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Introduction Stochastic elliptic PDEs

Stochastic elliptic PDE

We consider the stochastic elliptic partial differential equation
(PDE)

−∇ [a(r, θ)∇u(r, θ)] = p(r); r in D (1)

with the associated boundary condition

u(r, θ) = 0; r on ∂D (2)

Here a : Rd × Ω → R is a random field, which can be viewed as a
set of random variables indexed by r ∈ R

d .

We assume the random field a(r, θ) to be stationary and square
integrable. Based on the physical problem the random field a(r, θ)
can be used to model different physical quantities.
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Introduction Discretisation of Stochastic PDE

Discretized Stochastic PDE

The random process a(r, θ) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (3)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation∫
D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1,2, · · · .
Truncating the series (3) upto the M-th term, substituting a(r, θ) in
the governing PDE (1) and applying the boundary conditions, the
discretized equation can be written as

[
A0 +

M∑

i=1

ξi(θ)Ai

]
u(θ) = f (4)
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Polynomial Chaos expansion

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (5)

where Hk(ξ(θ)) are the polynomial chaoses.

The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!
j!(M − 1)!

(6)
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Polynomial Chaos expansion

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (7)

where Hk(ξ(θ)) are the polynomial chaoses and uk ∈ R
n are

deterministic vectors to be determined.

The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!
j!(M − 1)!

(8)
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Polynomial Chaos expansion

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk for every
frequency point:




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1








u0

u1
...

uP−1





=





f0

f1
...

fP−1





(9)

or
ÃU = F

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Polynomial Chaos expansion

Polynomial Chaos expansion: Some Observations

Computational cost increase exponentially with the number of
random variables

Particularly efficient compared to ‘local methods’ (e.g.,
perturbation method, Neumann approach) when the coefficients
associated with the random variables are large.

However, there is an ordering of the coefficient matrices A i due to
the decaying nature of the eigenvalues in the Karhunen-Loève
expansion

Recall that the local methods produce acceptable accuracy when
the influence of the randomness is ‘less’
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Motivation behind the hybrid approach

Motivation behind the hybrid approach

The idea is to propagate the random variables associated with
‘higher’ variability by polynomial chaos expansion and the random
variables with ‘lower’ variability by perturbation expansion.

This way the ‘curse’ of dimensionality can be avoided to some
extend.

Often the number of random variables used in a polynomial chaos
expansion has to be truncated due to the computational
considerations.

Considering a perturbation expansion in these ‘ignored’ variables
would be better that completely ignoring them.
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Construction of the hybrid approach Separation of the random variables

Separation of the random variables

A = A0 +

M∑

i=1

ξi(θ)A i

The random variables are divided into two groups

x(θ) = {ξi(θ)}, i = 1, · · · ,M1

and
y(θ) = {ξi(θ)}, i = M1 + 1, · · · ,M

Therefore x and y are vector of random variables of dimensions
M1 and M2 respectively such that M1 + M2 = M.
We construct a polynomial chaos with x and perturbation
expansion on y such that the response can be expressed as

u(θ) =
P1∑

k=1

Hk(x(θ))uk (y(θ)) (10)
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Construction of the hybrid approach Separation of the random variables

Separation of the random variables

We rewrite the system matrix as

A = A0 +

M1∑

i=1

xiA i +

M2∑

j=1

yjB j = Ay +

M1∑

i=1

xiAi

Where

Ay = A0 +

M2∑

j=1

yjB j

is the effective ‘constant’ matrix while considering polynomial chaos
expansion with respect to the random variables xi , i = 1,2, · · · ,M1
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Construction of the hybrid approach PC Projection

Polynomial chaos expansion

We express the polynomial chaos solution as

u(θ) =
P1∑

k=1

Hk(x(θ))uyk (11)

where P1 =
∑r

j=0
(M + j − 1)!
j!(M − 1)!

. The P1n dimensional coefficient vector

Uy = {uy0 ,uy1 , · · · ,uyP1−1}T can be obtained from the usual P1n × P1n
matrix equation as 

Ã0 +

M2∑

j=1

yj B̃ j


Uy = F (12)
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Construction of the hybrid approach PC Projection

Perturbation expansion

The vector of PC coefficients Uy can be expanded as

Ã0 +

M2∑

j=1

yj B̃ j


Uy = F (13)

or Uy =


Ã0 +

M2∑

j=1

yj B̃ j



−1

F (14)

or Uy ≈


I−Ã

−1
0

M2∑

j=1

yj B̃ j +


Ã

−1
0

M2∑

j=1

yj B̃ j




2

− · · ·

︸ ︷︷ ︸


U0 (15)

where the classical PC coefficient is given by

U0 =
[
Ã0

]−1
F

S. Adhikari (Swansea) Hybrid Perturbation-PC June 2012 13 / 21



Construction of the hybrid approach PC Projection

The hybrid expression

The hybrid PC-Perturbation coefficient vector

Uy (θ) ≈




I −Ã
−1
0

M2∑

j=1

yj(θ)B̃ j

︸ ︷︷ ︸
The missing contribution




U0 (16)

The complete hybrid PC-Perturbation solution is therefore

u(θ) =
P1∑

k=1

Hk(x(θ))uyk (θ) (17)

The classical PC solution would be

u(θ) =
P1∑

k=1

Hk(x(θ))u0k
(18)
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Numerical example

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending
modulus

Length : 1.0 m, Nominal EI0 : 1/3

We study the deflection of the beam under the action of a point
load on the free end.
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Numerical example

Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ))

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.

The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present
numerical study.
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Numerical example

Problem details

The random field is Gaussian with correlation length µa = L/5. The
results are compared with the polynomial chaos expansion with M1=2.

The number of degrees of freedom of the system is n = 200.

The number of random variables in KL expansion used for
discretising the stochastic domain is M =20.

Simulations have been performed with 10,000 MCS samples with
the standard deviation of the random field σa = 0.1.

Comparison have been made with 4th order Polynomial chaos
results.
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Numerical example

MCS against truncated PC
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The PDf of the tip deflection - comparison between MCS (M = 20) and
4th order PC (M1 = 2).
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Numerical example

MCS, truncated PC and Hybrid approach
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Hybrid PC

The PDf of the tip deflection - comparison between MCS (M = 20), 4th
order PC (M1 = 2) and hybrid 4th order PC and 2nd order perturbtion.
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Summary and conclusion

Summary and conclusion

The objective was to propagate the random variables associated
with ‘higher’ variability by polynomial chaos expansion and the
random variables with ‘lower’ variability by perturbation expansion.
The hybrid PC-Perturbation coefficient vector

Uy (θ) ≈




I −Ã
−1
0

M2∑

j=1

yj(θ)B̃ j

︸ ︷︷ ︸
The missing contribution




U0 (19)

These are the ‘ghost’ terms - they were always there - but invisible
so far! No matter how many random variables you have
considered in the PC analysis, there is always some you didn’t!
The complete hybrid PC-Perturbation solution is therefore
u(θ) =

∑P1
k=1 Hk (x(θ))uyk (θ)
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Summary and conclusion

Summary and conclusion

How shall we choose the ‘higher’ and ‘lower’ variability in the
context of the proposed method? Where shall we draw the
borderline?

We can use higher order Neumann expansion combined with
(different orders of) PC.

Given the magnitude of the coefficients, can we optimise the
‘partition’ of the random variables, the order of the PC and the
order of the Neumann expansion?
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