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Where is Swansea? 

Wales Swansea Cardiff - Welsh Capital 
Less than an hour away 
by car or train 

	



London – UK Capital  
Less than three hours 
by car or train  
(192 miles)  
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Swansea University 
•  29th UK university to 
be established 

•  King George V laid the 
foundation stone of the 
University in July 1920 
•  Now over 12,500 
students - 1,800 
international  
•  Finite Element Method 
was developed in 
Swansea 

•  Ranks 8th in the UK for 
engineering 



Education and Work 
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u  PhD (Engineering), 2001, University of Cambridge (Trinity College), 

Cambridge, UK. 

u  MSc (Structural Dynamics), 1997, Indian Institute of Science, Bangalore, 
India. 

u  B. Eng, 1995, Calcutta University, India. 
 

Work 
u  04/2007-Present: Professor of Aerospace Engineering, Swansea University 

(Civil and Computational Engineering Research Centre). 

u  01/2003-03/2007: Lecturer in dynamics: Department of Aerospace 
Engineering, University of Bristol. 

u  11/2000-12/2002: Research Associate, Cambridge University Engineering 
Department (Junior Research Fellow, Fitzwilliam College, Cambridge) . 



Outline of the Talk 

•  Background & Motivation 

•  Uncertainty Quantification 

•  Uncertainty propagation in complex dynamical systems 
–  Parametric uncertainty propagation 
–  Nonparametric uncertainty propagation 

–  Unified representation  

•  Computational method and validation 

–  Representative experimental results 

–  Software integration  

•  Conclusions 
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Low variability 
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On-target 
Low variability 

Actual Performance of Engineering Designs 



Overview of Computational Modeling 

Challenge 1: 
Uncertainty Modeling 

Challenge 2: Fast 
Uncertainty 
Propagation Methods 

Challenge 3: Model 
calibration under 
uncertainty 



arising from the lack of 
scientific knowledge about 
the model which is a-priori 
unknown (damping, 
nonlinearity, joints) 

uncertainty in the geometric 
parameters, boundary 
conditions, forces, strength 
of the materials involved 
 

machine precession, error 
tolerance and the so called 
‘h’ and ‘p’ refinements in 
finite element analysis  

uncertain and unknown 
error percolate into the 
model when they are 
calibrated against 
experimental results 
 

Model Uncertainty Computational uncertainty 

Parametric Uncertainty Experimental error 

Why Uncertainty: The Sources 

A low-fidelity answer with known uncertainty bounds is more valuable than a high-fidelity 
answer with unknown uncertainty bounds (NASA White Paper, 2002).  



Uncertainty Modeling 

 
 Parametric 
Uncertainty  

•  Random variables 
•  Random fields 

 
	



Non-parametric 
Uncertainty  

•  Probabilistic Approach 
Ø Random matrix theory 

•  Possibilistic Approaches 
Ø  Fuzzy variable 
Ø  Interval algebra 
Ø Convex modeling 

 
 
	





Equation of Motion of Dynamical Systems 



Uncertainty modeling in structural dynamics 

Uncertainty 
modeling 

Parametric uncertainty: 
mean matrices + random 
field/variable information 

Random variables 
  

Nonparametric uncertainty: 
mean matrices + a single 

dispersion parameter for each 
matrices 

Random matrix model 
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Parametric uncertainty propagation 



Frequency domain analysis 



Frequency domain analysis 



General mathematical representation 



What should be the form of the response? 



Classical Modal Analysis? 



Projection in the Modal Basis 

Adhikari, S., "A reduced spectral function approach for the stochastic finite element analysis", Computer Methods in Applied Mechanics and 
Engineering, 200[21-22] (2011), pp. 1804-1821. 



Outline of the derivation 



Projection in the Modal Basis 



Projection in the Modal Basis 



Projection in the Modal Basis 



Projection in the Modal Basis 



Spectral functions 



Spectral functions 



Model reduction by a reduced basis  



Summary of the spectral functions 

•  Not polynomials in random variables, but ratio of polynomials  
•  Independent of the nature of the random variables (i.e. 

applicable to Gaussian, non-Gaussian or even mixed random 
variables 

•  Not general, but specific to a problem as it utilizes the 
eigenvalues and eigenvectors of the system matrices. 

•  The truncation error depends on the off-diagonal terms of the 
random part of the modal system matrix 

•  Show ‘peaks’ when the frequency is close to the system natural 
frequencies 



Numerical illustration 

•  We study the deflection of the beam under the action of a point 
load on the free end.  

•  The bending modulus of the cantilever beam is taken to be a 
homogeneous stationary Gaussian random field with 
exponential autocorrelation function (correlation length L/2) 

•  Constant modal damping is taken with 1% damping factor for 
all modes.  

•  The standard deviation of the random field σa is varied up to 0.2 
times the mean. 

 
 

•  An Euler-Bernoulli cantilever 
beam with stochastic bending 
modulus (nominal properties 
L=1m, A=39 x 5.93mm2, E=2 x 
1011 Pa) 

•  We use n=200, M=2 
 



Spectral functions 
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Galerkin Approach 



Galerkin approach 



Galerkin approach 



Summary of the Proposed Method 



Frequency domain response of the beam  

0 100 200 300 400 500 600
10ï7

10ï6

10ï5

10ï4

10ï3

10ï2

Frequency (Hz)

da
m

pe
d 

de
fle

ct
io

n,
 m

f : 
0.

1

 

 
MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin
deterministic
4th order PC

0 100 200 300 400 500 600
10ï7

10ï6

10ï5

10ï4

10ï3

10ï2

10ï1

Frequency (Hz)

da
m

pe
d 

de
fle

ct
io

n,
 m

f : 
0.

2

 

 
MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin
deterministic
4th order PC

σa  = 0.1 σa  = 0.2 

Mean of the dynamic response (m) 



Frequency domain response of the beam  

σa  = 0.1 σa  = 0.2 

Standard deviation of the dynamic response (m) 
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PDF of the Response Amplitude 

σa  = 0.1 σa  = 0.2 

Standard deviation of the dynamic response (m) 
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Plate with Stochastic Properties  

•  We study the deflection of the beam under the action of a point 
load on the free end.  

•  The bending modulus is taken to be a homogeneous stationary 
Gaussian random field with exponential autocorrelation function 
(correlation lengths L/5) 

•  Constant modal damping is taken with 1% damping factor for 
all modes.  

 

•  An Euler-Bernoulli 
cantilever beam with 
stochastic bending 
modulus (nominal 
properties 1m x 0.6m, 
t=03mm, E=2 x 1011 Pa) 

•  We use n=1881, M=16 
 



Response Statistics 

Mean with σa  = 0.1 Standard deviation with σa  = 0.1 

Proposed approach: 150 x 150 equations 
4th order Polynomial Chaos:  9113445 x 9113445 equations  
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Non-parametric uncertainty propagation 



Wishart random matrix model 

Distribution of the systems matrices should be such that 
they are  
•  Symmetric, and 
•  Positive definite  
 
Using these as constraints, it can be shown that the mass, 
stiffness and damping matrices can be represented by 
Wishart random matrices such that 
 

[1] Adhikari, S., Pastur, L., Lytova, A. and Du Bois, J. L., "Eigenvalue-density of linear stochastic dynamical systems: A random matrix approach", 
Journal of Sound and Vibration, 331[5] (2012), pp. 1042-1058. 
[2] Adhikari, S. and Chowdhury, R., "A reduced-order random matrix approach for stochastic structural dynamics", Computers and Structures, 
88[21-22] (2010), pp. 1230-1238. 
[3] Adhikari, S., "Generalized Wishart distribution for probabilistic structural dynamics", Computational Mechanics, 45[5] (2010), pp. 495-511. 
[4 Adhikari, S., and Sarkar, A., "Uncertainty in structural dynamics: experimental validation of a Wishart random matrix model", Journal of Sound 
and Vibration, 323[3-5] (2009), pp. 802-825. 
[5] Adhikari, S., "Matrix variate distributions for probabilistic structural mechanics", AIAA Journal, 45[7] (2007), pp. 1748-1762. 
[6] Adhikari, S., "Wishart random matrices in probabilistic structural mechanics", ASCE Journal of Engineering Mechanics, 134[12] (2008), pp. 
1029-1044. 



How to obtain the dispersion parameters? 

Suppose a random system matrix is expressed as 
 
 

It can be shown that the dispersion parameter is given by  
 

Therefore, it can be calculated using sensitivity matrices 
within a finite element formulation  
 



Dynamic Response 
•  Taking the Fourier  transform of the equation of motion 

•  Transforming into a reduced modal coordinate we have 

•  Solving a random eigenvalue problem for the random matrix 
Ω2, the uncertainty propagation can be expressed 

•  The matrix Ω2 is a Wishart matrix (called as a reduced 
diagonal Wishart matrix) who's parameters can be obtained 
explicitly from the dispersions parameters of the mass and 
stiffness matrices. 
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An example: A vibrating plate 

A thin cantilever plate with random properties and 0.7% fixed 
modal damping. 



Physical properties 

The data presented here are available from: 
http://engweb.swan.ac.uk/~adhikaris/uq  



Uncertainty type 1 

The Young's modulus, Poissons ratio, mass density and 
thickness are random fields of the form 



Uncertainty type 2 
•  Here we consider that the baseline plate is `perturbed' by 

attaching 10 oscillators with random spring stiffnesses at random 
locations 

•  This is aimed at modeling non-parametric uncertainty only. 

•  This case will be investigated experimentally also. 
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Mean of the driving-point-FRF: Utype 1 
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Standard deviation of a cross-FRF: Utype 1 
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Standard deviation of the driving-point-FRF: 
Utype 1 
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Computational method and validation 
   
•  Representative experimental results 
•  Plate with randomly placed oscillator 

 

•  Software integration  
•  Integration with ANSYS 



Plate with randomly placed oscillators 

10 oscillators with random stiffness values are attached at 
random locations in the plate by magnet 



Mean of a cross-FRF 
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Mean of the driving-point-FRF 
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Standard deviation of a cross-FRF 
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Standard deviation of the driving-point-FRF 
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Input 

Output 

Integration with ANSYS 

The Finite Element (FE) model of an 
aircraft wing (5907 degrees-of-freedom). 
The width is 1.5m, length is 20.0m and the 
height of the aerofoil section is 0.3m. The 
material properties are:  Young's modulus 
262Mpa, Poisson's ratio 0.3 and mass 
density 888.10kg/m3. Input node number: 
407 and the output node number 96. A 
2%  modal damping factor is assumed for 
all modes. 



Vibration modes 
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Standard deviation of a cross-FRF 
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Summary and Conclusions 



Dynamic Response 

•  For parametric uncertainty propagation:  

 

•  For nonparametric uncertainty propagation 

•  Unified mathematical representation  

•  Can be useful for hybrid experimental-simulation approach for 
uncertainty quantification 



Summary 
•  Response of stochastic dynamical systems is projected in to the 

basis of undamped modes 

•  The coefficient functions, called as the spectral functions, are 
expressed in terms of the spectral properties of the system 
matrices in the frequency domain.  

•  The proposed method takes advantage of the fact that for a 
given maximum frequency only a small number of modes are 
necessary to represent the dynamic response. This modal 
reduction leads to a significantly smaller basis.  

•  Wishart random matrix model can used to represent non-
parametric uncertainty directly at the system matrix level. 

•  Reduced computational approach can be implement within the 
conventional finite element environment 



Summary 
•  Dispersion parameters necessary for the Wishart model can be 

obtained, for example, using sensitivity matrices  

•  Both parametric and nonparametric uncertainty can be 
propagated via an unified mathematical framework. 

•  Future work will exploit this novel representation for model 
validation and updating in conjunction with measured data. 


