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Introduction

Objectives

How does system stochasticity impact the dynamic response?

Does it matter?

What is the underlying physics?

How can we efficiently quantify uncertainty in the dynamic

response for large dynamic systems?

What about using ‘black box’ type response surface methods?

Can we use modal analysis for stochastic systems?
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Stochastic SDOF systems - do we know everything?

Stochastic SDOF systems

Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (1)

Here ωn =
√

k/m is the natural frequency and ζ = c/2
√

km is the

damping ratio.

We are interested in understanding the motion when the natural

frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of

measured values or a lack of knowledge regarding the natural

frequency.
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Stochastic SDOF systems - do we know everything?

Frequency variability
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(b) Pdf: σa = 0.2

Figure : We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where

ωn0
is deterministic frequency and r is a random variable with a

given probability distribution function.
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Stochastic SDOF systems - do we know everything?

Frequency samples
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(a) Frequencies: σa = 0.1
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(b) Frequencies: σa = 0.2

Figure : 1000 sample realisations of the frequencies for the three

distributions
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Stochastic SDOF systems - do we know everything?

Response in the time domain
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(b) Response: σa = 0.2

Figure : Response due to initial velocity v0 with 5% damping
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Stochastic SDOF systems - do we know everything?

Frequency response function
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Figure : Normalised frequency response function |u/ust |2, where ust = f/k
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Stochastic SDOF systems - do we know everything?

Key observations

The mean response response is more damped compared to

deterministic response.

The higher the randomness, the higher the ”effective damping’.

The qualitative features are almost independent of the distribution

random frequencies.

We often use averaging to obtain more reliable experimental

results - is it always true?
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Stochastic SDOF systems - do we know everything?

Equivalent damping

The mean response is more damped compared to deterministic

response

The higher the randomness, the higher the ‘effective damping’

The qualitative features are almost independent of the distribution

random frequencies

Assuming uniform random variable, we aim to explain some of these

observations.
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Stochastic SDOF systems - do we know everything?

Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1+ ǫx),

where x has zero mean and unit standard deviation.

The amplitude of the normalised dynamic response at ω = ωn0
in

the frequency domain can be obtained as

Û =

( |u|
f/k

)2

=
1

ǫ2x2 + 4ξ2(1 + ǫx)
(2)

Since x is zero mean unit standard deviation uniform random

variable, its pdf is given by px(x) = 1/2
√

3,−
√

3 ≤ x ≤
√

3

The mean is therefore

E
[
Û
]
=

∫
1

ǫ2x2 + 4ξ2(1 + ǫx)
px(x)dx =

tan−1(
√

3ǫ/2ξ)

2
√

3ǫξ
(3)
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Stochastic SDOF systems - do we know everything?

Equivalent damping

For small damping, the maximum amplitude at ω = ωn0
is 1/4ξ2

e

where ξe is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given

by

(2ξe)
2 =

2
√

3ǫξ

tan−1(
√

3ǫ/2ξ)
(4)

For small damping, taking the limit we can obtain

ξe ≈ 31/4
√
ǫ√

π

√
ξ (5)

The equivalent damping factor of the mean system is proportional

to the square root of the damping factor of the underlying baseline

system
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Stochastic SDOF systems - do we know everything?

Equivalent frequency response function
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(b) Response: σa = 0.2

Figure : Normalised frequency response function with equivalent damping

S. Adhikari (Swansea) Stochastic Structural Dynamics February 19, 2013 16 / 42



Stochastic MDOF systems - what choices do we have?

Equation for motion

The equation for motion for stochastic linear MDOF dynamic

systems:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (6)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi)Ki ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing

vector

The mass and stiffness matrices have been expressed in terms of

their deterministic components (M0 and K0) and the

corresponding random contributions (Mi and Ki). These can be

obtained from discretising stochastic fields with a finite number of

random variables (µi(θi) and νi(θi)) and their corresponding

spatial basis functions.

Proportional damping model is considered for which

C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.

S. Adhikari (Swansea) Stochastic Structural Dynamics February 19, 2013 17 / 42



Stochastic MDOF systems - what choices do we have?

Stochastic modal analysis

Idea: Extend conventional modal analysis to diagonalise the system

and use the SDOF results presented earlier

Difficulty: Need to solve a random eigenvalue problem

K(θ)φj(θ) = ω2
j (θ)M(θ)φj(θ), j = 1,2, · · · (7)

Computationally very challenging, probably more challenging than

the solution problem itself! A research field in its own right.

Normalising the modes is an open problem

We also have the conceptual problem of ‘statistical overlap’ of the

modes.
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Stochastic MDOF systems - what choices do we have?

Stochastic modal analysis

Stochastic modal analysis to obtain the dynamic response in

general is not a good idea

Consider the following 3DOF example:

m1

m2

m3
k4 k5k1 k3

k2

k6

Figure : A 3DOF system with parametric uncertainty in mi and ki
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Stochastic MDOF systems - what choices do we have?

Statistical overlap
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Figure : Scatter of the eigenvalues due to parametric uncertainties
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Spectral function approach

Time domain representation

If the time steps are fixed to ∆t , then the equation of motion can be

written as

M(θ)üt+∆t(θ) + C(θ)u̇t+∆t(θ) + K(θ)ut+∆t(θ) = pt+∆t . (8)

Following the Newmark method based on constant average

acceleration scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)]ut+∆t(θ) = p
eqv
t+∆t(θ) (9)

and, p
eqv
t+∆t(θ) = pt+∆t + f (ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (10)

where p
eqv
t+∆t(θ) is the equivalent force at time t +∆t which consists of

contributions of the system response at the previous time step.
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Spectral function approach

Newmark’s method

The expressions for the velocities u̇t+∆t(θ) and accelerations üt+∆t(θ)
at each time step is a linear combination of the values of the system

response at previous time steps (Newmark method) as

üt+∆t(θ) = a0 [ut+∆t(θ)− ut(θ)]− a2u̇t(θ)− a3üt(θ) (11)

and, u̇t+∆t(θ) = u̇t(θ) + a6üt(θ) + a7üt+∆t(θ) (12)

where the integration constants ai , i = 1,2, . . . ,7 are independent of

system properties and depends only on the chosen time step and

some constants:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1; (13)

a4 =
δ

α
− 1; a5 =

∆t

2

(
δ

α
− 2

)
; a6 = ∆t(1 − δ); a7 = δ∆t

(14)
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Spectral function approach

Newmark’s method

Following this development, the linear structural system in (9) can be

expressed as

[
A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t(θ) = p
eqv
t+∆t(θ). (15)

where A0 and Ai represent the deterministic and stochastic parts of

the system matrices respectively. For the case of proportional

damping, the matrices A0 and Ai can be written similar to the case of

frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (16)

and, Ai = [a0 + a1ζ1]Mi for i = 1,2, . . . ,p1 (17)

= [a1ζ2 + 1]Ki for i = p1 + 1,p1 + 2, . . . ,p1 + p2 .
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Spectral function approach

General mathematical representation

Whether time-domain or frequency domain methods were used, in

general the main equation which need to be solved can be

expressed as

(
A0 +

M∑

i=1

Γi(ξ(θ))Ai

)
u(θ) = f(θ) (18)

where A0 and Ai represent the deterministic and stochastic parts

of the system matrices respectively. These can be real or complex

matrices.

The functions Γi(ξ(θ)) can be used to introduce non-Gaussian

random variables. In the special case Γi(ξ(θ)) = ξi(θ)

Generic response surface based methods have been used in

literature
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Spectral function approach

Polynomial Chaos expansion

After the finite truncation, the polynomial chaos expansion can be

written as

û(t , θ) =

P∑

k=1

Hk (ξ(θ))uk (t) (19)

where Hk(ξ(θ)) are the polynomial chaoses. We need to solve a

nP × nP linear equation to obtain all uk ∈ R
n.




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1








u0

u1
...

uP−1





=





f0

f1
...

fP−1





(20)

The number of terms P increases exponentially with M:

M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150

3rd order PC 9 19 55 285 1770 23425 176850
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Spectral function approach

Some Observations

The basis is a function of the pdf of the random variables only. For

example, Hermite polynomials for Gaussian pdf, Legender’s

polynomials for uniform pdf.

The physics of the underlying problem (static, dynamic, heat

conduction, transients....) cannot be incorporated in the basis.

The physical interpretation of the coefficient vectors uk is not

immediately obvious.

The functional form of the response is a pure polynomial in

random variables.

S. Adhikari (Swansea) Stochastic Structural Dynamics February 19, 2013 26 / 42



Spectral function approach

Projection in the modal space

Suppose the solution of the general equation (18) is given by

ût+∆t(θ) =

[
A0 +

M∑

i=1

Γi(ξ(θ))Ai

]−1

f
eqv
t+∆t(θ) (21)

Orthogonal decompostion of the deterministic system yields

λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ R

n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R
n×n (22)

where the eigenpairs are ordered in the ascending order:

λ01
< λ02

< . . . < λ0n
. Introducing the transformations

Ãi = Φ
T AiΦ; i = 0,1,2, . . . ,M and with the orthonormality of Φ

ût+∆t(θ) =

[
Φ

−T
Λ0Φ

−1 +

M∑

i=1

Γi(ξ(θ))Φ
−T ÃiΦ

−1

]−1

f
eqv
t+∆t(θ) (23)

where ξ(θ) = [ξ1(θ), ξ2(θ), . . . , ξM(θ)]T .
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Spectral function approach

Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi

matrices as

Ãi = Λi +∆i , i = 1,2, . . . ,M (24)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag

[
λi1, λi2 , . . . , λin

]
∈ R

n×n (25)

and ∆i = Ãi − Λi is an off-diagonal only matrix. We can write :

Ψ (ξ(θ)) =



Λ0 +

M∑

i=1

Γi(ξ(θ))Λi

︸ ︷︷ ︸
Λ(Γi (ξ(θ)))

+

M∑

i=1

Γi(ξ(θ))∆i

︸ ︷︷ ︸
∆(Γi (ξ(θ)))




−1

. (26)
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Spectral function approach

Projection in the modal space

The diagonal matrix Λ (ξ(θ)) is treated as the preconditioner in the

stochastic Krylov space, such that the solution can be projected onto a

very few basis functions.

Hence the left preconditioned stochastic Krylov space becomes

Km(Λ
−1

Ψ,Λ−1f
eqv
t+∆t) = span{ΦT

Λ
−1

Φf
eqv
t+∆t ,Φ

T (Λ−1
∆)Λ−1

Φf
eqv
t+∆t ,

Φ
T (Λ−1

∆)2
Λ
−1

Φf
eqv
t+∆t , . . . ,Φ

T (Λ−1
∆)m−1

Λ
−1

Φf
eqv
t+∆t}

(27)

The equivalent infinite Neumann matrix series representation of the

above equation is

Ψ (ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ
−1 (ξ(θ))∆ (ξ(θ))

]s
Λ
−1 (ξ(θ)) (28)
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Spectral function approach

Projection in the modal space

Taking an arbitrary r -th element of u(t , θ), Eqn. (23) can be rearranged

to have

ur
t+∆t(θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ξ(θ))
(
φT

j f
eqv
t+∆t

)

 (29)

Defining the spectral functions

Lk (t , ξ(θ)) =

n∑

j=1

Ψkj (ξ(θ))
(
φT

j f
eqv
t+∆t

)
(30)

and collecting all the elements in Eqn. (29) for r = 1,2, . . . ,n one has

ut+∆t(θ) =
n∑

k=1

Lk (t , ξ(θ))φk (31)
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Spectral function approach

Projection in the modal space

A few observations:

The matrix power series is different from the classical Neumann

series in that the elements of the former are not simple

polynomials in ξi(θ) but are in terms of the ratio of polynomials.

The convergence of the series depends on the spectral radius of

R (ξ(θ)) = Λ
−1 (ξ(θ))∆ (ξ(θ)) (32)

A generic term of the matrix R is

Rrs =
∆rs

Λrr
=

∑M
i=1 Γi(ξ)∆irs

Λ0r +
∑M

i=1 Γi(ξ)Λir

=

∑M
i=1 Γi(ξ)Ãirs

Λ0r
+
∑M

i=1 Γi(ξ)Ãirr

; r 6= s

(33)

which shows that the spectral radius of R is controlled by the

diagonal dominance of the Ãi matrices.
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Spectral function approach

Frequency domain representation

Using a similar approach, in the frequency domain, the response can

be simplified as

u(ω, θ) =

nr∑

k=1

φT
k f(ω)

−ω2 + 2iωζkω
2
0 + ω2

0k
+
∑M

i=1 ξi(θ)Λik (ω)
φk
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Numerical illustrations

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending

modulus for a specified value of the correlation length and for

different degrees of variability of the random field.
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(a) Euler-Bernoulli beam
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decomposition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus:

2 × 1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.
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Numerical illustrations

Problem details

The bending modulus of the cantilever beam is taken to be a

homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (34)

where x is the coordinate along the length of the beam, EI0 is the

estimate of the mean bending modulus, a(x , θ) is a zero mean

stationary random field.

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (35)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present

numerical study.
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Numerical illustrations

Problem details

The random field is assumed to be Gaussian. The results are

compared with the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such

that 90% variability is retained.

direct MCS have been performed with 10,000 random samples

and for three different values of standard deviation of the random

field, σa = 0.05,0.1,0.2.

Constant modal damping is taken with 1% damping factor for all

modes.

Time domain response of the free end of the beam is sought

under the action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the

present problem. Comparison have been made with 4th order

Polynomial chaos results.
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Numerical illustrations

Mean of the response

(d) Mean, σa = 0.05. (e) Mean, σa = 0.1. (f) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever

for three values of standard deviation σa of the underlying random

field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC

results increases.
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Numerical illustrations

Standard deviation of the response

(g) Standard deviation of

deflection, σa = 0.05.

(h) Standard deviation of

deflection, σa = 0.1.

(i) Standard deviation of

deflection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products

of the Hermite polynomials associated with the PC expansion, the

higher order moments are less accurately replicated and tend to

deviate more significantly.

S. Adhikari (Swansea) Stochastic Structural Dynamics February 19, 2013 37 / 42



Numerical illustrations

Frequency domain response: mean
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(j) Beam deflection for σa = 0.1.
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(k) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the

Euler-Bernoulli beam under unit amplitude harmonic point load at the

free end. The response is obtained with 10,000 sample MCS and for

σa = {0.10,0.20}.
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Numerical illustrations

Frequency domain response: standard deviation
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(l) Standard deviation of the re-

sponse for σa = 0.1.
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(m) Standard deviation of the re-

sponse for σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam

under unit amplitude harmonic point load at the free end. The

response is obtained with 10,000 sample MCS and for

σa = {0.10,0.20}.
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Numerical illustrations

Experimental investigations

Figure : A cantilever plate with randomly attached oscillators - Probabilistic

Engineering Mechanics, 24[4] (2009), pp. 473-492S. Adhikari (Swansea) Stochastic Structural Dynamics February 19, 2013 40 / 42



Numerical illustrations

Measured frequency response function
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Conclusions

Conclusions

The mean response of a damped stochastic system is more

damped than the underlying baseline system

For small damping, ξe ≈ 31/4
√
ǫ√

π

√
ξ

Random modal analysis may not be practical or physically intuitive

for stochastic multiple degrees of freedom systems

Conventional response surface based methods fails to capture the

physics of damped dynamic systems

Proposed spectral function approach uses the undamped modal

basis and can capture the statistical trend of the dynamic

response of stochastic damped MDOF systems
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