Research directions in computational mechanics across length-scales

Sondipon Adhikari

Universidade Federal de Uberlândia 15 February 2013

Twitter: @ProfAdhikari, http://engweb.swan.ac.uk/~adhikaris/

Overview

- Introduction Swansea University
- College of Engineering Aerospace program
- My research overview
- Nanotubes, Graphene, Fullerenes: static and dynamic analysis, buckling, composites
- Nanobio sensors: vibrating nanotube and graphene based mass sensor
- DNA mechanics
- Conclusions

College of Engineering

Overview

- Introduction Swansea University
- College of Engineering Aerospace program
- > My research interests
- Stochastic dynamic analysis
- Vibration energy harvesting
- Nanotubes, Graphene, Fullerenes, DNA: static and dynamic analysis, buckling, composites
- Conclusions

Where is Swansea?

Swansea University

29th UK university to be established
King George V laid the foundation stone of the University in July 1920
Now over 12,500 students - 1,800 international

College of Engineering

The College of Engineering

- Engineering established at the Universities Inception in 1920
- Formed into Multidisciplinary College in 2001
- Offering 11 undergraduate disciplines
- Wide portfolio of postgraduate options, including MSc, MRes, PhD and EngD
- Professionally accredited degrees
- Extensive Industry links, including TATA Steel, Rolls Royce, Airbus, European Space Agency, BAe systems, Siemens, IBM, Motorola, BT, Ericsson, Esso, BP Chemicals
- Friendly and supportive study environment within the College and the Campus

College of Engineering www.swansea.ac.uk/engineering

The College of Engineering

- ~ 100 academic staff
- ~ 45 support staff
- ~ 500 research staff and postgraduate students
 - (~150 International)
- ~ 1600 undergraduates
 - (~300 International)

Undergraduate Degrees

Aerospace Chemical and Biological Process Civil Electrical and Electronic Materials Mechanical Product Design

Environmental Medical Sports Science & Engineering Sports Materials

College of Engineering

Undergraduate Degrees

Accreditation

Accreditation to the appropriate professional bodies:

Institute of Materials, Minerals and Mining (IOM3) Royal Aeronautical Society (RAeS) Institution of Chemical Engineers (IChemE) Institution of Mechanical Engineers (IMechE) Institute of Civil Engineers (ICE) Institution of Electrical Engineers (IEEE)

A graduate can achieve "Chartered" (CEng) Status with additional work experience.

College of Engineering

Postgraduate Degrees

Masters Degree Schemes:

Master of Science (MSc) Master of Science by Research (MScR) Master of Philosophy (MPhil) Master of Research (MRes)

Doctorate Degree Schemes:

Doctor of Philosophy (PhD)

Engineering Doctorate (EngD)

College of Engineering

World Class Research

RAE Ranking Source: Research Assessment Exercise 2008, overall summary of results using weighted averages www.rae.ac.uk

Institution name	Staff FTE's	Overall GPA	Position in UK
University of Cambridge	210	3.321	1
University of Oxford	122.7	3.07	2
Imperial College London	293.1	3.036	3
University of Manchester	180.22	2.963	4
University of Nottingham	114.51	2.948	5
University of Surrey	110.25	2.93	6
University of Leeds	132.7	2.911	7
Swansea University	63.5	2.902	8
University of Bristol	88.1	2.88	9
University of Warwick	69.45	2.85	10

College of Engineering

League Tables

The Guardian

Institution Name	Position in UK
University of Cambridge	1
University of Oxford	2
Durham University	3
Nottingham Trent	4
University of Warwick	5
Cardiff University	6
University of Exeter	7
University of Bristol	8
Leicester University	9
Swansea University	10

The Times

Institution Name	Position in UK
University of Oxford	1
Imperial College London	2
University of Camrbidge	3
Warwick University	4
Brunel University	5
Bournemouth University	6
Leicester University	7
Durham University	8
University of Exeter	9
Hull University	10
Swansea University	11

College of Engineering

Science and Innovation Campus Site

College of Engineering

Campws Gwyddoniaeth ac Arloesedd Arfaethedig Newydd

College of Engineering

BEng/MEng Aerospace Engineering

College of Engineering

Aerospace Engineering Structure

Aerospace Summary

Accreditation: BEng/MEng/MSc/EngD with minor changes BEng/MEng:

- 60% increase in L1 students from 10/11 to 11/12
- 192 FTEs overall (4 L0, 89 L1, 65 L2, 26 L3, 8 LM)
- Second highest UCAS entry (just behind Welsh)
- Highest conversion rate in Engineering

Current Student numbers

Level 1

Semester 1 Modules	Semester 2 Modules	
EG-106 Engineering Skills and Experiments I Masters (Co-ordinator) 20 credits	EG-120 Strength of Materials J Bonet 10 credits CORE	
	EG-144 Dynamic Systems R Daniels 10 credits	
EG-166 Engineering Mechanics Y Feng 10 credits CORE	EG-160 Fluid Mechanics I M. Webster 10 credits CORE	
EG-180 Introduction to Materials Engineering G Fourlaris 10 credits	EG-161 Thermodynamics I J Sienz 10 credits CORE	
EG-189 Engineering Analysis 1 PD Ledger 10 credits CORE	EG-165 Engineering Design 1 MJ Clee 10 credits	
EG-194 Introduction to Aerospace Engineering TN Croft 10 credits CORE	EG-190 Engineering Analysis 2 P Rees 10 credits CORE Total 60 credits	
Total 60 credits	Total 60 credits	

College of Engineering

www.swansea.ac.uk/engineering

.

Level 2

	Semester 1 Modules			Semester 2 Modules		
	EGA220			EG-243		
		Aerospace Systems		Control Systems		
		TBD		JSD Mason		
		10 credits		10 credits		
		EG-264		EG-260		
	c	omputer Aided Engineer	ing	Dynamics I		
		C Wang		S Adhikari		
		10 credits		10 credits		
				CORE		
		EG-261		EG-263		
		Thermodynamics 2		Engineering Design 2		
		RS Ransing		MJ Clee / BJ Evans		
		10 credits		10 credits		
		CORE				
	EG-221			EG-268		
		Structural Mechanics 2 (a	a)	Experimental Studies		
	C Li		AW Lees (co-ordinator)			
	10 credits		10 credits			
	EG-293		EG-294			
	Aerodynamics		Airframe Structures			
	R van Loon		W Dettmer			
	10 credits		10 credits			
		CORE		CORE		
		EG-296				
	Flight Mechanics		Module 1			
		W Dettmer		10 credits		
		10 credits		CORE		
	CORE					
	Total 60 credits		Total 60 credits			
+	1					
	Module	Structural/Compu-	EGA206: A	erospace Structural Mechanics and Materials;		
	1	tational Stream	KM Perkir	ns/A Gil (required for EG-323 and EG-396)		
		Materials/Propulsion	EG-213: M	echanical Properties of Materials 1; K.M.		
		Stream	Perkins (re	equired for EG-381 and EGA-301)		
		Space Stream	EGA215: F	Rocket and Space Technology; MR Brown		
	(required for		or EGA-321 and EGA-301)			

Level 3

Semester 1 Modules			Semester 2 Modules		
	Module 1 10 credits		EG-386 Engineering Management M Evans//D Fulford/I James (External) 10 credits		
	EG-360 Dynamics 2 M Friswell 10 credits		EGA320 High Performance Materials and Selection TBD 10 credits		
	EG-399 Engineering Analysis 3 M Webster 10 credits	;	Module 2 10 credits		
EG-335 Gas Dynamics I Sazonov 10 credits			EG-397 Propulsion MT Whittaker 10 credits		
	Aer	EGA ospace Engin MJ Clee/ 10 cr	A302 neering Design 3 BJ Evans edits		
		EG- Individuz 30 cr CO	353 al Project edits PRE		
	Total 60 credits		Total 60 credits		
Module 1	Structural/Compu- tational Stream Materials/Propulsion Stream Space Stream	EG-323: Fi EGA206) EG-381: Fi 213) EGA321: \$: Finite Element Method; D Peric (requires 6) : Fracture and Fatigue; R Johnston (requires EG- 1: Satellite Systems: I Sazonov		
Module 2	Structural/Compu- tational Stream Materials/Propulsion Stream	EG-396: C EGA206) EGA301: C	Computational Aerodynamics; P Ledger (requires)) : Composites; CJArnold		
	space Stream	EGA301: (Composites; CJ Arnold		

College of Engineering

Level M

Semester 1	Semester 2	
Modules	Modules	
EGIM02	EGEM07	
Numerical Methods	Fluid Structure Interaction	
MC Edwards	W Dettmer	
10 credits	10 credits	
io ticato	ib titults	
EG-M47	EGIM06	
Entrepreneurship for Engineers	Computational Fluid Dynamics	
K Board	P. Nithiarasu	
10 credits	10 credits	
EG-M81	EG-M82	
Flight Dynamics and Control	Rotary Wing Aircraft	
S Adhikari	MI Friswell	
10 credits	10 credits	
EG-M85		
Strategic Project Planning		
D Oatley		
10 credits		
O) (See no 10 c	ption tes below) credits	
EG	-M63	
Research	Dissertation	
TN Croft (aeros	pace co-ordinator)	
10 0	creuts	
EG	-M62	
Group) Project	
J Sienz (aerosp	ace co-ordinator)	
30 0	credits	
Total 1:	20 credits	

College of Engineering

Level M Design project

Winner of Merlin Design and Aircraft Handling Competition:

- IT FLIES UK 2011
- IT FLIES US 2012
- Swansea is the first university to hold both titles at the same time

Site visits

Site visits to GE and Airbus, and also to Bloodhound Technical Centre

Flight training

Progression/Award Statistics

	BEng/MEng Aero 2010/2011		BEng/MEng Aero 2011/2012	
	%	Number	%	Number
1st	19.35	6	25.9	7
2:1	41.9	13	37	10
2:2	38.7	12	33.3	9
3rd	0	0	3.7	1
Pass	0	0	0	0
other	0	0	0	0

% Good Honours 10/11 = (6+13)/(6+13+12) x 100 = 19/31 x 100 = 61.3

% Good Honours 11/12 = (7+10)/(7+10+9+1) x 100 = 17/27 x 100 = 62.96

College of Engineering

Executive Summary

5% improvement to 87% of students satisfied or very satisfied with the overall quality of their course.

- Swansea University climbed 38 positions in UK rankings for student satisfaction to 42^{nd.}
- Swansea has climbed 12 places in the Sunday Times League Table to 45th position.
- 11 subject areas now in upper quartile, with 3 ranked in 1st position.

89% of final year and 91% of taught postgraduate students would recommend Swansea to a friend or relative

Civil & Computational Research Centre

- Computational Mechanics
- Optimisation
- Computational Fluid dynamics
- Computational electromagnetics
- Rotordynamics
- Morphing wing aircraft
- Energy harvesting
- Computational Biomechanics
- Uncertainty quantification

College of Engineering

My Research Areas

Uncertainty quantification in modelling and simulation

- Dynamic analysis of complex structures
- Vibration energy harvesting
- Atomistic finite element method
- Dynamics of nanoscale structures
- Nanoscale bio sensors

College of Engineering

Uncertainty quantification

Uncertainty in Structural Dynamics

Stochastic dynamical systems across the length-scale

Equation of Motion of Dynamical Systems

The Equation of motion of all these systems (and many other) about an equilibrium point can be expressed by:

 $\mathbf{M}(\theta)\ddot{\mathbf{u}}(\theta,t) + \mathbf{C}(\theta)\dot{\mathbf{u}}(\theta,t) + \mathbf{K}(\theta)\mathbf{u}(\theta,t) = \mathbf{f}(t)$

M(θ) ∈ ℝ^{n×n} is the random mass matrix, K(θ) ∈ ℝ^{n×n} is the random stiffness matrix, C(θ) ∈ ℝ^{n×n} is the random damping matrix and f(t) is the forcing vector. We use (θ) to denote that the quantity is random.

The uncertainty propagation problem:

Given the stochastic description of the three systems matrices and the input forcing function, obtain the stochastic description of the response

College of Engineering

www.swansea.ac.uk/engineering

College of Engineering

Dynamic Response

• For parametric uncertainty propagation:

$$\mathbf{u}(\omega,\theta) = \sum_{k=1}^{n_r} \frac{\phi_k^T \mathbf{f}(\omega)}{-\omega^2 + 2i\omega\zeta_k \omega_0^2 + \omega_{0_k}^2 + \sum_{i=1}^M \frac{\xi_i(\theta)}{\xi_i(\theta)} \Lambda_{i_k}(\omega)} \phi_k$$

• For nonparametric uncertainty propagation

$$\mathbf{u}(\omega,\theta) = \sum_{k=1}^{n_r} \frac{\mathbf{x}_{r_k}(\theta)^T \mathbf{f}(s)}{-\omega^2 + 2i\omega\zeta_k \omega_{r_k}(\theta) + \omega_{r_k}^2(\theta)} \mathbf{x}_{r_k}(\theta)$$

$$\mathbf{X}_r(\theta) = \mathbf{\Phi} \mathbf{\Psi}_r, \quad \mathbf{\Psi}_r^T \mathbf{W} \mathbf{\Psi}_r = \mathbf{\Omega}_r^2$$

Unified mathematical representation

 Can be useful for hybrid experimental-simulation approach for uncertainty quantification
 College of Engineering
 www.swansea.ac.uk/engineering

Plate with Stochastic Properties

- An Euler-Bernoulli cantilever beam with stochastic bending modulus (nominal properties 1m x 0.6m, t=03mm, E=2 x 10¹¹ Pa)
 We use n=1881, M=16
- We study the deflection of the beam under the action of a point load on the free end.
- The bending modulus is taken to be a homogeneous stationary Gaussian random field with exponential autocorrelation function (correlation lengths L/5)
- Constant modal damping is taken with 1% damping factor for all modes.

College of Engineering

Mean with $\sigma_a = 0.1$

Standard deviation with $\sigma_a = 0.1$

Proposed approach: 150 x 150 equations 4th order Polynomial Chaos: 9113445 x 9113445 equations

College of Engineering

Plate with randomly placed oscillators

10 oscillators with random stiffness values are attached at random locations in the plate by magnet

College of Engineering

Standard deviation of a cross-FRF

Standard deviation of the driving-point-FRF

Vibration modes

Mean of a cross-FRF

Standard deviation of a cross-FRF

Energy harvesting under uncertainty

- Wireless sensor network for structural health monitoring
- Self-powered sustainable sensors vibration energy harvesting

Energy harvesting under uncertainty

3

2

α

 $\begin{array}{c} 0 \\ 0 \end{array}$

0.1

ζ

0.2

0

 $m\ddot{\mathbf{x}}(t) + c\dot{\mathbf{x}}(t) + k\mathbf{x}(t) - \theta\mathbf{v}(t) = -m\ddot{\mathbf{x}}_{b}(t)$ $\theta \dot{x}(t) + C_p \dot{v}(t) + \frac{1}{R_l} v(t) = 0$

The average harvested power due to white-noise base acceleration with a circuit without an inductor can be obtained as

$$\mathbf{E}\left[\widetilde{\boldsymbol{P}}\right] = \mathbf{E}\left[\frac{|\boldsymbol{V}|^2}{(\boldsymbol{R}_l\omega^4 \Phi_{\boldsymbol{X}_b\boldsymbol{X}_b})}\right]$$
$$= \frac{\pi \, \boldsymbol{m}\,\alpha\,\kappa^2}{(2\,\zeta\,\alpha^2 + \alpha)\,\kappa^2 + 4\,\zeta^2\alpha + (2\,\alpha^2 + 2)\,\zeta}$$

The optimal condition is

 $= R_l^2 C_p \left(k C_p + \theta^2 \right) = m.$

Vibration energy harvesting

College of Engineering

Vibration energy harvesting

- 1. Borowiec, B., Litak, G., Friswell, M. I., Ali, S. F., Adhikari, S. and Lees, A. W. and Bilgen, O., "Energy harvesting in piezoelastic systems driven by random excitations", International Journal of Structural Stability and Dynamics.
- 2. Ali, S. F. and Adhikari, S., "Energy harvesting dynamic vibration absorbers", Transactions of ASME, Journal of Applied Mechanics.
- 3. Friswell, M. I., Ali, S. F., Adhikari, S., Lees, A.W., Bilgen, O. and Litak, G., "Nonlinear piezoelectric vibration energy harvesting from an inverted cantilever beam with tip mass", Journal of Intelligent Material Systems and Structures, 23[3] (2012), pp. 1505-1521.
- 4. Litak, G., Friswell, M. I., Kitio Kwuimy, C. A., Adhikari, S. and Borowiec, B., "Energy harvesting by two magnetopiezoelastic oscillators with mistuning", Theoretical & Applied Mechanics Letters, 2[4] (2012), pp. 043009.
- 5. Ali, S. F., Friswell, M. I. and Adhikari, S., "Analysis of energy harvesters for highway bridges", Journal of Intelligent Material Systems and Structures, 22[16] (2011), pp. 1929-1938.
- 6. Jacquelin, E., Adhikari, S. and Friswell, M. I., "Piezoelectric device for impact energy harvesting", *Smart Materials and Structures*, 20[10] (2011), pp. 105008:1-12.
- 7. Ali, S. F., Adhikari, S., Friswell, M. I. and Narayanan, S., "The analysis of piezomagnetoelastic energy harvesters under broadband random excitations", *Journal of Applied Physics*, 109[7] (2011), pp. 074904:1-8.
- 8. Ali, S. F., Friswell, M. I. and Adhikari, S., "Piezoelectric energy harvesting with parametric uncertainty", *Smart Materials & Structures*, 19[10] (2010), pp. 105010:1-9.
- 9. Friswell, M. I. and Adhikari, S., "Sensor shape design for piezoelectric cantilever beams to harvest vibration energy", *Journal of Applied Physics*, 108[1] (2010), pp. 014901:1-6.
- 10. Litak, G., Friswell, M. I. and Adhikari, S., "Magnetopiezoelastic energy harvesting driven by random excitations", *Applied Physics Letters*, 96[5] (2010), pp. 214103:1-3.
- 11. Adhikari, S., Friswell, M. I. and Inman, D. J., "Piezoelectric energy harvesting from broadband random vibrations", *Smart Materials & Structures*, 18[11] (2009), pp. 115005:1-7.

College of Engineering

Energy harvesting from fluid flow

Swansea University Prifysgol Abertawe

TEST SECTION WITH INVERTED BEAM ENERGY HARVESTER

The objective:

- To harvest energy from flow induced vibration (inverted piezo beam with tip mass)
- Useful for structural health monitoring in pipelines in nuclear power plants
- Power future generation of medical devices implanted within arteries and blood vessels.

College of Engineering

Wind Energy Energy Quantification

- Fluid-structure interaction under stochastic loading
- Wind-velocity modeling
- Ensemble behavior of wind turbines
 - 1. Adhikari, S. and Bhattacharya, S., "Dynamic analysis of wind turbine towers on flexible foundations", *Shock and Vibration*, 19[1] (2012), pp. 37-56.
 - 2. Adhikari, S. and Bhattacharya, S., "Vibrations of wind-turbines considering soil-structure interaction", *Wind and Structures, An International Journal*, 14[2] (2011), pp. 85-112.
- 3. Bhattacharya, S. and Adhikari, S., "Experimental validation of soil-structure interaction of offshore wind turbines", *Soil Dynamics and Earthquake Engineering*, 31[5-6] (2011), pp. 805-816.
- 4. Adhikari, S., *On the Application of ANOVA method for Wind Energy Predictions*, Report prepared for Garrad Hassan Ltd, March 2007.
- 5. Adhikari, S., *Uncertainty Quantification in the Prediction of Wind Velocities*, Report prepared for Garrad Hassan Ltd, April 2006.

College of Engineering

Stochastic multiscale method

- New generation of structural materials
- Nano-composites, bio-composites
- Self-sensing, multifunctional, self-healing and sustainable materials high strength to weight ratio
- Structural mechanics community needs to embrace new materials and develop next generation of analysis and design tools
 - Requires multiscale and multiphysics approach

College of Engineering

Nano-scale stochastic mechanics

- Uncertainty in modeling (geometry, boundary condition, system parameters)
- There are defects which may not be known a-priori
- Analysis using the principles of structural mechanics,

dynamics, stochastic finite element method

• Propagation of uncertainty across the length and time-scale College of Engineering www.swansea.ac.uk/engineering

Main research themes

1997	2000	2003	2006		
 Stochastic finite element Spectral methods High-frequency analysis 	 Structural dynamics Damping analysis Experimental methods System identification 	 Probabilistic reliability analysis Random eigenvalue problem Model updating Mode veering 	 Nonparametric UQ Random matrix theory Parametric sensitivity analysis Nonlocal finite element method Wind energy quantification 		
2008	2010-	Future			
 Atomistic finite element method Mechanics of CNT. 	 Nanoscale biosensors Vibration energy harve Computational Biomed 	• Computational st calibration and val	 Computational stochastic dynamics – model calibration and validation 		

- Stochastic multiscale method for bio and nano structures
- Vibration/wind energy harvesting under uncertainty

Central Underlying Themes

- (1) Stochastic mechanics
- (2) Structural dynamics
- (3) Atomistic finite element method

www.swansea.ac.uk/engineering

Mechanics of CINT,

Graphene, buckyball

· Dynamics of Viscoelastic systems

•Gaussian process (GP) emulators •High dimensional model

representation (HDMR)

Nanocomposites

methods

• Dynamics of wind turbines

Magneto elastodynamics

Stochastic projection

College of Engineering

Acknowledgments

College of Engineering

Atomistic finite element method

College of Engineering

Can we use continuum mechanics at the nanoslace? a)

- Can we have an "equivalent" continuum model with "correct" properties?
- How defects can be taken into account?

College of Engineering

Which Young's modulus?

College of Engineering

Which Young's modulus?

Atomistic finite element method

Atomic bonds are represented by beam elements
Beam properties are obtained by energy balance

$$U_{total} = U_r + U_{\theta} + U_{\tau}$$

$$U_{axial} = \frac{1}{2} K_{axial} (\Delta L)^2 = \frac{EA}{2L} (\Delta L)^2$$

$$U_r = \frac{1}{2} k_r (\Delta r)^2 \quad U_{\theta} = \frac{1}{2} k_{\theta} (\Delta \theta)^2 \quad U_{\tau} = \frac{1}{2} k_{\tau} (\Delta \phi)^2$$

$$U_{torsion} = \frac{1}{2} K_{torsion} (\Delta \beta)^2 = \frac{GJ}{2L} (\Delta \beta)$$

$$U_{bending} = \frac{1}{2} K_{bending} (2\alpha)^2 = \frac{EI}{2L} \frac{4 + \Phi}{1 + \Phi} (2\alpha)^2$$

Scarpa, F. and Adhikari, S., "A mechanical equivalence for the Poisson's ratio and thickness of C-C bonds in single wall carbon nanotubes", Journal of Physics D: Applied Physics, 41 (2008) 085306

College of Engineering

Atomistic finite element method

◆ All parameters of the beam can be obtained in closed-form:

Scarpa, F. and Adhikari, S., "A mechanical equivalence for the Poisson's ratio and thickness of C-C bonds in single wall carbon nanotubes", Journal of Physics D: Applied Physics, 41 (2008) 085306

College of Engineering

Atomistic FE – bending deformation of SWCNTs

Table 2. Bending modulus, thickness and Poisson's ratio for zigzag and armchair SWCNTs. Aspect ratio (tube length/tube diameter) is 20.

Radius		d	Ε	G	Y_f	
(nm)	ν	(nm)	(TPa)	(TPa)	(TPa)	ε_f
Zigzag						
0.378	0.0344	0.112	16.79	2.54	0.88	3.51×10^{-5}
0.777	0.0344	0.0853	16.77	7.61	1.078	1.84×10^{-5}
0.935	0.0344	0.0842	16.65	8.02	1.079	1.56×10^{-5}
1.1708	0.0344	0.0837	16.81	8.17	1.083	1.24×10^{-5}
Armcha	ir					
0.246	0.0344	0.0773	19.7	11.25	2.7	2.51×10^{-5}
0.585	0.0344	0.0911	14.22	5.85	1.26	1.935×10^{-5}
0.883	0.0344	0.0841	16.65	8.02	1.15	1.54×10^{-5}
1.312	0.0344	0.0836	16.89	8.25	1.075	1.12×10^{-5}

(F Scarpa and S Adhikari, 2008. J. Phys. D: App. Phys., 41, 085306)

College of Engineering

College of Engineering

 We are interested in the changes in the mechanical properties

Carbon nanotubes with defects

(a) Ratio between mean of axial Young's modulus and pristine stiffness and (b) between standard deviation of the Young's modulus against pristine Young's modulus for armchair (n,n). Pristine Young's modulus Y_0 : 2.9, 1.36, 0.91, 0.67 TPa for a thickness d = 0.084 nm. • = 2 % NRV; • = 1.5 % NRV; • = 1 % NRV; • = 0.5 % NRV

College of Engineering

Fullerene

www.swansea.ac.uk/engineering

Vibration spectra of fullerene family

Thin shell theory

Swansea University Prifysgol Abertawe

The natural frequencies of spherical fullerenes can be given by

$$\omega_{n1,2}^{2} = \frac{E}{R^{2}\rho} \Omega_{n1,2}^{2} \qquad \Omega_{n1,2}^{2} = \frac{1}{2(1-\mu^{2})} \{n(n+1) + 1 + 3\mu \pm \sqrt{[n(n+1)+1+3\mu]^{2} - 4(1-\mu^{2})[n(n+1)-2]} \}$$

Graphene

www.swansea.ac.uk/engineering

Atomistic FE – in-plane SLGS

		-			
Author	Y ₁ (TPa nm)	Y_2 (TPa nm)	v_{12}	v_{21}	d (Å)
Tu and Ou-Yang [45]	0	348	0.	34	0.74
Zhou et al [46]	0	377	0.	24	0.74
Yakobson et al [47]	0.363		0.19		0.66
Caillerie et al [25]	0.277		0.26		N/A
Brenner et al [15]	0.235		0.41		0.62
Huang et al [17]	0.243		0.397		0.57
Kudin et al [13]	0.345		0.149		0.84
Chang and Gao [50]	0	360	0.	16	3.4
Cho et al [48]	0	386	0.1	195	3.35
Sakhaee-Pour [34]	0.331	7-0.354	1.129	-1.441	3.4
Hemmasizadeh et al [24]	0	.124	0.	19	1.317
Blakslee et al [58]	0	342	0.	16	3.35
Lee et al [60]	0	335	N	/A	3.35
Reddy et al [23]	0.228	0.277	0.43	0.52	3.4
Present FE honeycomb (AMBER)	0.517	0.342	0.523	0.509	0.82-0.99
Present FE honeycomb (Morse)	0.546	0.408	0.551	0.577	0.86-0.87
Present EHM	0	297	0.2	211	0.84
stretching-hinging (AMBER) Present EHM	0	384	0.2	213	0.74
stretching-hinging (Morse) Present EHM	0	.144	0.6	517	0.84
stretching-hinging-shear (AMBER) Present EHM	0	.169	0.0	553	0.74
stretching-hinging-shear (Morse) Present EHM-all deformation mechanisms (AMBER)	0.	.064	0.8	330	0.84
Present EHM-all deformation mechanisms (Morse)	0.	.074	0.8	348	0.74

Table 5. Graphene data from literature and present work.

(F Scarpa, S Adhikari, A S Phani, 2009. Nanotechnology 20, 065709)

www.swansea.ac.uk/engineering

Atomistic FE vs Continuum – SLGS

Circular SLGS (R = 9: 5 nm) under central loading. Distribution of equivalent membrane stresses.

Deformation of rectangular SLGS (15.1 x 13.03 nm²) under central loading.

Scarpa, F., Adhikari, S., Gil, A. J. and Remillat, C., "The bending of single layer graphene sheets: Lattice versus continuum approach", Nanotechnology, 21[12] (2010), pp. 125702:1-9.

www.swansea.ac.uk/engineering

Axtomistic FE vs Continuum – SLGS

Comparison of the nondimensional force vs. nondimensional out-of-plane displacement for circular and rectangular lattice and continuum SLGS.

College of Engineering

Analytical approach for SLGS – honeycomb structure

Swansea University Prifysgol Abertawe

C-C bonds deform under stretching and hinging

 $K_h = \frac{8k_{\tau}}{d^2}$ Hinging constant related to thickness d

Applying averaging of stretching and hinging deformation over unit cell:

$$E_{1} = \frac{4\sqrt{3}k_{r}K_{h}}{3d(k_{r} + 3K_{h})} \qquad E_{2} = \frac{4\sqrt{3}k_{r}K_{h}}{3d(k_{r} + 3K_{h})}$$
$$v_{21} = v_{12} = \frac{1 - K_{h}/k_{r}}{1 + 3K_{h}/k_{r}} \qquad G_{12} = \frac{\sqrt{3}K_{h}k_{r}}{3d(k_{r} + K_{h})}$$

Isotropic for "infinite" graphene sheet Orthotropic for finite size graphene and considering edge effects

F Scarpa, S Adhikari, A S Phani, 2009. Nanotechnology 20, 065709

College of Engineering

Analytical approach for SLGS – honeycomb structure

Unit cell made by rods withstanding axial and bending deformation

$$Y_{\mathbf{a-f}} = \frac{4Lk_r}{\pi d_c^2}$$

 $Y_{g-n} = \frac{16k_{\theta}}{\pi L d_b^2}$

Equivalent Young's modulus for axial members

Equivalent Young's modulus for axial members

A **Rigidity** matrix is obtained using a lattice continuum modelling of space frames \rightarrow equivalence with plane stress formulation for a plane sheet:

F Scarpa, S Adhikari, A S Phani, 2009. Nanotechnology 20, 065709

(L Kollár and I Hegedús. Analysis and design of space frames by the Continuum Method. Developments in Civil Engineering, 10. Elsevier, Amsterdam, 1985)

College of Engineering

Atomistic FE – Bilayer Graphene

Equivalent to structural "sandwich" beams
C-C bonds in graphene layers represented with classical equivalent beam models
"Core" represented by Lennard-Jones potential interactions:

$$F_{ij} = -12\epsilon \left[\left(\frac{r_{min}}{y} \right)^{13} - \left(\frac{r_{min}}{y} \right)^7 \right] \qquad \begin{array}{c} r_{min} = 0.383 \text{ nm} \\ \epsilon = 2.39 \text{ meV} \end{array}$$

Dimensions [nm × nm]	E _f [TPa]	G _{LJ} [TPa]	Force model
7.99×0.92	0.371	0.0142	AMBER
7.99×1.35	0.379	0.0143	AMBER
7.99×2.63	0.371	0.0143	AMBER
7.99×0.92	0.531	0.0161	Morse
7.99 × 1.35	0.535	0.0161	Morse
7.99×2.63	0.520	0.0160	Morse

E_f **=0.5 TPa** (I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B 25 (2007) 2558)

Scarpa, F., Adhikari, S. and Chowdhury, R., "The transverse elasticity of bilayer graphene", Physics Letters A, 374[19-20] (2010), pp. 2053-2057.

College of Engineering

Mechanical vibration of SLGS

Lumped mass matrix:

 $\left[\mathbf{M}\right]_{\mathbf{e}} = diag \left[\begin{array}{ccc} \frac{m_c}{3} & \frac{m_c}{3} & \frac{m_c}{3} & 0 & 0 \end{array}\right]$

Minimisation of the Hamiltonian for the ith mode:

$$H_{i} = \frac{1}{2} \left\{ \mathbf{\Phi} \right\}_{i}^{T} \left[\mathbf{M} \right] \left\{ \mathbf{\Phi} \right\}_{i} \times \omega_{i}^{2} + \frac{1}{2} \left\{ \mathbf{\Phi} \right\}_{i}^{T} \left[\mathbf{K} \right] \left\{ \mathbf{\Phi} \right\}_{i} = \omega_{i}^{2}$$

Comparison against Molecular Mechanics model based on the eigenvalue analysis of the system Hessian matrix

Scarpa, F., Chowdhury, R., Kam, K., Adhikari, S. and Ruzzene, M., "Wave propagation in graphene nanoribbons", Nanoscale Research Letters, 6 (2011), pp. 430:1-10. Chowdhury, R., Adhikari, S., Scarpa, F. and Friswell, M. I., "Transverse vibration of single layer graphene sheets", Journal of Physics D: Applied Physics, 44[20] (2011), pp. 205401:1-11.

College of Engineering

www.swansea.ac.uk/engineering

Mechanical vibration of SLGS

Nanobio Sensors

www.swansea.ac.uk/engineering

Vibration based mass sensor: CNT Swansea University Prifysgol Abertawe y(x,t)y(x,t)Point mass **Distributed mass** Chowdhury, R., Adhikari, S. and Mitchell, J., "Vibrating carbon Adhikari, S. and Chowdhury, R., "The calibration of carbon nanotube based bio-sensors", Physica E: Low-dimensional Systems and Nanostructures, 42[2] (2009), pp. 104-109. nanotube based bio-nano sensors", Journal of Applied Physics, 107[12] (2010), pp. 124322:1-8 **College of Engineering** www.swansea.ac.uk/engineering

The equation of motion of free-vibration:
$$EI \frac{\partial^4 y(x,t)}{\partial x^4} + \rho A \frac{\partial^2 y(x,t)}{\partial t^2} = 0$$

The resonance frequencies:
$$f_j = \frac{\lambda_j^2}{2\pi} \sqrt{\frac{EI}{\rho A L^4}}$$
 $\cos \lambda \cosh \lambda + 1 = 0$

The Mode shapes:
$$Y_j(\xi) = (\cosh \lambda_j \xi - \cos \lambda_j \xi)$$

 $-\left(\frac{\sinh \lambda_j - \sin \lambda_j}{\cosh \lambda_j + \cos \lambda_j}\right) (\sinh \lambda_j \xi - \sin \lambda_j \xi)$

where

$$\xi = \frac{x}{L}$$

We use energy principles to obtain the frequency shift due to the added mass.

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k_{eq}}{m_{eq}}} = \frac{\beta}{2\pi} \frac{c_k}{\sqrt{1 + c_m \Delta M}}$$

where

 $\beta = \sqrt{\frac{EI}{\rho A L^4}}$

the stiffness calibration constant

$$c_k = \sqrt{\frac{I_3}{I_1}}$$

and the mass calibration constant

$$c_m = \frac{I_2}{I_1}$$

Identification of the added mass

$$f_n = \frac{f_{0_n}}{\sqrt{1 + c_m \Delta M}} \tag{22}$$

The frequency-shift can be expressed using Eq. (22) as

$$\Delta f = f_{0_n} - f_n = f_{0_n} - \frac{f_{0_n}}{\sqrt{1 + c_m \Delta M}}$$
(23)

From this we obtain

$$\frac{\Delta f}{f_{0_n}} = 1 - \frac{1}{\sqrt{1 + c_m \Delta M}} \tag{24}$$

Rearranging gives the expression

$$\Delta M = \frac{1}{c_m \left(1 - \frac{\Delta f}{f_{0_n}}\right)^2} - \frac{1}{c_m} \tag{25}$$

College of Engineering

Mass of a nano object can be detected from the frequency shift Δf

$$M = \frac{\rho AL}{c_m} \frac{(c_k^2 \beta^2)}{(c_k \beta - 2\pi \Delta f)^2} - \frac{\rho AL}{c_m}$$

$$I_1 = \int_0^1 Y_j^2(\xi) \mathrm{d}\xi = 1.0$$

$$I_2 = \frac{1}{\gamma} \int_{\xi=1-\gamma}^1 Y_j^2(\xi) \mathrm{d}\xi; \quad 0 \le \gamma \le 1$$

$$I_3 = \int_0^1 Y_j^{''^2}(\xi) \mathrm{d}\xi = 12.3624$$

$$c_k = \sqrt{\frac{I_3}{I_1}} = 3.5160$$
 and $c_m = \frac{I_2}{I_1}$

Adhikari, S. and Chowdhury, R., "The calibration of carbon nanotube babio-nano sensors", *Journal of Applied Physics*, **107**[12] (2010), pp. 124322:1-8

TABLE I. The stiffness (c_k) and mass (c_m) calibration constants for CNT based bio-nano sensor. The value of γ indicates the length of the mass as a fraction of the length of the CNT.

		Cantilevered CNT		Bridged CNT		
	Mass	c_k	c_m	c_k	c_m	
	size					
	Point	3.5160152	4.0	22.373285	2.522208547	
	mass					
	$(\gamma \rightarrow 0)$					
	$\gamma = 0.1$		3.474732666		2.486573805	
	$\gamma = 0.2$		3.000820053		2.383894805	
	$\gamma = 0.3$		2.579653837		2.226110255	
	$\gamma = 0.4$		2.212267400		2.030797235	
	$\gamma=0.5$		1.898480438		1.818142650	
_	$\gamma=0.6$		1.636330135		1.607531183	
e ba	$\gamma = 0.7$		1.421839146		1.414412512	
-	$\gamma = 0.8$		1.249156270		1.248100151	

College of Engineering

Mass of a nano object can be detected from the frequency shift Δf

Vibration based mass sensor: Graphene

Vibrating graphene sheets can be used as sensors with different mass arrangements

Swansea University Prifysgol Abertawe

Vibration based mass sensor: Graphene

Relative added mass:

$$\mu = \frac{1}{c_n \left(1 - \frac{\Delta f}{f_0}\right)^2} - \frac{1}{c_n}$$

Table 1: The calibration constants for SLGS based bio-nano sensor due to four possible configurations of attached mass.

Mass arrangement	Calibration constant c_n
Case (a): Masses are at	$2\pi/(3\pi-8)$
the cantilever tip in a	
ine	
Case (b): Masses are in	$2\pi(1-\cos(\pi\gamma/2))^2/(3\pi-8)$
a line along the width	
Case (c): Masses are in	$(3\pi\eta + [\sin((\gamma + \eta)\pi) - \sin(\gamma\pi)] - 8[\sin((\gamma + \eta)\pi) - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi) - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi) - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi) - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi)\pi)] - 8[\sin((\gamma + \eta)\pi)] - 8[\sin((\gamma + \eta)\pi$
a line along the length	$\eta(\pi/2) - \sin(\gamma\pi/2)])/\eta(3\pi - 8)$
Case (d): Masses are in	$(3\pi\eta\cos(\theta) + [\sin((\gamma + \eta\cos(\theta))\pi) -$
a line with an arbitrary	$\sin(\gamma \pi)] - 8[\sin((\gamma + \eta \cos(\theta))\pi/2) -$
angle θ	$\sin(\gamma\pi/2)])/\eta\cos(\theta)(3\pi-8)$

College of Engineering

Vibration based mass sensor: Graphene

Vibrating graphene sheets can be used as sensors with different mass arrangements

Boron Nitride Nanotube and Nanosheets

College of Engineering

Axial vibration of BNNT

(a) (a) Axial vibration and its associated frequency of (b) zigzag and (c) armchair BNNTs given by the MM simulations (discrete dots) and a column model with Young's modulus 1TPa (solid lines).

Chowdhury, R., Wang, C. W., Adhikari, S. and Scarpa, F., "Vibration and symmetry-breaking of boron nitride nanotubes", Nanotechnology, 21[36] (2010), pp. 365702:1-9.

College of Engineering

Torsional vibration of BNNT

Chowdhury, R., Wang, C. W., Adhikari, S. and Scarpa, F., "Vibration and symmetry-breaking of boron nitride nanotubes", Nanotechnology, 21[36] (2010), pp. 365702:1-9.

College of Engineering

Optimised shape of BNNT

(d)

Optimized configuration of armchair BNNTs: (a) (3, 3), (b) (4,4) and (c) (6,6) with the aspect ratio 15, and (d) short (6, 6) with the aspect ratio 2.

College of Engineering

Mechanical property of BN Sheets

 $\bar{Y} = \frac{8\sqrt{3}C_{\rho}}{18 + r_{BN}^2 \left(\frac{C_{\rho}}{C_{\rho}}\right)}$ $\bar{\nu} = \frac{r_{BN}^2 \left(\frac{C_{\rho}}{C_{\theta}}\right) - 6}{18 + r_{BN}^2 \left(\frac{C_{\rho}}{C_{\theta}}\right)}$ $\bar{G} = \frac{2\sqrt{3} C_{\rho}}{3 + 18 r_{BN}^2 \left(\frac{C_{\rho}}{C_{\rho}}\right)}$

Example of armchair (4, 0) BN sheet. Boron atoms are in red, nitrogen atoms are in green.

Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S. and Ruzzene, M., "Effective mechanical properties of hexagonal boron nitride nanosheets", Nanotechnology, 22[50] (2011), pp. 505702:1-7.

College of Engineering

DNA Mechanics

www.swansea.ac.uk/engineering

Atomistic FE of DNA

From protein data bank file to ANSYS input file – a new code for automatic translation

Material properties of the beams are obtained depending on the nature of the bonds

Mode 3 (MM:33.679; FE 38.768 GHz)

Mode 6 (MM:111.696; FE 112.71 GHz)

College of Engineering

References

- 1. Murmu, T. and Adhikari, S., "Nonlocal frequency analysis of nanoscale biosensors", *Sensors & Actuators: A. Physical*, 173[1] (2012), pp. 41-48.
- 2. Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S. and Ruzzene, M., "Effective mechanical properties of hexagonal boron nitride nanosheets", *Nanotechnology*, 22[50] (2011), pp. 505702:1-7.
- 3. Murmu, T., Seinz, J., Adhikari, S. and Arnold, C., "Nonlocal buckling behaviour of bonded double-nanoplatesystem", *Journal of Applied Physics*, 110[8] (2011), pp. 084316:1-8.
- 4. Flores, E. I. S., Adhikari, S., Friswell, M. I. and Scarpa, F., "Hyperelastic axial buckling of single wall carbon nanotubes", *Physica E: Low-dimensional Systems and Nanostructures*, 44[2] (2011), pp. 525-529.
- 5. Murmu, T. and Adhikari, S., "Nonlocal vibration of bonded double-nanoplate-systems", *Composites Part B: Engineering*, 42[7] (2011), pp. 1901-1911.
- 6. Chandra, Y., Chowdhury, R., Adhikari, S. and Scarpa, F., "Elastic instability of bilayer graphene using atomistic finite element", *Physica E: Low-dimensional Systems and Nanostructures*, 44[1] (2011), pp. 12-16.
- 7. Scarpa, F., Chowdhury, R., Kam, K., Adhikari, S. and Ruzzene, M., "Wave propagation in graphene nanoribbons", *Nanoscale Research Letters*, 6 (2011), pp. 430:1-10.
- 8. Chowdhury, R. and Adhikari, S., "Boron nitride nanotubes as zeptogram-scale bio-nano sensors: Theoretical investigations", *IEEE Transactions on Nanotechnology*, 10[4] (2011), pp. 659-667.
- 9. Chandra, Y., Chowdhury, R., Scarpa, F. and Adhikari, S., "Vibrational characteristics of bilayer graphene sheets", *Thin Solid Films*, 519[18] (2011), pp. 6026-6032.
- 10. Adhikari, S. and Chowdhury, R., "Vibration spectra of fullerene family", *Physics Letters A*, 375[22] (2011), pp. 1276-1280.

College of Engineering

References

- 11. Murmu, T., Adhikari, S. and Wang, C. W., "Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory", *Physica E: Low-dimensional Systems and Nanostructures*, 43[6] (2011), pp. 1276-1280.
- 12. Wang, C. W. and Adhikari, S., "ZnO-CNT composite nanowires as nanoresonators", *Physics Letters A*, 375[22] (2011), pp. 2171-2175.
- 13. Chowdhury, R., Adhikari, S., Scarpa, F. and Friswell, M. I., "Transverse vibration of single layer graphene sheets", *Journal of Physics D: Applied Physics*, 44[20] (2011), pp. 205401:1-11.
- 14. Scarpa, F., Chowdhury, R., and Adhikari, S., "Thickness and in-plane elasticity of Graphane", *Physics Letters A*, 375[20] (2011), pp. 2071-2074.
- 15. Wang, C. W., Murmu, T. and Adhikari, S., "Mechanisms of nonlocal effect on the vibration of nanoplates", *Applied Physics Letters*, 98[15] (2011), pp. 153101:1-3.
- 16. Murmu, T. and Adhikari, S., "Nonlocal vibration of carbon nanotubes with attached buckyballs at tip", *Mechanics Research Communications*, 38[1] (2011), pp. 62-67.
- 17. Chowdhury, R., Adhikari, S. and Scarpa, F., "Vibrational analysis of ZnO nanotubes: A molecular mechanics approach", *Applied Physics A*, 102[2] (2011), pp. 301-308.
- 18. Chowdhury, R., Adhikari, S., Rees, P., Scarpa, F., and Wilks, S.P., "Graphene based bio-sensor using transport properties", *Physical Review B*, 83[4] (2011), pp. 045401:1-8.
- 19. Murmu, T. and Adhikari, S., "Axial instability of double-nanobeam-systems", *Physics Letters A*, 375[3] (2011), pp. 601-608.
- 20. Flores, E. I. S., Adhikari, S., Friswell, M. I. and F. Scarpa, "Hyperelastic finite element model for single wall carbon nanotubes in tension", *Computational Materials Science*, 50[3] (2011), pp. 1083-1087.

College of Engineering
References

- 21. Murmu, T. and Adhikari, S., "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", *Journal of Applied Physics*, 108[12] (2010), pp. 123507:1-7.
- 22. Scarpa, F., Adhikari, S. and Phani, A. Srikanth, "Auxeticity in single layer graphene sheets", *International Journal of Novel Materials*, 1[2] (2010), pp. 39-43.
- 23. Murmu, T. and Adhikari, S., "Nonlocal effects in the longitudinal vibration of double-nanorod systems", *Physica E: Low-dimensional Systems and Nanostructures*, 43[1] (2010), pp. 415-422.
- 24. Murmu, T. and Adhikari, S., "Nonlocal transverse vibration of double-nanobeam-systems", *Journal Applied Physics*, 108[8] (2010), pp. 083514:1-9.
- 25. Scarpa, F., Peng, H. X., Boldri, L., Remillat, C. D. L., Adhikari, S., "Coupled thermo-mechanics of single-wall carbon nanotubes", *Applied Physics Letters*, 97[15] (2010), pp. 151903:1-3.
- 26. Chowdhury, R., Adhikari, S., Rees, P., "Optical properties of silicon doped ZnO", *Physica B: Condensed Matter*, 405[23] (2010), pp. 4763-4767.
- 27. Chowdhury, R., Wang, C. W., Adhikari, S. and Scarpa, F., "Vibration and symmetry-breaking of boron nitride nanotubes", *Nanotechnology*, 21[36] (2010), pp. 365702:1-9.
- 28. Wang, C. Y., Zhao, Y., Adhikari, S. and Feng, Y. T., "Vibration of axially strained triple-wall carbon nanotubes", *Journal of Computational and Theoretical Nanoscience*, 7[11] (2010), pp. 2176-2185.
- 29. Adhikari, S. and Chowdhury, R., "The calibration of carbon nanotube based bio-nano sensors", *Journal of Applied Physics*, 107[12] (2010), pp. 124322:1-8.
- 30. Chowdhury, R., Wang, C. Y., Adhikari, S., and Tong, F. M., "Sliding oscillations of multiwall carbon nanotubes", *Physica E: Low-dimensional Systems and Nanostructures*, 42[9] (2010), pp. 2295-2300.

College of Engineering

www.swansea.ac.uk/engineering

References

- 31. Chowdhury, R., Adhikari, S., Wang, C. W. and Scarpa, F., "A molecular mechanics approach for the vibration of single walled carbon nanotubes", *Computational Materials Science*, 48[4] (2010), pp. 730-735.
- 32. Wang, C. Y., Li, C. F., and Adhikari, S., "Axisymmetric vibration of singlewall carbon nanotubes in water", *Physics Letters A*, 374[24] (2010), pp. 2467-2474.
- 33. Chowdhury, R., Adhikari, S. and Scarpa, F., "Elasticity and piezoelectricity of zinc oxide nanostructure", *Physica E: Low-dimensional Systems and Nanostructures*, 42[8] (2010), pp. 2036-2040.
- 34. Gil, A. J., Adhikari, S., Scarpa, F., and Bonet, J., "The formation of wrinkles in single layer graphene sheets under nanoindentation", *Journal of Physics: Condensed Matter*, 22[14] (2010), pp. 145302:1-6.
- 35. Scarpa, F., Adhikari, S. and Chowdhury, R., "The transverse elasticity of bilayer graphene", *Physics Letters A*, 374[19-20] (2010), pp. 2053-2057.
- 36. Scarpa, F., Adhikari, S., Gil, A. J. and Remillat, C., "The bending of single layer graphene sheets: Lattice versus continuum approach", *Nanotechnology*, 21[12] (2010), pp. 125702:1-9.
- 37. Chowdhury, R., Rees, P., Adhikari, S., Scarpa, F., and Wilks, S.P., "Electronic structures of silicon doped ZnO", *Physica B: Condensed Matter*, 405[8] (2010), pp. 1980-1985.
- 38. Scarpa, F., Adhikari, S. and Wang, C. Y., "Nanocomposites with auxetic nanotubes", *International Journal of Smart and Nanomaterials*, 1[2] (2010), pp. 83-94.
- 39. Chowdhury, R., Wang, C. Y. and Adhikari, S., "Low-frequency vibration of multiwall carbon nanotubes with heterogeneous boundaries", *Journal of Physics D: Applied Physics*, 43[11] (2010), pp. 085405:1-8.
- 40. Chowdhury, R., Adhikari, S. and Mitchell, J., "Vibrating carbon nanotube based bio-sensors", *Physica E: Low-dimensional Systems and Nanostructures*, 42[2] (2009), pp. 104-109.

College of Engineering

www.swansea.ac.uk/engineering

References

- 41. Scarpa, F., Adhikari, S. and Wang, C. Y., "Mechanical properties of non reconstructed defective single wall carbon nanotubes", *Journal of Physics D: Applied Physics*, 42 (2009) 142002 (6pp).
- 42. Wang, C. Y., Li, C. F., and Adhikari, S., "Dynamic behaviors of microtubules in cytosol", *Journal of Biomechanics*, 42[9] (2009), pp. 1270-1274.
- 43. Tong, F. M., Wang, C. Y., and Adhikari, S., "Axial buckling of multiwall carbon nanotubes with heterogeneous boundary conditions", *Journal of Applied Physics*, 105 (2009), pp. 094325:1-7.
- 44. Scarpa, F., Adhikari, S. and Phani, A. Srikanth, "Effective mechanical properties of single graphene sheets", *Nanotechnology*, 20[1-2] (2009), pp. 065709:1-11.
- 45. Scarpa, F. and Adhikari, S., "Uncertainty modelling of carbon nanotube terahertz oscillators", *Journal of Non-Crystalline Solids*, 354[35-39] (2008), pp. 4151-4156.
- 46. Scarpa, F. and Adhikari, S., "A mechanical equivalence for the Poisson's ratio and thickness of C-C bonds in single wall carbon nanotubes", *Journal of Physics D: Applied Physics*, 41 (2008) 085306 (5pp).

Conclusions: nanomechanics

- Atomistic finite element method is developed for general nanosalce structures:
 - Carbon nanotube
 - Fullerenes
 - Graphene
 - Nanoscale bio sensors
- Programs have been written to convert pdb files to Finite Element geometry file and material properties
- Encouraging results compared to MM simulation were obtained
- Future: nonlinearity, large-scale problems such as proteins & nanocomposites, molecular dynamic simulations, experimental validation

College of Engineering

www.swansea.ac.uk/engineering