.



Axial vibration of nanorods

Carbon atoms
Zigzag SWCNT (7,0)
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Figure : Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT)
with clamped-free boundary condition.



Axial vibration of nanorods

@ The equation of motion of axial vibration for a damped nonlocal rod can
be expressed as

?U(x, 1) 5 02\ *U(x,1)

— 5 + 1 <1 — (eoa)1w> W

~ 92\ oU(x,t 92 PPU(x,t ‘
= C2 (1 - (eoa)gw) ét )+<1 - (eoa)zw> {m% —|— F(X, t)

In the above equation EA is the axial rigidity, m is mass per unit length,
eoa is the nonlocal parameter'°, U(x, t) is the axial displacement, F(x, t)

is the applied force, x is the spatial variable and t is the time.

The constant ¢, is the strain-rate-dependent viscous damping coefficient

and ¢, is the velocity-dependent viscous damping coefficient.

@ The parameters (epa)s and (epa)2 are nonlocal parameters related to the
two damping terms, which are ignored for simplicity.

o



Nonlocal element matrices

@ We consider an element of length ¢, with axial stiffness EA and mass per
unit length m.
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Figure : A nonlocal element for the axially vibrating rod with two nodes. It has
two degrees of freedom and the displacement field within the element is
expressed by linear shape functions.

@ This element has two degrees of freedom and there are two shape
functions Nj(x) and Nz(x). The shape function matrix for the axial
deformation?® can be given by

N(x) = [Ni(x), No(x)]” = [1 = X/le, x/Ce] )



Nonlocal element matrices

@ Using this the stiffness matrix can be obtained using the conventional
variational formulation as

‘e dN(x) dNT(x)d _EA [ 1 —1} 3)

Ke=EA| o —ax ¥~ 7 [-1 1

@ The mass matrix for the nonlocal element can be obtained as

fe ‘e dN(x) dN"(x)
_ T 2
M, = m/o N(x)N' (x)dx + m(epa) 5 “ax dx dx

2
_ mle [2 1 ea 1 —1
e () e ]
@ For the special case when the rod is local, the mass matrix derived above
reduces to the classical mass matrix26-2” as ega = 0 . Therefore for a
nonlocal rod, the element stiffness matrix is identical to that of a classical

local rod but the element mass has an additive term which is dependent
on the nonlocal parameter.

(4)




Bending vibration of nanobeams

Armchair DWCNT (5,5), (8,8)
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Figure : Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon
nanotube (DWCNT) with pinned-pinned boundary condition.



Bending vibration of nanobeams

@ For the bending vibration of a nonlocal damped beam, the equation of
motion can be expressed by

E/M +m <1 - (eoa)2i> {M}

ox* O0x?2 ot
L PV(x,t) L aV(x,t) ,
TO %t T2 o <1 —(e0a)" 55 | {F(x, 1)} (5)

@ In the above equation E/ is the bending rigidity, m is mass per unit length,
epa is the nonlocal parameter, V(x, t) is the transverse displacement and
F(x,t) is the applied force.

@ The constant ¢, is the strain-rate-dependent viscous damping coefficient
and ¢; is the velocity-dependent viscous damping coefficient.



Nonlocal element matrices

@ We consider an element of length ¢, with bending stiffness E/ and mass
per unit length m.
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Figure : A nonlocal element for the bending vibration of a beam. It has two

nodes and four degrees of freedom. The displacement field within the element is
expressed by cubic shape functions.

@ This element has four degrees of freedom and there are four shape
functions.



Nonlocal element matrices

@ The shape function matrix for the bending deformation?® can be given by

N(x) = [Ni(x), Na(x), Na(x), Na(x)]" (6)
where
2 3 2 3
Ni(x) =1-3% + 2% No(x) = x— 2% + 2
2 "8 le 12 -
X2 x3 x2 X3
Ns(x) =3Z; — 22 Na(x) = -+ =
W) =% 2 W=7t a

@ Using this, the stiffness matrix can be obtained using the conventional
variational formulation?’ as

) . 12 6l —12 6L
° d®?N(x) d®°N’ (x) El | 6te 472 —6Le 202

Ko = El / o a2 YT@|-12 e, 12 6| ®
6le 202 Bl 412



Nonlocal element matrices

@ The mass matrix for the nonlocal element can be obtained as

M, = m/oee N(x)N' (x)dx + m(epa)? /Oee %ﬁ(x) deTX(X)dx

156 220, 54  —13(,
mle | 220, M2 130e  —3(2
T 420 | 54 130, 156 22/,

~130e 302 220, 442

, 36 3e 36 3l
(eoa> mle | 3le 402 —3le 12

Y, ) 30 |-36 -3¢, 36 -3l
3l —12 —3lg 42

@ For the special case when the beam is local, the mass matrix derived
above reduces to the classical mass matrix?%2” as ega = 0.



Transverse vibration of nhanoplates
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Transverse vibration of nhanoplates

@ For the transverse bending vibration of a nonlocal damped thin plate, the
equation of motion can be expressed by

DV*V(x,y,t) + m (1 —(eoa)zvz){ Bz ax*ot

I~y 8V(X,y, t)
— 77— (1
+ C ot (

azv(xayvt)} V48V(X ya )

— (e0a)’V?) {F(x,y.t)} (10)

@ In the above equation V2 = 2 1 2 ) s the differential operator,
ox ox

D= m is the bending rigidity, h is the thickness, v is the Poisson’s
ratio, m is mass per unit area, eya is the nonlocal parameter, V(x, y,t) is
the transverse displacement and F(x, y, t) is the applied force.

@ The constant ¢, is the strain-rate-dependent viscous damping coefficient
and ¢; is the velocity-dependent viscous damping coefficient.



Nonlocal element matrices

@ We consider an element of dimension 2¢ x 2b with bending stiffness D
and mass per unit area m.

(-cb) AY (ch)
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Figure : A nonlocal element for the bending vibration of a plate. It has four nodes
and twelve degrees of freedom. The displacement field within the element is
expressed by cubic shape functions in both directions.



Nonlocal element matrices

@ The shape function matrix for the bending deformation is a 12 x 1
vector?” and can be expressed as

N(x,y) = C; 'a(x,y) (11)

@ Here the vector of polynomials is given by

ay)=[1 x y x® xy y¥» x® x¥y xy2 y® x¥ x|
(12)

@ The 12 x 12 coefficient matrix can be obtained in closed-form.



Nonlocal element matrices

@ Using the shape functions in Eq. (11), the stiffness matrix can be
obtained using the conventional variational formulation®’ as

K. = | B’EBdA. (13)
Ae

@ In the preceding equation B is the strain-displacement matrix, and the

matrix E is given by
1 v O
E=D|vr 1 0 (14)

00 L

@ Evaluating the integral in Eq. (13), we can obtain the element stiffness
matrix in closed-form as

En®

4T _q

Ke

@ The 12 x 12 coefficient matrix ke can be obtained in closed-form.



Nonlocal element matrices

@ The mass matrix for the nonlocal element can be obtained as

Mo = ph [ {N(xyNT(x.y)

Ae
ON(x,y) dN"(x, ON(x, y) dN"(x,
+(eoa)2< e y) N0x.y) |, ONGry) INTC y))}dAe (16)
B a2 €0a\ 2
= Mo, +(557) Mo+ () My

@ The three matrices appearing in the above expression can be obtained in
closed-form.



Nonlocal element matrices
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Nonlocal element matrices: Summary

@ Based on the discussions for all the three systems considered here, in
general the element mass matrix of a nonlocal dynamic system can be
expressed as

M; = Mo, +M,,, (19)
Here My, is the element stiffness matrix corresponding to the underlying
local system and M,,, is the additional term arising due to the nonlocal
effect.

@ The element stiffness matrix remains unchanged.



Global system matrices

@ Using the finite element formulation, the stiffness matrix of the local and
nonlocal system turns out to be identical to each other.

@ The mass matrix of the nonlocal system is however different from its
equivalent local counterpart.

@ Assembling the element matrices and applying the boundary conditions,
following the usual procedure of the finite element method one obtains
the global mass matrix as

M = Mo+M,, (20)

@ In the above equation My is the usual global mass matrix arising in the
conventional local system and M,, is matrix arising due to nonlocal nature
of the systems:

€a\?2 ~
w— (%) m, @)
Here I\AIIH is a nonnegative definite matrix. The matrix M,, is therefore, a
scale-dependent matrix and its influence reduces if the length of the
system L is large compared to the parameter ga.



Nonlocal modal analysis

@ Majority of the current finite element software and other computational
tools do not explicitly consider the nonlocal part of the mass matrix. For
the design and analysis of future generation of nano electromechanical
systems it is vitally important to consider the nonlocal influence.

@ We are interested in understanding the impact of the difference in the
mass matrix on the dynamic characteristics of the system. In particular
the following questions of fundamental interest have been addressed:

@ Under what condition a nonlocal system possess classical local normal
modes?

@ How the vibration modes and frequencies of a nonlocal system can be
understood in the light of the results from classical local systems?

@ By addressing these questions, it would be possible to extend
conventional ‘local’ elasticity based finite element software to analyse
nonlocal systems arising in the modelling of complex nanoscale built-up
structures.



Conditions for classical normal modes

@ The equation of motion of a discretised nonlocal damped system with n
degrees of freedom can be expressed as

[Mo + M, ii(7) + Cu(t) + Ku(t) = f(t) (22)

@ Here u(t) € R is the displacement vector, f(t) € R" is the forcing vector,
K, C < R™" are respectively the global stiffness and the viscous damping
matrix.

@ In general My and M,, are positive definite symmetric matrices, C and K
are non-negative definite symmetric matrices. The equation of motion of
corresponding local system is given by

Motio(£) + Cuo(t) + Kuo(t) = f(t) (23)

where ug(t) € R" is the local displacement vector.

@ The natural frequencies (w; € R) and the mode shapes (x; € R") of the
corresponding undamped local system can be obtained by solving the
matrix eigenvalue problem?* as

Kx; = w?Mox;, Vj=1,2,...,n (24)



Dynamics of the local system

@ The undamped local eigenvectors satisfy an orthogonality relationship
over the local mass and stiffness matrices, that is

X[Moxj‘ = 5kj (25)
and X, Kx; =w?dy, Vk,j=1,2,....n (26)

where dy; is the Kroneker delta function. We construct the local modal
matrix
X =[X1,X2,...,Xp] €R" 27)

@ The local modal matrix can be used to diagonalize the local system (23)
provided the damping matrix C is simultaneously diagonalizable with Mg
and K.

@ This condition, known as the proportional damping, originally introduced
by Lord Rayleigh?® in 1877, is still in wide use today.

@ The mathematical condition for proportional damping can be obtained
from the commutitative behaviour of the system matrices?®. This can be

expressed as
CM, 'K =KM;'C (28)

or equivalently C = Myf(M, 'K) as shown in3°.



Conditions for classical normal modes

@ Considering undamped nonlocal system and premultiplying the equation
by M, " we have

(I,, n M51M#) i(t) + (Mg‘K) u(t) = My '(t) (29)

@ This system can be diagonalized by a similarity transformation which also
diagonalise (M0’1K> provided the matrices (M51M#> and (Mg‘K)
commute. This implies that the condition for existence of classical local
normal modes is

(M5 'K) (Mg "M, ) = (Mg'M,,) (M 'K) (30)
or KM;'M, =M,M; 'K (31)

@ If the above condition is satisfied, then a nonlocal undamped system can
be diagonalised by the classical local normal modes. However, it is also
possible to have nonlocal normal modes which can diagonalize the
nonlocal undamped system as discussed next.



Nonlocal normal modes

@ Nonlocal normal modes can be obtained by the undamped nonlocal
eigenvalue problem

Kuj = A2 [Mo + M, Ju;, Vj=1,2,...,n (32)

@ Here )\; and u; are the nonlocal natural frequencies and nonlocal normal
modes of the system. We can define a nonlocal modal matrix

U=[uj,uz...,uy] €R” (33)

which will unconditionally diagonalize the nonlocal undamped system. It
should be remembered that in general nonlocal normal modes and
frequencies will be different from their local counterparts.



Nonlocal normal modes: Damped systems

@ Under certain restrictive condition it may be possible to diagonalise the
damped nonlocal system using classical normal modes.

@ Premultiplying the equation of motion (22) by M51, the required condition
is that (M51MM), (MO_1C) and <M51K) must commute pairwise. This
implies that in addition to the two conditions given by Egs. (28) and (31),
we also need a third condition

CM,'M, =M,M;"'C (34)

@ If we consider the diagonalization of the nonlocal system by the nonlocal
modal matrix in (33), then the concept of proportional damping can be
applied similar to that of the local system. One can obtain the required
condition similar to Caughey’s condition?® as in Eq. (28) by replacing the
mass matrix with Mo + M,,. If this condition is satisfied, then the equation
of motion can be diagonalised by the nonlocal normal modes and in
general not by the classical normal modes.



Approximate nonlocal normal modes

@ Majority of the existing finite element software calculate the classical
normal modes.

@ However, it was shown that only under certain restrictive condition, the
classical normal modes can be used to diagonalise the system.

@ In general one need to use nonlocal normal modes to diagonalise the
equation of motion (22), which is necessary for efficient dynamic analysis
and physical understanding of the system.

@ We aim to express nonlocal normal modes in terms of classical normal
modes.

@ Since the classical normal modes are well understood, this approach will
allow us to develop physical understanding of the nonlocal normal modes.



Projection in the space of undamped classical modes

@ For distinct undamped eigenvalues (w?), local eigenvectors
x;, VI=1,...,n, form a complete set of vectors. For this reason each
nonlocal normal mode u; can be expanded as a linear combination of x;:

n
u = Z OzEI)X/ (35)
I=1

@ Without any loss of generality, we can assume that aj(.j) =1

(normalization) which leaves us to determine a(’) VI # j.
@ Substituting the expansion of u; into the elgenvalue equation (32), one
obtains

n
[~X2 (Mo +M,) + K] Y af'x, =0 (36)
=1
For the case when afj) are approximate, the error involving the projection
in Eq. (35) can be expressed as

g =D [N (Mo+M,)+K]alx, (37)
I=1



Nonlocal natural frequencies

@ We use a Galerkin approach to minimise this error by viewing the
expansion as a projection in the basis functions x, ¢ R, v/ =1,2,...n.
Therefore, making the error orthogonal to the basis functions one has

gjlx;, or xle=0 Vk=1,2,...,n (38)

@ Using the orthogonality property of the undamped local modes

n
SO [-02 (G + M) +whdk] of) =0 (39)
=1

where M, = x[M,x, are the elements of the nonlocal part of the modal

mass matrix.

@ Assuming the off-diagonal terms of the nonlocal part of the modal mass
matrix are small and afj) < 1,VI # j, approximate nonlocal natural
frequencies can be obtained as

wj

Nt (40)

Jrem,



Nonlocal mode shapes

@ When k # j, from Eq. (39) we have

n
(=X (1 + M) +ef] o) =X > (M) of =0 (41)
I£k

@ Recalling that al(.j) = 1, this equation can be expressed as

(=22 (1 4+ M,

ltkk) + wk] ag(l) = (42)

#k/ z : ,uk/

I#k#]

@ Solving for a(kf), the nonlocal normal modes can be expressed in terms of
the classical normal modes as

/

U ~X; + B x (43)
o §( ) (M)




Nonlocal normal modes

Equations (40) and (43) completely defines the nonlocal natural frequencies
and mode shapes in terms of the local natural frequencies and mode shapes.
The following insights about the nonlocal normal modes can be deduced

@ Each nonlocal mode can be viewed as a sum of two principal
components. One of them is parallel to the corresponding local mode and
the other is orthogonal to it as all xx are orthogonal to x; for j # k.

@ Due to the term (Ai - )\f) in the denominator, for a given nonlocal mode,

only few adjacent local modes contributes to the orthogonal component.

@ For systems with well separated natural frequencies, the contribution of
the orthogonal component becomes smaller compared to the parallel
component.



Frequency response of nonlocal systems

@ Taking the Fourier transformation of the equation of motion (22) we have
D(iw)i(iw) = f(iw) (44)
where the nonlocal dynamic stiffness matrix is given by
D(iw) = —w? [Mg + M,] + iwC + K (45)

@ In Eq. (44) G(iw) and f(iw) are respectively the Fourier transformations of
the response and the forcing vectors.

@ Using the local modal matrix (27), the dynamic stiffness matrix can be
transformed to the modal coordinate as

D'(iw) = X"D(iw)X = —w? [I+ M/ ] +iwC’ + Q° (46)

where | is a n-dimensional identity matrix, Q2 is a diagonal matrix
containing the squared local natural frequencies and (o)’ denotes that the
quantity is in the modal coordinates.



Frequency response of nonlocal systems

@ We separate the diagonal and off-diagonal terms as

D' (iw) = —w? [l + ﬁ;} +iwC + Q2+ (—wPAM, +iwAC)  (47)

diagonal off-diagonal
=D'(iw) + AD'(iw) (48)
@ The dynamic response of the system can be obtained as
i(iw) = H(iw)f(iw) = [XD”‘ (iw)xT} f(iw) (49)
where the matrix H(iw) is known as the transfer function matrix.
@ From the expression of the modal dynamic stiffness matrix we have

1

D' (iw) = {ﬁ(iw) (I +D (iw)AD’(iw)H1 (50)

7—1 7—1 —1

~D (w)-D (iw)AD'(iw)D (iw) (51)



Frequency response of nonlocal systems

@ Substituting the approximate expression of D/_1(iw) from Eq. (51) into the
expression of the transfer function matrix in Eq. (49) we have

H(iw) = [XDM(iw)XT} ~ H (iw) — AH'(iw) (52)
where
! ! n XkXT
H (iw) = XD (iw)X" = k
(iw) (iw) ; —o? (1 4+ M) + 2iwwyCe + o2
(53)
_ _r—1
and AH'(iw) =XD (iw)AD'(iw)D (iw)X" (54)

@ Equation (52) therefore completely defines the transfer function of the
damped nonlocal system in terms of the classical normal modes. This
can be useful in practice as all the quantities arise in this expression can
be obtained from a conventional finite element software. One only needs
the nonlocal part of the mass matrix as derived in 2.



Nonlocal transfer function

Some notable features of the expression of the transfer function matrix are

@ For lightly damped systems, the transfer function will have peaks around
the nonlocal natural frequencies derived previously.

@ The error in the transfer function depends on two components. They
include the off-diagonal part of the of the modal nonlocal mass matrix
AM, and the off-diagonal part of the of the modal damping matrix AC’.
While the error in in the damping term is present for non proportionally
damped local systems, the error due to the nonlocal modal mass matrix
in unique to the nonlocal system.

@ For a proportionally damped system AC’ = O. For this case error in the
transfer function only depends on AM,,.

@ In general, error in the transfer function is expected to be higher for
higher frequencies as both AC’ and AM; are weighted by frequency w.

The expressions of the nonlocal natural frequencies (40), nonlocal normal
modes (43) and the nonlocal transfer function matrix (52) allow us to
understand the dynamic characteristic of a nonlocal system in a qualitative
and quantitative manner in the light of equivalent local systems.



Axial vibration of a single-walled carbon nanotube

Carbon atoms
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Figure : Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT)
with clamped-free boundary condition.



Axial vibration of a single-walled carbon nanotube

@ A single-walled carbon nanotube (SWCNT) is considered.

@ A zigzag (7, 0) SWCNT with Young’s modulus E = 6.85 TPa, L = 25nm,
density p = 9.517 x 10° kg/m® and thickness t = 0.08nm is used

@ For a carbon nanotube with chirality (n;, m;), the diameter can be given by

d/:%\/n,?jtm,?Jrn/mf (55)

where r = 0.246nm. The diameter of the SWCNT shown in 7 is 0.55nm.
@ A constant modal damping factor of 1% for all the modes is assumed.

@ We consider clamped-free boundary condition for the SWCNT.
Undamped nonlocal natural frequencies can be obtained as

/\j:“ﬁ#v where gj:@, j:1,2,--- (56)
m 1+aj2(eoa)2 2

EA is the axial rigidity and m is the mass per unit length of the SWCNT.

@ For the finite element analysis the SWCNT is divided into 200 elements.
The dimension of each of the system matrices become 200 x 200, that is
n = 200.



Nonlocal natural frequencies of SWCNT
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Frequency number: j
First 20 undamped natural frequencies for the axial vibration of SWCNT.



Nonlocal mode shapes of SWCNT
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Figure : Four selected mode shapes for the axial vibration of SWCNT. Exact finite
element results are compared with the approximate analysis based on local

eigensolutions. In each subplot four different values of eya, namely 0.5, 1.0, 1.5 and
2.0nm have been used.



Nonlocal frequency response of SWCNT
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Figure : Amplitude of the normalised frequency response of the SWCNT at the tip for
different values of epa. Exact finite element results are compared with the approximate

analysis based on local eigensolutions.



Transverse vibration of a single-layer graphene sheet
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Transverse vibration of a single-layer graphene sheet

A rectangular single-layer graphene sheet (SLGS) is considered to
examine the transverse vibration characteristics of nanoplates.

The graphene sheet is of dimension L=20nm, W=15nm and Young’s
modulus E = 1.0 TPa, density p = 2.25 x 10° kg/m?, Poisson’s ratio

v = 0.3 and thickness h = 0.34nm is considered

We consider simply supported boundary condition along the four edges
for the SLGS. Undamped nonlocal natural frequencies are

A= ,/ where B = \/(in /L) + (jr/ W), ij=1,2, -
1+B2 (epa)?

(57)
D is the bending rigidity and m is the mass per unit area of the SLGS.
For the finite element analysis the DWCNT is divided into 20 x 15
elements. The dimension of each of the system matrices become
868 x 868, that is n = 868.



Nonlocal natural frequencies of SLGS
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First 15 undamped natural frequencies for the transverse vibration of SLGS.



Nonlocal mode shapes of SLGS
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Figure : Four selected mode shapes for the transverse vibration of SLGS for
eoa = 2nm. Exact finite element results (solid line)are compared with the approximate
analysis based on local eigensolutions (dashed line).



Nonlocal frequency response of SLGS
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Figure : Amplitude of the normalised frequency response Hj(w) for i = 475, j = 342
of the SLGS for different values of epa. Exact finite element results are compared with

the approximate analysis based on local eigensolutions.



Conclusions

@ Nonlocal elasticity is a promising theory for the modelling of nanoscale
dynamical systems such as carbon nantotubes and graphene sheets.

@ The mass matrix can be decomposed into two parts, namely the classical
local mass matrix Mo and a nonlocal part denoted by M,,. The nonlocal
part of the mass matrix is scale-dependent and vanishes for systems with
large length-scale.

@ An undamped nonlocal system will have classical normal modes
provided the nonlocal part of the mass matrix satisfy the condition
KM, 'M,, = M, M, 'K where K is the stiffness matrix.

@ A viscously damped nonlocal system with damping matrix C will have
classical normal modes provided CM, 'K = KM, 'C and
CM,'M,, = M, M, ' C in addition to the previous condition.



Conclusions

@ Natural frequency of a general nonlocal system can be expressed as
N~ ——L—,Vj =1,2,--- where w; are the corresponding local

frequenmes and M’ are the elements of nonlocal part of the mass matrix
in the modal coordlnate
@ Every nonlocal normal mode can be expressed as a sum of two principal
1+M}jkk
them is parallel to the corresponding local mode x; and the other is
orthogonal to it.

2 M,
components as u; ~ X; + (>, ﬁ(‘ik)xk) Vj=1,2,---. One of
/
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