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University in July 1920
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international

* Finite Element Method
was developed in
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Education and Work C2EC
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Outline of the Talk C2EC

Background & Motivation
Uncertainty Quantification

* Uncertainty propagation in complex dynamical systems

— Parametric uncertainty propagation
— Nonparametric uncertainty propagation

— Unified representation

« Computational method and validation

— Representative experimental results

— Software integration

« Conclusions
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Actual Performance of Engineering Designs cZ:tc

On-target
Off-target ® ® Oigh variability

Low variability

Off-target On-target
High variability Low variability
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Overview of Computational Modeling

Input
| (eg, earthquake,

Real System

turbulence)

Measured output

uncertain

Input Uncertainty
uncertainty in time
history

Challenge 1:

Uncertainty Modeling

uncertainty in location

Simulated Input
(time or frequency
domain)

System Uncertainty
parametric uncertainty
model inadequacy
model uncertainty
calibration uncertainty

system identification

error

experimental |

(eg, velocity,
acceleration,
stress)

se Challenge 3: Model

calibration under
uncertainty

e
Physics based model
Lw=f

(eg, ODE/PDE/SDE/SPDE)

»
Computational £
Uncertainty =
machine precession, S
error tolerance =
‘h’ and ‘p’ refinements 4
4 ]
Computation
(eg, FEM/BEM/Finite
difference/SFEM/MCS)
............. '

model validatic

Challenge 2: Fast
Uncertainty

Total Uncertainty =
input + system +
computational
uncertainty

Propagation Methods

Model output
(eg, velocity,
acceleration,
stress)
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Why Uncertainty: The Sources

Experimental error Parametric Uncertainty

uncertain and unknown uncertainty in the geometric
error percolate into the parameters, boundary
model when they are conditions, forces, strength

calibrated against of the materials involved
experimental results

Computational uncertainty Model Uncertainty

machine precession, error arising from the lack of
tolerance and the so called scientific knowledge about
‘h’ and ‘p’ refinements in the model which is a-priori
finite element analysis unknown (damping,
nonlinearity, joints)

A low-fidelity answer with known uncertainty bounds is more valuable than a high-fidelity
answer with unknown uncertainty bounds (NASA White Paper, 2002).



Uncertainty Modeling C2EcC

* Random variables

Parametric - Random fields
Uncertainty —

« Probabilistic Approach
» Random matrix theory

Non-parametric
Uncertainty \ Possibilistic Approaches
» Fuzzy variable

» Interval algebra
» Convex modeling



Equation of Motion of Dynamical Systems  cZec

@ The Equation of motion of all these systems (and many other)
about an equilibrium point can be expressed by:

M(9)ii(8, t) + C(0)u(b, t) + K(8)u(8, t) = £(t)

@ M(6) € R"" is the random mass matrix, K(6) € R™" is the
random stiffness matrix, C(6) € R"*" is the random damping

matrix and f(t) is the forcing vector. We use () to denote that the
quantity is random.

The uncertainty propagation problem:
Given the stochastic description of the three systems matrices and the
input forcing function, obtain the stochastic description of the response



Uncertainty modeling in structural dynamics cZec

Uncertainty
modeling

Parametric uncertainty:
mean matrices + random
field/variable information

Random variables

M
A= (Ao - Zfi(a)A,-)
i=1

Nonparametric uncertainty:
mean matrices + a single
dispersion parameter for each

matrices

Random matrix model

A~ Wo(Ro,3)




Parametric uncertainty propagation
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Frequency domain analysis C2EC

@ Taking the Fourier transform of the equation of motion
[—w2M(9) +iwC(h) + K(a)] U(w,0) = f(w)

where u(w, ) is the complex frequency domain system response
amplitude,?(w) is the amplitude of the harmonic force.

@ M(6) = Mo + X7, 1i(6;)M; € R™" is the random mass matrix,
K(0) = Ko + 372, vi(6;)K; € R™" is the random stiffness matrix,
C(0) € R™" as the random damping matrix

@ Proportional damping model is considered:

C(0) = ¢(1M(0) + (2K(8), where (; and (> are scalars.

@ For convenience we group the random variables associated with

the mass and stiffness matrices as

§i(0) = pi(0) and & p(0)=vi(0) for i=1,2,...,p
and j=1,2,...,p0



Frequency domain analysis C2EC

@ Using M = p; + p> which we have

M
(Ao(w) - Z §,-(0)A,-(w)) U(w, ) = f(w)
i=1

where Ay and A; € C™" represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the
damping matrices ensembile.

@ For the case of proportional damping the matrices Ag and A; can
be written as

Ao(w) — ——wz + i(.dC1- Mo + [iUJCQ + 1] Ko,

Aw) = |—w?+iwg | M, for i=1,2,... p
and Ajip, (w) = [iw(e+1]K; for j=1,2,...,p5.



General mathematical representation C2EC

@ In general the main equation which need to be solved for
parametric uncertainty propagation, can be expressed as

M
(Ao +) €i(9i)Ai) u(9) = #(0)
i~

@ Here Ap and A, represent the deterministic and stochastic parts of
the system matrices respectively. These are symmetric matrices
and can be real or complex.

@ The mathematical form of this equation is valid for static or
dynamic problems, and also for time-domain or frequency domain
representation.



What should be the form of the response?

@ The frequency domain equation of the stochastic system
[—wPM(£(0)) + iwC(£(0)) + K(£(0))] u(w, ) = f(w).

@ Some possibilities for the expression u(w, ¢) of are

P
U(w,0) =)  Hi(£(0))ux(w)
k=
P21
or =Y Ti(w,&(0))ex
k=1
Ps
or =Y ak(w)Hk(&(0))dx
k=1

Py
or =) ax(w)Hk(€(0))Uk(£(0)) ... etc.
k=1

EC



Classical Modal Analysis? C2EC

For a deterministic system, the response vector u(w) can be
expressed as

A
—w? + 2ikwkw + w,z(
U = ¢, and P < n (numberof dominant modes)

where [g(w) =

where wy: natural frequencies, ¢,: mode shapes.

Can we extend this idea to stochastic systems?
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Projection in the Modal Basis C2EC

There exist a finite set of complex frequency dependent functions
M(w, &(0)) and a complete basis ¢, € R" fork =1,2,...,n such that
the solution of the discretized stochastic finite element equation can be

expressed by the series

((w,0) = ) T(w,&(0))dx
k=1

Here ' (w, &£(0)) are the spectral functions and ¢, € R" are the
eigenvectors arising from the generalized eigenvalue problem

Koy = Ao Moy k=1,2,...n

Adhikari, S., "A reduced spectral function approach for the stochastic finite element analysis", Computer Methods in Applied Mechanics and
Engineering, 200[21-22] (2011), pp. 1804-1821.



Outline of the derivation C

@ Transform the equation of motion into the modal domain by using
the matrix of the eigenvectors ®.

@ Separate the diagonal and off-diagonal terms of the resulting
matrix.

@ Expand the inverse of the matrix in terms of the inverse of the
diagonal term in a Neumann-like series for a given frequency
value.

EC



Projection in the Modal Basis C2EC

The solution of the frequency-domain equation is given by
—1

M
ﬁ(w,H) = [Ao(w) + Zfi(G)A,‘(w) f(w)
=1

Using the mass and stiffness orthogonality property of the modal
matrix ® one has

M —1
U(w,0) = ¢-T/\o(w)¢—‘+2§,(0)¢T?i,-(w)d:‘] f(w)
y =1 B
= 0w,0) = |Ao(w) + ) _&(0)A(w)| & THw)
i=1
W (w,£(0))

where  £(0) = {&1(0),&(0), ..., &m(0)} " .



Projection in the Modal Basis C2EC

Now we separate the diagonal and off-diagonal terms of the A,
matrices as

~

A=AN+4;, i=12,....M
Here the diagonal matrix

A; = diag [K] = diag [\, My, - -5 A

In

] c Rnxn

~

and A; = A; — A; is an off-diagonal only matrix.

M M
W (w,£(0)) = [Mo(w) + D E(ONi(w)+ ) &i(0)Ai(w)
i—1 =

A(w.£0)) A(.£(9))

where A (w,£(6)) € R™" is a diagonal matrix and A (w, £(6)) is an
off-diagonal only matrix.




Projection in the Modal Basis C2EC

We rewrite this equation as

—1
W (w,£(0)) = [A(w,£(0)) [In+ A~ (w,£0)A (w, £(0))]

The above expression can be represented using a Neumann type of
matrix series as

W (w,£(0)) = 3 (-1)° [T (@, £(0) A (w,£(0)] AT (w,£(0))
s=0



Projection in the Modal Basis C2EC

Taking an arbitrary r-th element, the expression of G(w, #) can be
rearranged to have

0r(w,0) = 3 Ok (E Vi (w,£(6)) (¢,Tf(w)))
k=1 j=1

Defining
n
Tk (@, €(0) = Y Wiy (w,£(0)) (4] ()
j=1
and collecting all the elements for r = 1,2, ..., n we have the complete
solution

O(w,0) =) Tk (w,&(0)) px
k=1



Spectral functions C2EC

Definition

The functions 'y (w,&(0)) ,k = 1,2,... n are the frequency-adaptive
spectral functions as they are expressed in terms of the spectral
properties of the coefficient matrices at each frequency of the
governing discretized equation. )

@ Each of the spectral functions Iy (w, £(0)) contain infinite number
of terms and they are highly nonlinear functions of the random

variables &;(6).
@ For computational purposes, it is necessary to truncate the series
after certain number of terms.

@ Different order of spectral functions can be obtained by using
truncation in the expression of ', (w, £(0))



Spectral functions C2EC
Definition
The different order of spectral functions I‘S)(w, £0)),k=1,2,...,nare
obtained by retaining different order of terms in the series expansion.

w

Retaining one and two terms we have

W) (w,€(0)) = AT (w, £(0))
W@ (,€(0)) = A" (w,€(0)) — AT (w, £(6)) A (w, £(0)) A" (w, £(6))

which are the first and second order spectral functions respectively.
o From these we find 1) (w,£(0)) = 7, W) (w, £(6)) (q/)ij(w))

are non-Gaussian random variables even if £;(6) are Gaussian
random variables.



Model reduction by a reduced basis .

@ The eigenvalues are arranged in an increasing order such that
Ao, < Ag, < ... < A,

@ From the expression of the spectral functions observe that the
eigenvalues ( Ao, = wgk) appear in the denominator:

i f(w)
Mo, (w) + M £(0)A; (w)

where Ao, (w) = —w? + iw(¢ + nggk) + wgk

@ The series can be truncated based on the magnitude of the
eigenvalues relative to the frequency of excitation. The
approximate solution can be represented with a reduced number
(n,) of modal basis as

rt) (w,€0)) =

ne

U(w,0) ~ > TV (w,£(0)) %

k=1



Summary of the spectral functions C2EC

Not polynomials in random variables, but ratio of polynomials

Independent of the nature of the random variables (i.e.
applicable to Gaussian, non-Gaussian or even mixed random
variables

Not general, but specific to a problem as it utilizes the
eigenvalues and eigenvectors of the system matrices.

The truncation error depends on the off-diagonal terms of the
random part of the modal system matrix

Show ‘peaks’ when the frequency is close to the system natural
frequencies
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Numerical illustration C2EC

* An Euler-Bernoulli cantilever
beam with stochastic bending
modulus (nominal properties
L=1m, A=39 x 5.93mm?% E=2 x
10" Pa)

« We use n=200, M=2

We study the deflection of the beam under the action of a point
load on the free end.

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field with
exponential autocorrelation function (correlation length L/2)

Constant modal damping is taken with 1% damping factor for
all modes.

The standard deviation of the random field o, is varied up to 0.2
times the mean.
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Galerkin Approach C2EC

One can obtain constants ¢, € C such that the error in the following
representation

U(w,0) = zr: Cr(w)T(w, £(6))

can be minimised in the Ieast -square sense. It can be shown that the
vector ¢ = {¢y,Co, .. c,,,} satisfies the n, x n, complex algebraic
equations S(w) c(w) b(w) with

M
Sik=Y_ ADi; Vik=1.2,...,n;A, = ¢ Ay,
i=0

Di = E [&(0)Tk(w,£(9))] , by = E [¢]1(w))



Galerkin approach C2EC

@ The error vector can be obtained as

e(w,0) = (ZAI(W &i(0 ) (Z Ckrk(w £(0))o ) —f(w) € cNxN

The solution is viewed as a projection where ¢, € R" are the
basis functions and ¢, are the unknown constants to be
determined. This is done for each frequency step.

@ The coefficients ¢, are evaluated using the Galerkin approach so
that the error is made orthogonal to the basis functions, that is,

mathematically

e(w,0) L ¢; = (¢j,e(w,0)) =0Vj=1,2,....n,



Galerkin approach C2EC

@ Imposing the orthogonality condition and using the expression of
the error one has

M
E [¢,~T (Z Aigi(0 ) (Z el k(£(6)) ¢k) ] =0,Vj
i=0

@ Interchanging the E [e¢] and summation operations, this can be
simplified to

nr ( M: (¢ ,qbk) E [&,(O)Fk(ﬁ(ﬂ))]) ¢ =E [¢1Tf]
pa
or jn’ (j A,kDIk) Ck — bj

k=1 =0




Summary of the Proposed Method C2EC

@ Solve the generalised eigenvalue problem associated with the
mean mass and stiffness matrices to generate the orthonormal
basis vectors: Ko® = My® )\

@ Select a number of samples, say Nsamp. Generate the samples of
basic random variables &;(0),i =1,2,..., M.

© Calculate the spectral basis functions (for example, first-order):

_ ()
M (w,£(9)) = Aok<w)+zf"i1 EON, ()

O Obtain the coefficient vector: ¢(w) = S~ (w)b(w), where

b(w) = f(w) ® T(w), S(w) = Ao(w) @ Do(w) + 1121 Ai(w) © Dj(w)
and D;(w) = E [I’(w, 0)e:(0) T (w, 9)] Yi=01,2,....M

yfork=1,---n,n,<n

@ Obtain the samples of the response from the spectral series:
ﬁ(wa 0) — Zr=1 Ck(w)rk(e(wa 9))¢k



damped deflection, O, 0.1
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Frequency domain response of the beam c2EC
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Standard Deviation (damped), O, 0.1

Y

Y
.:n
%
0
‘Q‘Q’d']

9,
o
o

B>
o
\

N

Frequency domain response of the beam c2EC
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Probability density function
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z-direction (deflection)
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Plate with Stochastic Properties C2EC

<« An Euler-Bernoulli

‘ cantilever beam with

' stochastic bending

2 modulus (nominal
properties 1m x 0.6m,
t=03mm, E=2 x 10" Pa)

© T .+ Weusen=1881, M=16

0.4 x-direction (length)
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We study the deflection of the beam under the action of a point
load on the free end.

The bending modulus is taken to be a homogeneous stationary
Gaussian random field with exponential autocorrelation function
(correlation lengths L/5)

Constant modal damping is taken with 1% damping factor for
all modes.
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Non-parametric uncertainty propagation
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Wishart random matrix model C2EC

Distribution of the systems matrices should be such that
they are

* Symmetric, and

* Positive definite

Using these as constraints, it can be shown that the mass,
stiffness and damping matrices can be represented by
Wishart random matrices such that

E||A-EA] ]
EA] [

[1] Adhikari, S., Pastur, L., Lytova, A. and Du Bois, J. L., "Eigenvalue-density of linear stochastic dynamical systems: A random matrix approach”,
Journal of Sound and Vibration, 331[5] (2012), pp. 1042-1058.

[2] Adhikari, S. and Chowdhury, R., "A reduced-order random matrix approach for stochastic structural dynamics", Computers and Structures,
88[21-22] (2010), pp. 1230-1238.

[3] Adhikari, S., "Generalized Wishart distribution for probabilistic structural dynamics”, Computational Mechanics, 45[5] (2010), pp. 495-511.

[4 Adhikari, S., and Sarkar, A., "Uncertainty in structural dynamics: experimental validation of a Wishart random matrix model", Journal of Sound
and Vibration, 323[3-5] (2009), pp. 802-825.

[5] Adhikari, S., "Matrix variate distributions for probabilistic structural mechanics", AIAA Journal, 45[7] (2007), pp. 1748-1762.

[6] Adhikari, S., "Wishart random matrices in probabilistic structural mechanics", ASCE Journal of Engineering Mechanics, 134[12] (2008), pp.
1029-1044.

A~ Wp(Ag,03), 05 =



How to obtain the dispersion parameters? c2EC

Suppose a random system matrix is expressed as

M
A=Ap+) e5(0)A
=1

It can be shown that the dispersion parameter is given by

_ Trace (L1, ML B [6(0)6(0)] AsAx))
! ||Ao ||§~

M A2 )
_ dTrece (S5 AD) w24

— — A
Ao I Ao I

Therefore, it can be calculated using sensitivity matrices
within a finite element formulation
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Dynamic Response c2EC

Taking the Fourier transform of the equation of motion

[—w’M(6) +iwC () + K(8)] t(iw) = f(iw)
Transforming into a reduced modal coordinate we have
[—w?L, +iwC + Q@ =T
Solving a random eigenvalue problem for the random matrix
()2, the uncertainty propagation can be expressed

N Xr, (0)f(w)
u(w,) = ; —w? + 2iwCrwr, (0) + w2, (H)XT"'(H)

X,(0) = ®¥,(0), ¥IWE, =Q
The matrix Q?is a Wishart matrix (called as a reduced
diagonal Wishart matrix) who's parameters can be obtained
explicitly from the dispersions parameters of the mass and
stiffness matrices.
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An example

X direction (length)

Y direction (width)

A thin cantilever plate with random properties and 0.7% fixed
modal damping.



Physical properties C2EC

Plate Properties Numerical values
Length (L.) 998 mm

Width (L,) 530 mm
Thickness (i) 3.0 mm

Mass density (p) 7860 kg/m?®

Young’s modulus (E) 2.0 x 10° MPa
Poisson’s ratio (u) 0.3
Total weight 12.47 kg

The data presented here are available from:
http://engweb.swan.ac.uk/~adhikaris/uqg




Uncertainty type 1 C2EC

The Young's modulus, Poissons ratio, mass density and
thickness are random fields of the form

E(x) = E(1+epfi(x))

u(x) = (1 + €, fo(x)

p(x) = 5 (1 + €,f3(x))
and t(x) =t (1+ € fi(x))

® The strength parameters: ez = 0.15, ¢, = 0.15, ¢, = 0.10 and
e; = 0.15.

® The random fields f;(x),z =1,--- ,4 are delta-correlated
homogenous Gaussian random fields.



Uncertainty type 2 C2EC

* Here we consider that the baseline plate is "perturbed' by
attaching 10 oscillators with random spring stiffnesses at random

locations
* This is aimed at modeling non-parametric uncertainty only.

» This case will be investigated experimentally also.
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Standard deviation of a cross-FRF:
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Computational method and validation

* Representative experimental results

* Plate with randomly placed oscillator

« Software integration
* Integration with ANSYS

College of Engineering www.swansea.ac.uk/engineering




l j‘.’«v: A

10 oscillators with random stiffness values are attached at
random locations in the plate by magnet



Mean of a cross-FRF C
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Relative standard deviation

Standard deviation of a cross-FRF
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Standard deviation of the driving-point-FRF
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Integration with ANSYS c2EC

” The Finite Element (FE) model of an

aircraft wing (5907 degrees-of-freedom).

The width is 1.5m, length is 20.0m and the

height of the aerofoil section is 0.3m. The

Output material properties are: Young's modulus
262Mpa, Poisson's ratio 0.3 and mass
density 888.10kg/m3. Input node number:
407 and the output node number 96. A
2% modal damping factor is assumed for
all modes.



Vibration modes C2EC

Y ’

Mode 3, frequency 19.047Hz, Mode 5, frequency 53.628Hz

Mode 10, frequency 168.249Hz, Mode 20, frequency 403.711Hz
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Standard deviation of a cross-FRF
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Swansea University
Prifysgol Abertawe

Summary and Conclusions
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Dynamic Response c2EC

For parametric uncertainty propagation:

d Sicf(w)
0) =
u(w, ) ; —w? 4 2iwCkwl +w§ + S §i(9)/\ik(w)¢k

For nonparametric uncertainty propagation

& X, (0)TH(s)
u(w,6) = k§ —w? + 2iwkwr, () + w%(@)xr"w)

X(0) =0V, WWw =Q2

Unified mathematical representation

Can be useful for hybrid experimental-simulation approach for
uncertainty quantification
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Summary C2EC

* Response of stochastic dynamical systems is projected in to the
basis of undamped modes

* The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices in the frequency domain.

« The proposed method takes advantage of the fact that for a
given maximum frequency only a small number of modes are
necessary to represent the dynamic response. This modal
reduction leads to a significantly smaller basis.

*  Wishart random matrix model can used to represent non-
parametric uncertainty directly at the system matrix level.

 Reduced computational approach can be implement within the
conventional finite element environment
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Summary C2EC

« Dispersion parameters necessary for the Wishart model can be
obtained, for example, using sensitivity matrices

« Both parametric and nonparametric uncertainty can be
propagated via an unified mathematical framework.

« Future work will exploit this novel representation for model
validation and updating in conjunction with measured data.



