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Nanoscale systems

Nanoscale systems have length-scale in the order of O(10−9)m.

Nanoscale systems, such as those fabricated from simple and complex
nanorods, nanobeams1 and nanoplates have attracted keen interest

among scientists and engineers.

Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes2, zinc oxide (ZnO) nanowires and boron

nitride (BN) nanotubes, while two-dimensional nanoscale objects include
graphene sheets3 and BN nanosheets4.

These nanostructures are found to have exciting mechanical, chemical,

electrical, optical and electronic properties.

Nanostructures are being used in the field of nanoelectronics,

nanodevices, nanosensors, nano-oscillators, nano-actuators,
nanobearings, and micromechanical resonators, transporter of drugs,

hydrogen storage, electrical batteries, solar cells, nanocomposites and

nanooptomechanical systems (NOMS).

Understanding the dynamics of nanostructures is crucial for the

development of future generation applications in these areas.
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Continuum mechanics at the nanoscale

Experiments at the nanoscale are generally difficult at this point of time.

On the other hand, atomistic computation methods such as molecular
dynamic (MD) simulations5 are computationally prohibitive for

nanostructures with large numbers of atoms.

Continuum mechanics can be an important tool for modelling,

understanding and predicting physical behaviour of nanostructures.

Although continuum models based on classical elasticity are able to

predict the general behaviour of nanostructures, they often lack the

accountability of effects arising from the small-scale.

To address this, size-dependent continuum based methods6–9 are

gaining in popularity in the modelling of small sized structures as they
offer much faster solutions than molecular dynamic simulations for

various nano engineering problems.

Currently research efforts are undergoing to bring in the size-effects
within the formulation by modifying the traditional classical mechanics.



Nonlocal continuum mechanics

One popularly used size-dependant theory is the nonlocal elasticity

theory pioneered by Eringen10, and has been applied to nanotechnology.

Nonlocal continuum mechanics is being increasingly used for efficient

analysis of nanostructures viz. nanorods12,13, nanobeams14,

nanoplates15,16, nanorings17, carbon nanotubes18,19, graphenes20,21,
nanoswitches22 and microtubules23. Nonlocal elasticity accounts for the

small-scale effects at the atomistic level.

In the nonlocal elasticity theory the small-scale effects are captured by

assuming that the stress at a point as a function of the strains at all points

in the domain:

σij (x) =

∫

V

φ(|x − x ′|, α)tij dV (x ′)

where φ(|x − x ′|, α) = (2πℓ2α2)K0(
√

x • x/ℓα)

Nonlocal theory considers long-range inter-atomic interactions and yields
results dependent on the size of a body.

Some of the drawbacks of the classical continuum theory could be
efficiently avoided and size-dependent phenomena can be explained by

the nonlocal elasticity theory.



FEM for nonlocal dynamic systems

The majority of the reported works on nonlocal finite element analysis
consider free vibration studies where the effect of non-locality on the

undamped eigensolutions has been studied.

Damped nonlocal systems and forced vibration response analysis have
received little attention.

On the other hand, significant body of literature is available24–26 on finite
element analysis of local dynamical systems.

It is necessary to extend the ideas of local modal analysis to nonlocal

systems to gain qualitative as well as quantitative understanding.

This way, the dynamic behaviour of general nonlocal discretised systems

can be explained in the light of well known established theories of
discrete local systems.



Axial vibration of nanorods

Figure : Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT)

with clamped-free boundary condition.



Axial vibration of nanorods

The equation of motion of axial vibration for a damped nonlocal rod can
be expressed as

EA
∂2U(x , t)

∂x2
+ ĉ1

(
1 − (e0a)2

1

∂2

∂x2

)
∂3U(x , t)

∂x2∂t

= ĉ2

(
1 − (e0a)2

2

∂2

∂x2

)
∂U(x , t)

∂t
+

(
1 − (e0a)2 ∂2

∂x2

){
m
∂2U(x , t)

∂t2
+ F (x , t)

}

In the above equation EA is the axial rigidity, m is mass per unit length,

e0a is the nonlocal parameter10, U(x , t) is the axial displacement, F (x , t)
is the applied force, x is the spatial variable and t is the time.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.

The parameters (e0a)1 and (e0a)2 are nonlocal parameters related to the

two damping terms, which are ignored for simplicity.



Nonlocal element matrices

We consider an element of length ℓe with axial stiffness EA and mass per

unit length m.

1
 2


l
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Figure : A nonlocal element for the axially vibrating rod with two nodes. It has

two degrees of freedom and the displacement field within the element is

expressed by linear shape functions.

This element has two degrees of freedom and there are two shape
functions N1(x) and N2(x). The shape function matrix for the axial

deformation26 can be given by

N(x) = [N1(x),N2(x)]
T = [1 − x/ℓe, x/ℓe]

T
(2)



Nonlocal element matrices

Using this the stiffness matrix can be obtained using the conventional

variational formulation as

Ke = EA

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx =

EA

ℓe

[
1 −1

−1 1

]
(3)

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx + m(e0a)2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe

6

[
2 1

1 2

]
+

(
e0a

ℓe

)2

mℓe

[
1 −1

−1 1

] (4)

For the special case when the rod is local, the mass matrix derived above

reduces to the classical mass matrix26,27 as e0a = 0 . Therefore for a
nonlocal rod, the element stiffness matrix is identical to that of a classical

local rod but the element mass has an additive term which is dependent

on the nonlocal parameter.



Bending vibration of nanobeams

Figure : Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon

nanotube (DWCNT) with pinned-pinned boundary condition.



Bending vibration of nanobeams

For the bending vibration of a nonlocal damped beam, the equation of

motion can be expressed by

EI
∂4V (x , t)

∂x4
+ m

(
1 − (e0a)2 ∂2

∂x2

){
∂2V (x , t)

∂t2

}

+ ĉ1
∂5V (x , t)

∂x4∂t
+ ĉ2

∂V (x , t)

∂t
=

(
1 − (e0a)2 ∂2

∂x2

)
{F (x , t)} (5)

In the above equation EI is the bending rigidity, m is mass per unit length,
e0a is the nonlocal parameter, V (x , t) is the transverse displacement and

F (x , t) is the applied force.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.



Nonlocal element matrices

We consider an element of length ℓe with bending stiffness EI and mass

per unit length m.

1
 2

l

e


Figure : A nonlocal element for the bending vibration of a beam. It has two

nodes and four degrees of freedom. The displacement field within the element is

expressed by cubic shape functions.

This element has four degrees of freedom and there are four shape

functions.



Nonlocal element matrices

The shape function matrix for the bending deformation26 can be given by

N(x) = [N1(x),N2(x),N3(x),N4(x)]
T

(6)

where

N1(x) = 1 − 3
x2

ℓ2
e

+ 2
x3

ℓ3
e

, N2(x) = x − 2
x2

ℓe
+

x3

ℓ2
e

,

N3(x) = 3
x2

ℓ2
e

− 2
x3

ℓ3
e

, N4(x) = −x2

ℓe
+

x3

ℓ2
e

(7)

Using this, the stiffness matrix can be obtained using the conventional

variational formulation27 as

Ke = EI

∫ ℓe

0

d2N(x)

dx2

d2NT (x)

dx2
dx =

EI

ℓ3
e




12 6ℓe −12 6ℓe

6ℓe 4ℓ2
e −6ℓe 2ℓ2

e

−12 −6ℓe 12 −6ℓ2
e

6ℓe 2ℓ2
e −6ℓe 4ℓ2

e


 (8)



Nonlocal element matrices

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx + m(e0a)2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe

420




156 22ℓe 54 −13ℓe

22ℓe 4ℓ2
e 13ℓe −3ℓ2

e

54 13ℓe 156 −22ℓe

−13ℓe −3ℓ2
e −22ℓe 4ℓ2

e




+

(
e0a

ℓe

)2
mℓe

30




36 3ℓe −36 3ℓe

3ℓe 4ℓ2
e −3ℓe −ℓ2

e

−36 −3ℓe 36 −3ℓe

3ℓe −ℓ2
e −3ℓe 4ℓ2

e




(9)

For the special case when the beam is local, the mass matrix derived
above reduces to the classical mass matrix26,27 as e0a = 0.



Transverse vibration of nanoplates



Transverse vibration of nanoplates

For the transverse bending vibration of a nonlocal damped thin plate, the

equation of motion can be expressed by

D∇4V (x , y , t) + m
(
1 − (e0a)2∇2

){∂2V (x , y , t)

∂t2

}
+ ĉ1∇4 ∂V (x , y , t)

∂x4∂t

+ ĉ2
∂V (x , y , t)

∂t
=
(
1 − (e0a)2∇2

)
{F (x , y , t)} (10)

In the above equation ∇2 =
(

∂2

∂x2 + ∂2

∂x2

)
is the differential operator,

D = Eh3

12(1−ν2)
is the bending rigidity, h is the thickness, ν is the Poisson’s

ratio, m is mass per unit area, e0a is the nonlocal parameter, V (x , y , t) is

the transverse displacement and F (x , y , t) is the applied force.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.



Nonlocal element matrices

We consider an element of dimension 2c × 2b with bending stiffness D

and mass per unit area m.

x


y


(-
c
,-b)


(-
c
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c
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Figure : A nonlocal element for the bending vibration of a plate. It has four nodes

and twelve degrees of freedom. The displacement field within the element is

expressed by cubic shape functions in both directions.



Nonlocal element matrices

The shape function matrix for the bending deformation is a 12 × 1
vector27 and can be expressed as

N(x , y) = C
−1
e α(x , y) (11)

Here the vector of polynomials is given by

α(x , y) =
[

1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3
]T
(12)

The 12 × 12 coefficient matrix can be obtained in closed-form.



Nonlocal element matrices

Using the shape functions in Eq. (11), the stiffness matrix can be
obtained using the conventional variational formulation27 as

Ke =

∫

Ae

BT EBdAe (13)

In the preceding equation B is the strain-displacement matrix, and the
matrix E is given by

E = D




1 ν 0

ν 1 0

0 0 1−ν
2


 (14)

Evaluating the integral in Eq. (13), we can obtain the element stiffness
matrix in closed-form as

Ke =
Eh3

12(1 − ν2)
C

−1T
keC

−1
(15)

The 12 × 12 coefficient matrix ke can be obtained in closed-form.



Nonlocal element matrices

The mass matrix for the nonlocal element can be obtained as

Me = ρh

∫

Ae

{
N(x , y)NT (x , y)

+(e0a)2

(
∂N(x , y)

∂x

dNT (x , y)

dx
+

∂N(x , y)

∂x

dNT (x , y)

dx

)}
dAe

= M0e
+
(e0a

c

)2

Mxe
+
(e0a

b

)2

Mye

(16)

The three matrices appearing in the above expression can be obtained in
closed-form.



Nonlocal element matrices

Mxe =
ρhcb

630
×













































276 66b 42c −276 −66b 42c −102 39b 21c 102 −39b 21c

66b 24b2 0 −66b −24b2 0 −39b 18b2 0 39b −18b2 0

42c 0 112c2
−42c 0 −28c2

−21c 0 −14c2 21c 0 56c2

−276 −66b −42c 276 66b −42c 102 −39b −21c −102 39b −21c

−66b −24b2 0 66b 24b2 0 39b −18b2 0 −39b 18b2 0

42c 0 −28c2
−42c 0 112c2

−21c 0 56c2 21c 0 −14c2

−102 −39b −21c 102 39b −21c 276 −66b −42c −276 66b −42c

39b 18b2 0 −39b −18b2 0 −66b 24b2 0 66b −24b2 0

21c 0 −14c2
−21c 0 56c2

−42c 0 112c2 42c 0 −28c2

102 39b 21c −102 −39b 21c −276 66b 42c 276 −66b 42c

−39b −18b2 0 39b 18b2 0 66b −24b2 0 −66b 24b2 0

21c 0 56c2
−21c 0 −14c2

−42c 0 −28c2 42c 0 112c2













































(17)

Mye =
ρhcb

630
×













































276 42b 66c 102 21b −39c −102 21b 39c −276 42b −66c

42b 112b2 0 21b 56b2 0 −21b −14b2 0 −42b −28b2 0

66c 0 24c2 39c 0 −18c2
−39c 0 18c2

−66c 0 −24c2

102 21b 39c 276 42b −66c −276 42b 66c −102 21b −39c

21b 56b2 0 42b 112b2 0 −42b −28b2 0 −21b −14b2 0

−39c 0 −18c2
−66c 0 24c2 66c 0 −24c2 39c 0 18c2

−102 −21b −39c −276 −42b 66c 276 −42b −66c 102 −21b 39c

21b −14b2 0 42b −28b2 0 −42b 112b2 0 −21b 56b2 0

39c 0 18c2 66c 0 −24c2
−66c 0 24c2

−39c 0 −18c2

−276 −42b −66c −102 −21b 39c 102 −21b −39c 276 −42b 66c

42b −28b2 0 21b −14b2 0 −21b 56b2 0 −42b 112b2 0

−66c 0 −24c2
−39c 0 18c2 39c 0 −18c2 66c 0 24c2













































(18)



Nonlocal element matrices: Summary

Based on the discussions for all the three systems considered here, in
general the element mass matrix of a nonlocal dynamic system can be

expressed as

Me = M0e
+Mµe

(19)

Here M0e
is the element stiffness matrix corresponding to the underlying

local system and Mµe
is the additional term arising due to the nonlocal

effect.

The element stiffness matrix remains unchanged.



Global system matrices

Using the finite element formulation, the stiffness matrix of the local and

nonlocal system turns out to be identical to each other.

The mass matrix of the nonlocal system is however different from its

equivalent local counterpart.

Assembling the element matrices and applying the boundary conditions,

following the usual procedure of the finite element method one obtains

the global mass matrix as
M = M0+Mµ (20)

In the above equation M0 is the usual global mass matrix arising in the
conventional local system and Mµ is matrix arising due to nonlocal nature

of the systems:

Mµ =
(e0a

L

)2

M̂µ (21)

Here M̂µ is a nonnegative definite matrix. The matrix Mµ is therefore, a

scale-dependent matrix and its influence reduces if the length of the

system L is large compared to the parameter e0a.



Nonlocal modal analysis

Majority of the current finite element software and other computational

tools do not explicitly consider the nonlocal part of the mass matrix. For

the design and analysis of future generation of nano electromechanical
systems it is vitally important to consider the nonlocal influence.

We are interested in understanding the impact of the difference in the
mass matrix on the dynamic characteristics of the system. In particular

the following questions of fundamental interest have been addressed:

Under what condition a nonlocal system possess classical local normal

modes?

How the vibration modes and frequencies of a nonlocal system can be

understood in the light of the results from classical local systems?

By addressing these questions, it would be possible to extend

conventional ‘local’ elasticity based finite element software to analyse

nonlocal systems arising in the modelling of complex nanoscale built-up
structures.



Conditions for classical normal modes

The equation of motion of a discretised nonlocal damped system with n

degrees of freedom can be expressed as

[M0 + Mµ] ü(t) + Cu̇(t) + Ku(t) = f(t) (22)

Here u(t) ∈ R
n is the displacement vector, f(t) ∈ R

n is the forcing vector,

K,C ∈ R
n×n are respectively the global stiffness and the viscous damping

matrix.

In general M0 and Mµ are positive definite symmetric matrices, C and K
are non-negative definite symmetric matrices. The equation of motion of

corresponding local system is given by

M0ü0(t) + Cu̇0(t) + Ku0(t) = f(t) (23)

where u0(t) ∈ R
n is the local displacement vector.

The natural frequencies (ωj ∈ R) and the mode shapes (xj ∈ R
n) of the

corresponding undamped local system can be obtained by solving the

matrix eigenvalue problem24 as

Kxj = ω2
j M0xj , ∀ j = 1, 2, . . . , n (24)



Dynamics of the local system

The undamped local eigenvectors satisfy an orthogonality relationship

over the local mass and stiffness matrices, that is

xT
k M0xj = δkj (25)

and xT
k Kxj = ω2

j δkj , ∀ k , j = 1, 2, . . . , n (26)

where δkj is the Kroneker delta function. We construct the local modal
matrix

X = [x1, x2, . . . , xn] ∈ R
n (27)

The local modal matrix can be used to diagonalize the local system (23)

provided the damping matrix C is simultaneously diagonalizable with M0

and K.

This condition, known as the proportional damping, originally introduced

by Lord Rayleigh28 in 1877, is still in wide use today.

The mathematical condition for proportional damping can be obtained

from the commutitative behaviour of the system matrices29. This can be

expressed as
CM−1

0 K = KM−1
0 C (28)

or equivalently C = M0f (M−1
0 K) as shown in30.



Conditions for classical normal modes

Considering undamped nonlocal system and premultiplying the equation

by M−1
0 we have

(
In + M−1

0 Mµ

)
ü(t) +

(
M−1

0 K
)

u(t) = M−1
0 f(t) (29)

This system can be diagonalized by a similarity transformation which also

diagonalise
(

M−1
0 K

)
provided the matrices

(
M−1

0 Mµ

)
and

(
M−1

0 K
)

commute. This implies that the condition for existence of classical local

normal modes is
(

M−1
0 K

)(
M−1

0 Mµ

)
=
(

M−1
0 Mµ

)(
M−1

0 K
)

(30)

or KM−1
0 Mµ = MµM−1

0 K (31)

If the above condition is satisfied, then a nonlocal undamped system can

be diagonalised by the classical local normal modes. However, it is also
possible to have nonlocal normal modes which can diagonalize the

nonlocal undamped system as discussed next.



Nonlocal normal modes

Nonlocal normal modes can be obtained by the undamped nonlocal
eigenvalue problem

Kuj = λ2
j [M0 + Mµ]uj , ∀ j = 1, 2, . . . , n (32)

Here λj and uj are the nonlocal natural frequencies and nonlocal normal

modes of the system. We can define a nonlocal modal matrix

U = [u1,u2, . . . ,un] ∈ R
n (33)

which will unconditionally diagonalize the nonlocal undamped system. It

should be remembered that in general nonlocal normal modes and

frequencies will be different from their local counterparts.



Nonlocal normal modes: Damped systems

Under certain restrictive condition it may be possible to diagonalise the

damped nonlocal system using classical normal modes.

Premultiplying the equation of motion (22) by M−1
0 , the required condition

is that
(

M−1
0 Mµ

)
,
(

M−1
0 C

)
and

(
M−1

0 K
)

must commute pairwise. This

implies that in addition to the two conditions given by Eqs. (28) and (31),

we also need a third condition

CM−1
0 Mµ = MµM−1

0 C (34)

If we consider the diagonalization of the nonlocal system by the nonlocal

modal matrix in (33), then the concept of proportional damping can be
applied similar to that of the local system. One can obtain the required

condition similar to Caughey’s condition29 as in Eq. (28) by replacing the
mass matrix with M0 + Mµ. If this condition is satisfied, then the equation

of motion can be diagonalised by the nonlocal normal modes and in

general not by the classical normal modes.



Approximate nonlocal normal modes

Majority of the existing finite element software calculate the classical

normal modes.

However, it was shown that only under certain restrictive condition, the

classical normal modes can be used to diagonalise the system.

In general one need to use nonlocal normal modes to diagonalise the
equation of motion (22), which is necessary for efficient dynamic analysis

and physical understanding of the system.

We aim to express nonlocal normal modes in terms of classical normal

modes.

Since the classical normal modes are well understood, this approach will
allow us to develop physical understanding of the nonlocal normal modes.



Projection in the space of undamped classical modes

For distinct undamped eigenvalues (ω2
l ), local eigenvectors

xl , ∀ l = 1, . . . , n, form a complete set of vectors. For this reason each

nonlocal normal mode uj can be expanded as a linear combination of xl :

uj =

n∑

l=1

α
(j)
l xl (35)

Without any loss of generality, we can assume that α
(j)
j = 1

(normalization) which leaves us to determine α
(j)
l , ∀l 6= j.

Substituting the expansion of uj into the eigenvalue equation (32), one
obtains

[
−λ2

j (M0 + Mµ) + K
] n∑

l=1

α
(j)
l xl = 0 (36)

For the case when α
(j)
l are approximate, the error involving the projection

in Eq. (35) can be expressed as

εj =

n∑

l=1

[
−λ2

j (M0 + Mµ) + K
]
α
(j)
l xl (37)



Nonlocal natural frequencies

We use a Galerkin approach to minimise this error by viewing the

expansion as a projection in the basis functions xl ∈ R
n, ∀l = 1, 2, . . . n.

Therefore, making the error orthogonal to the basis functions one has

εj ⊥ xl or xT
k εj = 0 ∀ k = 1, 2, . . . , n (38)

Using the orthogonality property of the undamped local modes

n∑

l=1

[
−λ2

j

(
δkl + M ′

µkl

)
+ ω2

kδkl

]
α
(j)
l = 0 (39)

where M ′
µkl

= xT
k Mµxl are the elements of the nonlocal part of the modal

mass matrix.

Assuming the off-diagonal terms of the nonlocal part of the modal mass

matrix are small and α
(j)
l ≪ 1, ∀l 6= j, approximate nonlocal natural

frequencies can be obtained as

λj ≈
ωj√

1 + M ′
µjj

(40)



Nonlocal mode shapes

When k 6= j, from Eq. (39) we have

[
−λ2

j

(
1 + M ′

µkk

)
+ ω2

k

]
α
(j)
k − λ2

j

n∑

l 6=k

(
M ′

µkl

)
α
(j)
l = 0 (41)

Recalling that α
(j)
j = 1, this equation can be expressed as

[
−λ2

j

(
1 + M ′

µkk

)
+ ω2

k

]
α
(j)
k = λ2

j


M ′

µkj
+

n∑

l 6=k 6=j

M ′
µkl
α
(j)
l


 (42)

Solving for α
(j)
k , the nonlocal normal modes can be expressed in terms of

the classical normal modes as

uj ≈ xj +

n∑

k 6=j

λ2
j(

λ2
k − λ2

j

)
M ′

µkj(
1 + M ′

µkk

)xk (43)



Nonlocal normal modes

Equations (40) and (43) completely defines the nonlocal natural frequencies

and mode shapes in terms of the local natural frequencies and mode shapes.

The following insights about the nonlocal normal modes can be deduced

Each nonlocal mode can be viewed as a sum of two principal

components. One of them is parallel to the corresponding local mode and
the other is orthogonal to it as all xk are orthogonal to xj for j 6= k .

Due to the term
(
λ2

k − λ2
j

)
in the denominator, for a given nonlocal mode,

only few adjacent local modes contributes to the orthogonal component.

For systems with well separated natural frequencies, the contribution of

the orthogonal component becomes smaller compared to the parallel
component.



Frequency response of nonlocal systems

Taking the Fourier transformation of the equation of motion (22) we have

D(iω)ū(iω) = f̄(iω) (44)

where the nonlocal dynamic stiffness matrix is given by

D(iω) = −ω2 [M0 + Mµ] + iωC + K (45)

In Eq. (44) ū(iω) and f̄(iω) are respectively the Fourier transformations of
the response and the forcing vectors.

Using the local modal matrix (27), the dynamic stiffness matrix can be
transformed to the modal coordinate as

D′(iω) = XT D(iω)X = −ω2
[
I + M′

µ

]
+ iωC

′ +Ω
2 (46)

where I is a n-dimensional identity matrix, Ω2 is a diagonal matrix

containing the squared local natural frequencies and (•)′ denotes that the
quantity is in the modal coordinates.



Frequency response of nonlocal systems

We separate the diagonal and off-diagonal terms as

D′(iω) = −ω2
[
I + M

′

µ

]
+ iωC

′
+Ω

2

︸ ︷︷ ︸
diagonal

+
(
−ω2∆M′

µ + iω∆C
′
)

︸ ︷︷ ︸
off-diagonal

(47)

= D
′
(iω) + ∆D′(iω) (48)

The dynamic response of the system can be obtained as

ū(iω) = H(iω)f̄(iω) =
[
XD

′−1

(iω)XT
]

f̄(iω) (49)

where the matrix H(iω) is known as the transfer function matrix.

From the expression of the modal dynamic stiffness matrix we have

D
′−1

(iω) =

[
D

′
(iω)

(
I + D

′−1

(iω)∆D′(iω)

)]−1

(50)

≈ D
′−1

(iω)− D
′−1

(iω)∆D′(iω)D
′−1

(iω) (51)



Frequency response of nonlocal systems

Substituting the approximate expression of D
′−1

(iω) from Eq. (51) into the

expression of the transfer function matrix in Eq. (49) we have

H(iω) =
[
XD

′−1

(iω)XT
]
≈ H

′
(iω)−∆H′(iω) (52)

where

H
′
(iω) = XD

′
(iω)XT =

n∑

k=1

xk xT
k

−ω2
(
1 + M ′

µkk

)
+ 2iωωkζk + ω2

k

(53)

and ∆H′(iω) = XD
′−1

(iω)∆D′(iω)D
′−1

(iω)XT (54)

Equation (52) therefore completely defines the transfer function of the

damped nonlocal system in terms of the classical normal modes. This
can be useful in practice as all the quantities arise in this expression can

be obtained from a conventional finite element software. One only needs
the nonlocal part of the mass matrix as derived in 2.



Nonlocal transfer function

Some notable features of the expression of the transfer function matrix are

For lightly damped systems, the transfer function will have peaks around
the nonlocal natural frequencies derived previously.

The error in the transfer function depends on two components. They
include the off-diagonal part of the of the modal nonlocal mass matrix

∆M′
µ and the off-diagonal part of the of the modal damping matrix ∆C

′
.

While the error in in the damping term is present for non proportionally
damped local systems, the error due to the nonlocal modal mass matrix

in unique to the nonlocal system.

For a proportionally damped system ∆C
′ = O. For this case error in the

transfer function only depends on ∆M′
µ.

In general, error in the transfer function is expected to be higher for

higher frequencies as both ∆C
′
and ∆M′

µ are weighted by frequency ω.

The expressions of the nonlocal natural frequencies (40), nonlocal normal
modes (43) and the nonlocal transfer function matrix (52) allow us to

understand the dynamic characteristic of a nonlocal system in a qualitative

and quantitative manner in the light of equivalent local systems.



Axial vibration of a single-walled carbon nanotube

Figure : Axial vibration of a zigzag (7, 0) single-walled carbon nanotube (SWCNT)

with clamped-free boundary condition.



Axial vibration of a single-walled carbon nanotube

A single-walled carbon nanotube (SWCNT) is considered.

A zigzag (7, 0) SWCNT with Young’s modulus E = 6.85 TPa, L = 25nm,

density ρ = 9.517 × 103 kg/m3 and thickness t = 0.08nm is used

For a carbon nanotube with chirality (ni ,mi), the diameter can be given by

di =
r

π

√
n2

i + m2
i + nimi (55)

where r = 0.246nm. The diameter of the SWCNT shown in 7 is 0.55nm.

A constant modal damping factor of 1% for all the modes is assumed.

We consider clamped-free boundary condition for the SWCNT.

Undamped nonlocal natural frequencies can be obtained as

λj =

√
EA

m

σj√
1 + σ2

j (e0a)2
, where σj =

(2j − 1)π

2L
, j = 1, 2, · · · (56)

EA is the axial rigidity and m is the mass per unit length of the SWCNT.

For the finite element analysis the SWCNT is divided into 200 elements.
The dimension of each of the system matrices become 200 × 200, that is

n = 200.



Nonlocal natural frequencies of SWCNT
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Nonlocal mode shapes of SWCNT
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Figure : Four selected mode shapes for the axial vibration of SWCNT. Exact finite

element results are compared with the approximate analysis based on local

eigensolutions. In each subplot four different values of e0a, namely 0.5, 1.0, 1.5 and

2.0nm have been used.



Nonlocal frequency response of SWCNT
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure : Amplitude of the normalised frequency response of the SWCNT at the tip for

different values of e0a. Exact finite element results are compared with the approximate

analysis based on local eigensolutions.



Transverse vibration of a single-layer graphene sheet



Transverse vibration of a single-layer graphene sheet

A rectangular single-layer graphene sheet (SLGS) is considered to

examine the transverse vibration characteristics of nanoplates.

The graphene sheet is of dimension L=20nm, W=15nm and Young’s

modulus E = 1.0 TPa, density ρ = 2.25 × 103 kg/m3, Poisson’s ratio
ν = 0.3 and thickness h = 0.34nm is considered

We consider simply supported boundary condition along the four edges

for the SLGS. Undamped nonlocal natural frequencies are

λij =

√
D

m

β2
ij√

1 + β2
ij (e0a)2

where βij =

√
(iπ/L)

2
+ (jπ/W )

2
, i, j = 1, 2, · ·

(57)
D is the bending rigidity and m is the mass per unit area of the SLGS.

For the finite element analysis the DWCNT is divided into 20 × 15
elements. The dimension of each of the system matrices become

868 × 868, that is n = 868.



Nonlocal natural frequencies of SLGS
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Nonlocal mode shapes of SLGS
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Figure : Four selected mode shapes for the transverse vibration of SLGS for

e0a = 2nm. Exact finite element results (solid line)are compared with the approximate

analysis based on local eigensolutions (dashed line).



Nonlocal frequency response of SLGS
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(a) e0a = 0.5nm
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure : Amplitude of the normalised frequency response Hij(ω) for i = 475, j = 342

of the SLGS for different values of e0a. Exact finite element results are compared with

the approximate analysis based on local eigensolutions.



Conclusions

Nonlocal elasticity is a promising theory for the modelling of nanoscale
dynamical systems such as carbon nantotubes and graphene sheets.

The mass matrix can be decomposed into two parts, namely the classical
local mass matrix M0 and a nonlocal part denoted by Mµ. The nonlocal

part of the mass matrix is scale-dependent and vanishes for systems with

large length-scale.

An undamped nonlocal system will have classical normal modes

provided the nonlocal part of the mass matrix satisfy the condition
KM−1

0 Mµ = MµM−1
0 K where K is the stiffness matrix.

A viscously damped nonlocal system with damping matrix C will have

classical normal modes provided CM−1
0 K = KM−1

0 C and

CM−1
0 Mµ = MµM−1

0 C in addition to the previous condition.



Conclusions

Natural frequency of a general nonlocal system can be expressed as

λj ≈ ωj
√

1+M′

µjj

, ∀j = 1, 2, · · · where ωj are the corresponding local

frequencies and M ′
µjj

are the elements of nonlocal part of the mass matrix

in the modal coordinate.

Every nonlocal normal mode can be expressed as a sum of two principal

components as uj ≈ xj + (
∑n

k 6=j

λ2
j

(λ2
k
−λ2

j )

M′

µkj
(

1+M′

µkk

)xk ), ∀j = 1, 2, · · · . One of

them is parallel to the corresponding local mode xj and the other is

orthogonal to it.
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	Introduction
	Finite element modelling of nonlocal dynamic systems
	Axial vibration of nanorods
	Bending vibration of nanobeams
	Transverse vibration of nanoplates

	Modal analysis of nonlocal dynamical systems
	Conditions for classical normal modes
	Nonlocal normal modes
	Approximate nonlocal normal modes

	Dynamics of damped nonlocal systems
	Numerical illustrations
	Axial vibration of a single-walled carbon nanotube
	Transverse vibration of a single-layer graphene sheet

	Conclusions

