Perturbation-enhanced extended polynomial-chaos expansion for stochastic finite element problems

S Adhikari

Civil \& Computational Engineering Research Centre (C²EC), Swansea University, Swansea UK

Stochastic Mechanics 2012, Ustica, Italy

Outline of the talk

(1) Introduction

- Stochastic elliptic PDEs
- Discretisation of Stochastic PDE
(2) Polynomial Chaos expansion
(3) Motivation behind the hybrid approach

4 Construction of the hybrid approach

- Separation of the random variables
- PC Projection
(5) Numerical example

6 Summary and conclusion

Stochastic elliptic PDE

- We consider the stochastic elliptic partial differential equation (PDE)

$$
\begin{equation*}
-\nabla[a(\mathbf{r}, \theta) \nabla u(\mathbf{r}, \theta)]=p(\mathbf{r}) ; \quad \mathbf{r} \text { in } \mathcal{D} \tag{1}
\end{equation*}
$$

with the associated boundary condition

$$
\begin{equation*}
u(\mathbf{r}, \theta)=0 ; \quad \mathbf{r} \text { on } \partial \mathcal{D} \tag{2}
\end{equation*}
$$

- Here $a: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}$ is a random field, which can be viewed as a set of random variables indexed by $\mathbf{r} \in \mathbb{R}^{d}$.
- We assume the random field $a(\mathbf{r}, \theta)$ to be stationary and square integrable. Based on the physical problem the random field $a(\mathbf{r}, \theta)$ can be used to model different physical quantities.

Discretized Stochastic PDE

- The random process $a(\mathbf{r}, \theta)$ can be expressed in a generalized fourier type of series known as the Karhunen-Loève expansion

$$
\begin{equation*}
a(\mathbf{r}, \theta)=a_{0}(\mathbf{r})+\sum_{i=1}^{\infty} \sqrt{\nu_{i}} \xi_{i}(\theta) \varphi_{i}(\mathbf{r}) \tag{3}
\end{equation*}
$$

Here $a_{0}(\mathbf{r})$ is the mean function, $\xi_{i}(\theta)$ are uncorrelated standard Gaussian random variables, ν_{i} and $\varphi_{i}(\mathbf{r})$ are eigenvalues and eigenfunctions satisfying the integral equation

$$
\int_{\mathcal{D}} C_{a}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \varphi_{j}\left(\mathbf{r}_{1}\right) \mathrm{d} \mathbf{r}_{1}=\nu_{j} \varphi_{j}\left(\mathbf{r}_{2}\right), \quad \forall j=1,2, \cdots
$$

- Truncating the series (3) upto the M-th term, substituting $a(\mathbf{r}, \theta)$ in the governing PDE (1) and applying the boundary conditions, the discretized equation can be written as

$$
\begin{equation*}
\left[\mathbf{A}_{0}+\sum_{i=1}^{M} \xi_{i}(\theta) \mathbf{A}_{i}\right] \mathbf{u}(\theta)=\mathbf{f} \tag{4}
\end{equation*}
$$

Polynomial Chaos expansion

- After the finite truncation, concisely, the polynomial chaos expansion can be written as

$$
\begin{equation*}
\hat{\mathbf{u}}(\theta)=\sum_{k=1}^{P} H_{k}(\boldsymbol{\xi}(\theta)) \mathbf{u}_{k} \tag{5}
\end{equation*}
$$

where $H_{k}(\xi(\theta))$ are the polynomial chaoses.

- The value of the number of terms P depends on the number of basic random variables M and the order of the PC expansion r as

$$
\begin{equation*}
P=\sum_{j=0}^{r} \frac{(M+j-1)!}{j!(M-1)!} \tag{6}
\end{equation*}
$$

Polynomial Chaos expansion

- After the finite truncation, concisely, the polynomial chaos expansion can be written as

$$
\begin{equation*}
\hat{\mathbf{u}}(\theta)=\sum_{k=1}^{P} H_{k}(\boldsymbol{\xi}(\theta)) \mathbf{u}_{k} \tag{7}
\end{equation*}
$$

where $H_{k}(\boldsymbol{\xi}(\theta))$ are the polynomial chaoses and $\mathbf{u}_{k} \in \mathbb{R}^{n}$ are deterministic vectors to be determined.

- The value of the number of terms P depends on the number of basic random variables M and the order of the PC expansion r as

$$
\begin{equation*}
P=\sum_{j=0}^{r} \frac{(M+j-1)!}{j!(M-1)!} \tag{8}
\end{equation*}
$$

Polynomial Chaos expansion

We need to solve a $n P \times n P$ linear equation to obtain all \mathbf{u}_{k} for every frequency point:

$$
\left[\begin{array}{ccc}
\mathbf{A}_{0,0} & \cdots & \mathbf{A}_{0, P-1} \tag{9}\\
\mathbf{A}_{1,0} & \cdots & \mathbf{A}_{1, P-1} \\
\vdots & \vdots & \vdots \\
\mathbf{A}_{P-1,0} & \cdots & \mathbf{A}_{P-1, P-1}
\end{array}\right]\left\{\begin{array}{c}
\mathbf{u}_{0} \\
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{P-1}
\end{array}\right\}=\left\{\begin{array}{c}
\mathbf{f}_{0} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{P-1}
\end{array}\right\}
$$

or

$$
\widetilde{\mathbf{A}} \mathbf{U}=\mathbf{F}
$$

P increases exponentially with M :

M	2	3	5	10	20	50	100
2nd order PC	5	9	20	65	230	1325	5150
3rd order PC	9	19	55	285	1770	23425	176850

Polynomial Chaos expansion: Some Observations

- Computational cost increase exponentially with the number of random variables
- Particularly efficient compared to 'local methods' (e.g., perturbation method, Neumann approach) when the coefficients associated with the random variables are large.
- However, there is an ordering of the coefficient matrices \mathbf{A}_{i} due to the decaying nature of the eigenvalues in the Karhunen-Loève expansion
- Recall that the local methods produce acceptable accuracy when the influence of the randomness is 'less'

Motivation behind the hybrid approach

- The idea is to propagate the random variables associated with 'higher' variability by polynomial chaos expansion and the random variables with 'lower' variability by perturbation expansion.
- This way the 'curse' of dimensionality can be avoided to some extend.
- Often the number of random variables used in a polynomial chaos expansion has to be truncated due to the computational considerations.
- Considering a perturbation expansion in these 'ignored' variables would be better that completely ignoring them.

Separation of the random variables

$$
\mathbf{A}=\mathbf{A}_{0}+\sum_{i=1}^{M} \xi_{i}(\theta) \mathbf{A}_{i}
$$

- The random variables are divided into two groups

$$
\mathbf{x}(\theta)=\left\{\xi_{i}(\theta)\right\}, i=1, \cdots, M_{1}
$$

and

$$
\mathbf{y}(\theta)=\left\{\xi_{i}(\theta)\right\}, i=M_{1}+1, \cdots, M
$$

- Therefore \mathbf{x} and \mathbf{y} are vector of random variables of dimensions M_{1} and M_{2} respectively such that $M_{1}+M_{2}=M$.
- We construct a polynomial chaos with \mathbf{x} and perturbation expansion on y such that the response can be expressed as

$$
\begin{equation*}
\mathbf{u}(\theta)=\sum_{k=1}^{P_{1}} H_{k}(\mathbf{x}(\theta)) \mathbf{u}_{k}(\mathbf{y}(\theta)) \tag{10}
\end{equation*}
$$

Separation of the random variables

We rewrite the system matrix as

$$
\mathbf{A}=\mathbf{A}_{0}+\sum_{i=1}^{M_{1}} x_{i} \mathbf{A}_{i}+\sum_{j=1}^{M_{2}} y_{j} \mathbf{B}_{j}=\mathbf{A}_{y}+\sum_{i=1}^{M_{1}} x_{i} \mathbf{A}_{i}
$$

Where

$$
\mathbf{A}_{y}=\mathbf{A}_{0}+\sum_{j=1}^{M_{2}} y_{j} \mathbf{B}_{j}
$$

is the effective 'constant' matrix while considering polynomial chaos expansion with respect to the random variables $x_{i}, i=1,2, \cdots, M_{1}$

Polynomial chaos expansion

We express the polynomial chaos solution as

$$
\begin{equation*}
\mathbf{u}(\theta)=\sum_{k=1}^{P_{1}} H_{k}(\mathbf{x}(\theta)) \mathbf{u}_{y_{k}} \tag{11}
\end{equation*}
$$

where $P_{1}=\sum_{j=0}^{r} \frac{(M+j-1)!}{j!(M-1)!}$. The $P_{1} n$ dimensional coefficient vector $\mathbf{U}_{y}=\left\{\mathbf{u}_{y_{0}}, \mathbf{u}_{y_{1}}, \cdots, \mathbf{u}_{{P_{\rho_{1}-1}}}\right\}^{T}$ can be obtained from the usual $P_{1} n \times P_{1} n$ matrix equation as

$$
\begin{equation*}
\left[\widetilde{\mathbf{A}}_{0}+\sum_{j=1}^{M_{2}} y_{j} \widetilde{\mathbf{B}}_{j}\right] \mathbf{U}_{y}=\mathbf{F} \tag{12}
\end{equation*}
$$

Perturbation expansion

The vector of PC coefficients \mathbf{U}_{y} can be expanded as

$$
\begin{align*}
& {\left[\tilde{\mathbf{A}}_{0}+\sum_{j=1}^{M_{2}} y_{j} \widetilde{\mathbf{B}}_{j}\right] \mathbf{U}_{y}=\mathbf{F} } \tag{13}\\
\text { or } & \mathbf{U}_{y}=\left[\widetilde{\mathbf{A}}_{0}+\sum_{j=1}^{M_{2}} y_{j} \widetilde{\mathbf{B}}_{j}\right]^{-1} \mathbf{F} \tag{14}\\
\text { or } \quad & \mathbf{U}_{y} \approx[\underbrace{\mathbf{I}-\widetilde{\mathbf{A}}_{0}^{-1} \sum_{j=1}^{M_{2}} y_{j} \widetilde{\mathbf{B}}_{j}+\left(\widetilde{\mathbf{A}}_{0}^{-1} \sum_{j=1}^{M_{2}} y_{j} \widetilde{\mathbf{B}}_{j}\right)^{2}-\cdots}] \mathbf{U}_{0} \tag{15}
\end{align*}
$$

where the classical PC coefficient is given by

$$
\mathbf{U}_{0}=\left[\widetilde{\mathbf{A}}_{0}\right]^{-1} \mathbf{F}
$$

The hybrid expression

The hybrid PC-Perturbation coefficient vector

$$
\begin{equation*}
\mathbf{U}_{y}(\theta) \approx[\underbrace{-\widetilde{\mathbf{A}}_{0}^{-1} \sum_{j=1}^{M_{2}} y_{j}(\theta) \widetilde{\mathbf{B}}_{j}}_{\text {The missing contribution }}] \mathbf{U}_{0} \tag{16}
\end{equation*}
$$

The complete hybrid PC-Perturbation solution is therefore

$$
\begin{equation*}
\mathbf{u}(\theta)=\sum_{k=1}^{P_{1}} H_{k}(\mathbf{x}(\theta)) \mathbf{u}_{y_{k}}(\theta) \tag{17}
\end{equation*}
$$

The classical PC solution would be

$$
\begin{equation*}
\mathbf{u}(\theta)=\sum_{k=1}^{P_{1}} H_{k}(\mathbf{x}(\theta)) \mathbf{u}_{0_{k}} \tag{18}
\end{equation*}
$$

The Euler-Bernoulli beam example

- An Euler-Bernoulli cantilever beam with stochastic bending modulus

- Length : 1.0 m , Nominal $E l_{0}: 1 / 3$
- We study the deflection of the beam under the action of a point load on the free end.

Problem details

- The bending modulus of the cantilever beam is taken to be a homogeneous stationary Gaussian random field of the form

$$
E l(x, \theta)=E l_{0}(1+a(x, \theta))
$$

where x is the coordinate along the length of the beam, $E I_{0}$ is the estimate of the mean bending modulus, $a(x, \theta)$ is a zero mean stationary random field.

- The autocorrelation function of this random field is assumed to be

$$
C_{a}\left(x_{1}, x_{2}\right)=\sigma_{a}^{2} e^{-\left(\left|x_{1}-x_{2}\right|\right) / \mu_{a}}
$$

where μ_{a} is the correlation length and σ_{a} is the standard deviation.

- A correlation length of $\mu_{a}=L / 5$ is considered in the present numerical study.

Problem details

The random field is Gaussian with correlation length $\mu_{a}=L / 5$. The results are compared with the polynomial chaos expansion with $M_{1}=2$.

- The number of degrees of freedom of the system is $n=200$.
- The number of random variables in KL expansion used for discretising the stochastic domain is $M=20$.
- Simulations have been performed with 10,000 MCS samples with the standard deviation of the random field $\sigma_{a}=0.1$.
- Comparison have been made with $4^{\text {th }}$ order Polynomial chaos results.

MCS against truncated PC

The PDf of the tip deflection - comparison between MCS $(M=20)$ and 4th order PC ($M_{1}=2$).

MCS, truncated PC and Hybrid approach

The PDf of the tip deflection - comparison between MCS $(M=20)$, 4th order PC $\left(M_{1}=2\right)$ and hybrid 4th order PC and 2nd order perturbtion.

Summary and conclusion

- The objective was to propagate the random variables associated with 'higher' variability by polynomial chaos expansion and the random variables with 'lower' variability by perturbation expansion.
- The hybrid PC-Perturbation coefficient vector

$$
\begin{equation*}
\mathbf{U}_{y}(\theta) \approx[\underbrace{-\widetilde{\mathbf{A}}_{0}^{-1} \sum_{j=1}^{M_{2}} y_{j}(\theta) \widetilde{\mathbf{B}}_{j}}_{\text {The missing contribution }}] \mathbf{U}_{0} \tag{19}
\end{equation*}
$$

- These are the 'ghost' terms - they were always there - but invisible so far! No matter how many random variables you have considered in the PC analysis, there is always some you didn't!
- The complete hybrid PC-Perturbation solution is therefore $\mathbf{u}(\theta)=\sum_{k=1}^{P_{1}} H_{k}(\mathbf{x}(\theta)) \mathbf{u}_{y_{k}}(\theta)$

Summary and conclusion

- How shall we choose the 'higher' and 'lower' variability in the context of the proposed method? Where shall we draw the borderline?
- We can use higher order Neumann expansion combined with (different orders of) PC.
- Given the magnitude of the coefficients, can we optimise the 'partition' of the random variables, the order of the PC and the order of the Neumann expansion?

