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Introduction Mid-frequency vibration problem

Linear structural dynamics

The consideration of uncertainty becomes increasingly necessary
for complex engineering structures.
For structural dynamic systems, the approach to model
uncertainty often depends on the frequency of excitation. For
linear systems, this in turn is related to the wave-length scale of
vibration.
The discretised equation of motion of a linear dynamical system
can be expressed as

Mü(t) + Cu̇(t) + Ku(t) = f(t) (1)

M: mass matrix, C: damping matrix, K: stiffness matrix, u:
response vector, f: forcing vector
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Introduction Mid-frequency vibration problem

Role of vibration frequency on uncertainty modelling

For low- frequency vibration problems (longer wavelength),
parametric uncertainty model is normally used.
Random field or random variables can be used to model uncertain
parameters and stochastic finite element method can be used to
propagate uncertainty.
For high-frequency vibration problems (shorter wavelength),
nonparametric uncertainty model is normally used.
Random matrix model, such as those based on Wishart random
matrices, can be used for this purpose.
In majority of practical engineering problems, one expects a
mixture of wavelengths.
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Introduction Mid-frequency vibration problem

Multifrequency dynamics

Complex dynamic structures such as aircrafts, helicopters contain
several substructures.
For a given frequency of excitation, the wavelength of vibration in
different substructures can be significantly different.
For example, in the context of an aircraft fuselage, the ring girders
will have significantly longer wavelength of vibration compared to
the thin panel for a given frequency of excitation.
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Introduction Mid-frequency vibration problem

Multifrequency dynamics

(a) Aircraft fusulage (b) Car body
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Introduction Stochastic dynamical systems

Possible sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric parameters,
friction coefficient, strength of the materials involved.
(b) model uncertainty - arising from the lack of scientific knowledge
about the model which is a-priori unknown.
(c) experimental error - uncertain and unknown error percolate into the
model when they are calibrated against experimental results.
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite element
analysis
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Introduction Stochastic dynamical systems

Parametric uncertainty: low-frequency vibration problem

Fist few vibration modes (typically few tens) are participating in the
dynamical response of interest
Uncertainty models aim to characterise parametric uncertainty
(type ‘a’)
Random variable or random field models are used to represent
uncertain parameters
Well established methods such as stochastic finite element
method (polynomial chaos, perturbation methods, spectral
method) exist in literature
A system matrix can be expressed as

A(θ1) = A0 +
M∑

i=1

ξi(θ1)Ai

A0: baseline model, ξi(θ1): random variables
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Introduction Stochastic dynamical systems

Non-parametric uncertainty: high-frequency vibration problem

Many vibration modes are (in hundreds) participating in the
dynamical response of interest
Uncertainty models aim to characterise non-parametric
uncertainties (type ‘b-d’)
Random matrix models can be used to represent uncertain
system matrices
A system matrix can be expressed as

A = Wn(δA,A0)

A0: baseline model, δA: dispersion parameter, Wn: Wishart
random matrix of dimension n.
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Domain decomposition for multi-frequency scale problems

Domain decomposition method

Developed to solve a boundary value problem by splitting it into
smaller boundary value problems on subdomains
The problems on the subdomains are independent, which makes
domain decomposition methods suitable for parallel computing
Originally developed for numerical solution of partial differential
equations (not explicitly for uncertainty quantification)
Excellent and powerful computational tools are available
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Domain decomposition for multi-frequency scale problems

Domain decomposition method

Long wavelength

Small wavelength

Domain 1

Domain 2

Longwavelength: domain 1

shortwavelength: domain 2

Domain 1: A(θ1) = A0 +
∑M

i=1 ξi(θ1)Ai (dimension n1) - parametric
uncertainty
Domain 2: A(θ2) = Wn2(δA,A0) (dimension n2) - nonparametric
uncertainty
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Domain decomposition for multi-frequency scale problems Domain decomposition for two domains

Two subdomains

The equation of motion of a linear dynamic system in the frequency
domain is

A(ω)u = f (2)

where the dynamic stiffness matrix over the whole domain Ω, A(ω) is
given by

A(ω) = −ω2M + iωC + K ∈ Cn (3)

We aim to subdivide the domain Ω into two nonoverlapping domains.
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Domain decomposition for multi-frequency scale problems Domain decomposition for two domains

Two subdomains

The region Ω partitioned into two nonoverlapping subdomains Ω1 and
Ω2 as below

The equilibrium equation of the system can be partitioned as [A1
II ]m1×m1 0 [A1

IΓ]m1×mΓ

0 [A2
II ]m2×m2 [A2

IΓ]m2×mΓ

[A1
ΓI ]mΓ×m1 [A2

ΓI ]mΓ×m2 [A1
ΓΓ + A2

ΓΓ]m2×m2

× (4)

 u1
I

u2
I

uΓ

 =


f1
I

f2
I

f1
Γ + f2

Γ
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Domain decomposition for multi-frequency scale problems Domain decomposition for two domains

Equilibrium equations

The above equilibrium equation can be rearranged into following
explicit forms (interior and interface problems):

[A1
II ]{u

1
I } = {f1

I } − [A1
IΓ]{uΓ} (5)

[A2
II ]{u

2
I } = {f2

I } − [A2
IΓ]{uΓ} (6)

[[A1
ΓΓ]− [A1

ΓI ][A
1
II ]

−1[A1
IΓ]︸ ︷︷ ︸

S1

+ [A2
ΓΓ]− [A2

ΓI ][A
2
II ]

−1[A2
IΓ]︸ ︷︷ ︸

S2

]{uΓ} (7)

= [{f1
Γ} − [A1

ΓI ][A
1
II ]

−1]{f1
I }︸ ︷︷ ︸

F1

] + [{f2
Γ} − [A2

ΓI ][A
2
II ]

−1]{f2
I }︸ ︷︷ ︸

F2

]

The coefficient matrix S = S1 + S2 is known as the Schur complement
matrix.
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Computational approach for uncertainty propagation

Stochastic domain decomposition

We have two system matrices. For the domain with parametric
uncertainty (long wavelength scale):

[A1(θ1)]n1×n1 =

[
A1

II(θ1) A1
IΓ(θ1)

A1
ΓI(θ1) A1

ΓΓ(θ1)

]
= A1

0 +
M∑

i=1

ξi(θ1)A1
i (8)

with n1 = m1 + mΓ.
For the domain with nonparametric uncertainty (short wavelength
scale):

A2(θ2)n2×n2 =

[
A2

II(θ2) A2
IΓ(θ2)

A2
ΓI(θ2) A2

ΓΓ(θ2)

]
= Wn2(δA2 ,A

2
0) (9)

with n2 = m2 + mΓ.
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Computational approach for uncertainty propagation Stochastic interface problem

Stochastic interface problem

For the stochastic interface problem we have a system of (densely)
coupled mΓ complex stochastic equations

[S1(θ1) + S2(θ2)]uΓ(θ1, θ2) = F1(θ1) + F2(θ2) (10)

where

S1(θ1) = A1
ΓΓ(θ1)− A1

ΓI(θ1)[A1
II(θ1)]−1A1

IΓ(θ1) (11)

F1(θ1) = f1
Γ − A1

ΓI(θ1)[A1
II(θ1)]−1f1

I (12)

and

S2(θ2) = A2
ΓΓ(θ2)− A2

ΓI(θ2)[A2
II(θ2)]−1A2

IΓ(θ2) (13)

F2(θ2) = f2
Γ − A2

ΓI(θ2)[A2
II(θ2)]−1f2

I (14)
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Computational approach for uncertainty propagation Stochastic interior problems

Stochastic interior problems

Solving the interface problem we have uΓ(θ1, θ2). This can used to
obtain the interior solutions as

u1
I (θ1, θ2) = [A1

II(θ1)]−1[f1
I − A1

IΓ(θ1)uΓ(θ1, θ2)] (15)

u2
I (θ1, θ2) = [A2

II(θ1)]−1[f2
I − A2

IΓ(θ1)uΓ(θ1, θ2)] (16)

The most computationally intensive parts of the solution process is
obtaining [A1

II(θ1)]−1 and [A2
II(θ1)]−1 which involves the solution of m1

and m2 number of coupled complex stochastic equations.
Existing computational methods for uncertainty propagation can be
used.
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Computational approach for uncertainty propagation Stochastic interior problems

Stochastic interior problems

Recall that in the frequency domain

AII(ω, θ) = −ω2MII(θ) + iωCII(θ) + KII(θ) (17)

Assuming proportional damping model, we have

[AII(ω, θ)]−1 =
m∑

k=1

φk (θ)φT
k (θ)

ω2
k (θ)− ω2 + 2iζkωk (θ)

(18)

Here ζk are the modal damping factors and the eigenvalues are
eigenvectors are obtained from

KII(θ)φk (θ) = ω2
k MII(θ)φk (θ), k = 1,2, · · · (19)

Any existing methods for random eigenvalue problem can be used
(perturbation, polynomial chaos, Neumann series . . .).
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Numerical example

An Euler-Bernoulli beam example

Two coupled Euler-Bernoulli beams with stochastic elasticity are
considered

x

z

L1 = 1, EI10 = 1/3, ρA1 = π2/12, ζ1 = 0.04
L2 = L1, EI20 = EI10/103, ρA2 = ρA1, ζ2 = ζ1/2
We study the deflection of the beam under the action of a point
harmonic load on the interior of beam 1.
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Numerical example

Natural frequencies
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Beam 1

Beam 2

Due to the difference in the stiffness values, beam 1 has less number
of frequencies compared to beam 2 within a given frequency range.
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Numerical example

Frequency response
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Beam 1

Beam 2

Frequency response functions of the two beams in isolation (in
cantilever configuration with a point load at the end).
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Numerical example

Stochastic models

The bending modulus of the first beam is modelled by two
Gaussian random variables (a discretised random field with
standard deviation σa = 0.2). The stiffness matrix is of the form

K1(θ1) = K0 + ξ1(θ1)K1
1 + ξ2(θ1)K1

2

For the second beam, an Wishart random matrix model with
δ = 0.2 is considered.
The mass matrix and the damping factors are deterministic for
both the beams.
First-order perturbation is used for the interior random eigenvalue
problems. 1000-sample Monte Carlo sample is used to for the
interface problem.
For the numerical calculation we used n1 = 60, n2 = 328. In the
domain decomposition approach, m1 = 58, m2 = 336 and mΓ = 2.
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Numerical example

Stochastic response - driving point
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Response statistics of the stochastic multiscale system at the driving
point.
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Numerical example

Stochastic response - tip point
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Response statistics of the stochastic multiscale system at the tip.
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Summary and conclusion

Summary and conclusion

The objective was to consider large and small wavelength-scale
vibrations simultaneously in conjunction with relevant stochastic
models.
Parametric uncertainty model is considered for large
wavelength-scale vibrations (low frequency). Random
field/random variable models can be used for this purpose.
Non-parametric uncertainty model is considered for small
wavelength-scale vibrations (high frequency). Random matrix
models can be used for this purpose.
Domain decomposition method (originally proposed for parallel
computation of deterministic boundary problems) is used to
‘combine’ two domains with two different uncertainty models.
A simple numerical example with two wavelength-scale domains
is used to illustrate the idea.
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