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Introduction Stochastic Partial Differential Equations for dynamical systems

Stochastic PDEs

We consider the stochastic elliptic partial differential equation (PDE)

ρ(r, θ)
∂2U(r, t , θ)

∂t2 + Lα
∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (1)

The stochastic operator Lβ can be

Lβ ≡ ∂
∂x AE(x , θ) ∂

∂x axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams

Lα denotes the stochastic damping, which is mostly proportional in
nature.
Here α, β : Rd ×Θ → R are stationary square integrable random fields,
which can be viewed as a set of random variables indexed by r ∈ R

d .
Based on the physical problem the random field a(r, θ) can be used to
model different physical quantities (e.g., AE(x , θ), EI(x , θ)).
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discretized Stochastic PDE

A random process a(r, θ) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (2)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1,2, · · · (3)

For non-Gaussian random fields (e.g. uniform, lognormal), Eq. 2
can represented with a PC type expansion and different sets of
orthogonal polynomials from the Weiner-Askey scheme can be
utilized to represent the trial basis.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discrete equation for stochastic mechanics

The stochastic PDE along with the boundary conditions results in:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (4)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi)K i ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing

vector
The mass and stiffness matrices have been expressed in terms of
their deterministic components (M0 and K0) and the
corresponding random contributions (Mi and Ki) obtained from
discretizing the stochastic field with a finite number of random
variables (µi(θi) and νi(θi)) and their corresponding spatial basis
functions.
Proportional damping model is considered for which
C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Frequency domain representation

For the harmonic analysis of the structural system, taking the
Fourier transform

[
−ω2M(θ) + iωC(θ) + K(θ)

]
ũ(ω, θ) = f̃(ω) (5)

where ũ(ω, θ) is the complex frequency domain system response
amplitude, f̃(ω) is the amplitude of the harmonic force.

For convenience we group the random variables associated with
the mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1(θ) = νj(θ) for i = 1,2, . . . ,p1

and j = 1,2, . . . ,p2
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discrete equation for stochastic mechanics

Using M = p1 + p2 which we have
(

A0(ω) +

M∑

i=1

ξi(θ)A i(ω)

)
ũ(ω, θ) = f̃(ω) (6)

where A0 and A i ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the
damping matrices ensemble.
For the case of proportional damping the matrices A0 and A i can
be written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0, (7)

A i(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1,2, . . . ,p1 (8)

and A j+p1
(ω) = [iωζ2 + 1]K j for j = 1,2, . . . ,p2 .
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Introduction Stochastic Partial Differential Equations for dynamical systems

Time domain representation

If the time steps are fixed to ∆t , then the equation of motion can be
written as

M(θ)üt+∆t(θ) + C(θ)u̇t+∆t(θ) + K(θ)ut+∆t(θ) = pt+∆t . (9)

Following the Newmark method based on constant average
acceleration scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)] ut+∆t(θ) = peqv
t+∆t(θ) (10)

and, peqv
t+∆t(θ) = pt+∆t + f (ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (11)

where peqv
t+∆t(θ) is the equivalent force at time t +∆t which consists of

contributions of the system response at the previous time step.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Newmark’s method

The expressions for the velocities u̇t+∆t(θ) and accelerations üt+∆t(θ)
at each time step is a linear combination of the values of the system
response at previous time steps (Newmark method) as

üt+∆t(θ) = a0 [ut+∆t(θ)− ut(θ)]− a2u̇t(θ)− a3üt(θ) (12)

and, u̇t+∆t(θ) = u̇t(θ) + a6üt(θ) + a7üt+∆t(θ) (13)

where the integration constants ai , i = 1,2, . . . ,7 are independent of
system properties and depends only on the chosen time step and
some constants:

a0 =
1

α∆t2 ; a1 =
δ

α∆t
; a2 =

1
α∆t

; a3 =
1

2α
− 1; (14)

a4 =
δ

α
− 1; a5 =

∆t
2

(
δ

α
− 2
)
; a6 = ∆t(1 − δ); a7 = δ∆t

(15)
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Introduction Stochastic Partial Differential Equations for dynamical systems

Newmark’s method

Following this development, the linear structural system in (10) can be
expressed as

[
A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t(θ) = peqv
t+∆t(θ). (16)

where A0 and Ai represent the deterministic and stochastic parts of
the system matrices respectively. For the case of proportional
damping, the matrices A0 and Ai can be written similar to the case of
frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (17)

and, A i = [a0 + a1ζ1]Mi for i = 1,2, . . . ,p1 (18)

= [a1ζ2 + 1]Ki for i = p1 + 1,p1 + 2, . . . ,p1 + p2 .
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Introduction Stochastic Partial Differential Equations for dynamical systems

General mathemarical representation

Whether time-domain or frequency domain methods were used, in
general the main equation which need to be solved can be expressed
as (

A0 +

M∑

i=1

ξi(θi)A i

)
u(θ) = f(θ) (19)

where A0 and A i represent the deterministic and stochastic parts of the
system matrices respectively. These can be real or complex matrices.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (20)

where Hk(ξ(θ)) are the polynomial chaoses and uk ∈ R
n are

deterministic vectors to be determined.

The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!
j!(M − 1)!

(21)
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk for every
frequency point:




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1








u0

u1
...

uP−1





=





f0

f1
...

fP−1





(22)

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion: Some Observations

The basis is a function of the pdf of the random variables only. For
example, Hermite polynomials for Gaussian pdf, Legender’s
polynomials for uniform pdf.

The physics of the underlying problem (static, dynamic, heat
conduction, transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the
projection can be more than n (depends on the number of random
variables). This implies that many of the vectors uk are linearly
dependent.

The physical interpretation of the coefficient vectors uk is not
immediately obvious.

The functional form of the response is a pure polynomial in
random variables.

S. Adhikari (Swansea) Stochastic Structural Dynamics February 26 to March 2, 2012 16 / 47



Introduction Stochastic Partial Differential Equations for dynamical systems

Possibilities of solution types

As an example, consider the frequency domain response vector of the
stochastic system u(ω, θ) governed by[
−ω2M(ξ(θ)) + iωC(ξ(θ)) + K(ξ(θ))

]
u(ω, θ) = f(ω). Some possibilities

are

u(ω, θ) =
P1∑

k=1

Hk (ξ(θ))uk (ω)

or =

P2∑

k=1

Γk (ω, ξ(θ))φk

or =

P3∑

k=1

ak (ω)Hk (ξ(θ))φk

or =

P4∑

k=1

ak (ω)Hk (ξ(θ))Uk (ξ(θ)) . . . etc.

(23)
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Introduction Stochastic Partial Differential Equations for dynamical systems

What about classical modal analysis?

For a deterministic system, the response vector u(ω) can be
expressed as

u(ω) =
P∑

k=1

Γk (ω)uk

where Γk (ω) =
φT

k f
−ω2 + 2iζkωkω + ω2

k

uk = φk and P ≤ n (number of dominantmodes)

(24)

Can we extend this idea to stochastic systems?
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

There exist a finite set of complex frequency dependent functions
Γk (ω, ξ(θ)) and a complete basis φk ∈ R

n for k = 1,2, . . . ,n such that
the solution of the discretized stochastic finite element equation (4)
can be expiressed by the series

û(ω, θ) =
n∑

k=1

Γk (ω, ξ(θ))φk (25)

Outline of the derivation: In the first step a complete basis is generated
with the eigenvectors φk ∈ R

n of the generalized eigenvalue problem

K0φk = λ0k
M0φk ; k = 1,2, . . . n (26)
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ R
n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R

n×n

(27)
Eigenvalues are ordered in the ascending order:
λ01 < λ02 < . . . < λ0n .
We use the orthogonality property of the modal matrix Φ as

Φ
T K0Φ = λ0, and Φ

T M0Φ = I (28)

Using these we have

Φ
T A0Φ = Φ

T
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (29)

This gives Φ
T A0Φ = Λ0 and A0 = Φ

−T
Λ0Φ

−1, where
Λ0 =

(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

Hence, Λ0 can also be written as

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ C
n×n (30)

where λ0j =
(
−ω2 + iωζ1

)
+ (iωζ2 + 1)λj and λj is as defined in

Eqn. (27). We also introduce the transformations

Ãi = Φ
T A iΦ ∈ C

n×n; i = 0,1,2, . . . ,M. (31)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ
−T Ã iΦ

−1 ∈ C
n×n; i = 1,2, . . . ,M. (32)
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

Suppose the solution of Eq. (4) is given by

û(ω, θ) =

[
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

]−1

f(ω) (33)

Using Eqs. (27)–(32) and the mass and stiffness orthogonality of Φ
one has

û(ω, θ) =

[
Φ

−T
Λ0(ω)Φ

−1 +
M∑

i=1

ξi(θ)Φ
−T Ã i(ω)Φ

−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑

i=1

ξi(θ)Ã i(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ
−T f(ω)

(34)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T .
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi

matrices as
Ã i = Λi +∆i , i = 1,2, . . . ,M (35)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag

[
λi1, λi2 , . . . , λin

]
∈ R

n×n (36)

and ∆i = Ã i − Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =



Λ0(ω) +

M∑

i=1

ξi(θ)Λi(ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+

M∑

i=1

ξi(θ)∆i(ω)

︸ ︷︷ ︸
∆(ω,ξ(θ))




−1

(37)

where Λ (ω, ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an

off-diagonal only matrix.
S. Adhikari (Swansea) Stochastic Structural Dynamics February 26 to March 2, 2012 23 / 47



Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

We rewrite Eq. (37) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In + Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]]−1

(38)

The above expression can be represented using a Neumann type of
matrix series as

Ψ (ω, ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]s
Λ
−1 (ω, ξ(θ)) (39)
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Spectral decomposition in the modal space Projection in the modal space

Projection in the modal space

Taking an arbitrary r -th element of û(ω, θ), Eq. (34) can be rearranged
to have

ûr (ω, θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

 (40)

Defining

Γk (ω, ξ(θ)) =
n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(41)

and collecting all the elements in Eq. (40) for r = 1,2, . . . ,n one has

û(ω, θ) =
n∑

k=1

Γk (ω, ξ(θ))φk (42)
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Spectral decomposition in the modal space Properties of the spectral functions

Spectral functions

Definition
The functions Γk (ω, ξ(θ)) , k = 1,2, . . . n are the frequency-adaptive
spectral functions as they are expressed in terms of the spectral
properties of the coefficient matrices at each frequency of the
governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number
of terms and they are highly nonlinear functions of the random
variables ξi(θ).

For computational purposes, it is necessary to truncate the series
after certain number of terms.

Different order of spectral functions can be obtained by using
truncation in the expression of Γk (ω, ξ(θ))
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Spectral decomposition in the modal space Properties of the spectral functions

First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1,2, . . . ,n

are obtained by retaining as many terms in the series expansion in
Eqn. (39).

Retaining one and two terms in (39) we have

Ψ
(1) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) (43)

Ψ
(2) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ))− Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ))

(44)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are non-Gaussian random variables even if ξi(θ) are Gaussian
random variables.
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Spectral decomposition in the modal space Properties of the spectral functions

Summary of the basis functions (frequency-adaptive spectr al
functions)

The basis functions are:
1 not polynomials in ξi(θ) but ratio of polynomials.
2 independent of the nature of the random variables (i.e. applicable

to Gaussian, non-Gaussian or even mixed random variables).
3 not general but specific to a problem as it utilizes the eigenvalues

and eigenvectors of the system matrices.
4 such that truncation error depends on the off-diagonal terms of

the matrix ∆ (ω, ξ(θ)).
5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial
functions within a Galerkin error minimization scheme.
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

One can obtain constants ck ∈ C such that the error in the following
representation

û(ω, θ) =
n∑

k=1

ck (ω)Γ̂k (ω, ξ(θ))φk (45)

can be minimised in the least-square sense. It can be shown that the
vector c = {c1, c2, . . . , cn}T satisfies the n × n complex algebraic
equations S(ω) c(ω) = b(ω) with

Sjk =

M∑

i=0

Ãijk Dijk ; ∀ j , k = 1,2, . . . ,n; Ãijk = φT
j A iφk , (46)

Dijk = E
[
ξi(θ)Γ̂k (ω, ξ(θ))

]
,bj = E

[
φT

j f(ω)
]
. (47)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ck Γ̂k (ω, ξ(θ))φk

)
− f(ω) ∈ C

N×N

(48)
The solution is viewed as a projection where φk ∈ R

n are the
basis functions and ck are the unknown constants to be
determined. This is done for each frequency step.

The coefficients ck are evaluated using the Galerkin approach so
that the error is made orthogonal to the basis functions, that is,
mathematically

ε(ω, θ)⊥φj ⇛
〈
φj , ε(ω, θ)

〉
= 0 ∀ j = 1,2, . . . ,n (49)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

Imposing the orthogonality condition and using the expression of
the error one has

E

[
φT

j

(
M∑

i=0

A iξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− φT

j f

]
= 0,∀j (50)

Interchanging the E [•] and summation operations, this can be
simplified to

n∑

k=1

(
M∑

i=0

(
φT

j A iφk

)
E
[
ξi(θ)Γ̂k (ξ(θ))

])
ck =

E
[
φT

j f
]

(51)

or

n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (52)
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Error minimization in the Hilbert space Model Reduction

Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing
order such that

λ01 < λ02 < . . . < λ0n (53)

From the expression of the spectral functions observe that the
eigenvalues ( λ0k

= ω2
0k

) appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φT
k f(ω)

Λ0k (ω) +
∑M

i=1 ξi(θ)Λik (ω)
(54)

where Λ0k (ω) = −ω2 + iω(ζ1 + ζ2ω
2
0k
) + ω2

0k

The series can be truncated based on the magnitude of the
eigenvalues relative to the frequency of excitation. Hence for the
frequency domain analysis all the eigenvalues that cover almost
twice the frequency range under consideration can be chosen.
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Error minimization in the Hilbert space Model Reduction

Nature of the spectral functions
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(a) Spectral functions for σa = 0.1.

0 100 200 300 400 500 600
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

S
pe

ct
ra

l f
un

ct
io

ns
 o

f a
 r

an
do

m
 s

am
pl

e

 

 

Γ(4)
1

(ω,ξ(θ))

Γ(4)
2

(ω,ξ(θ))

Γ(4)
3

(ω,ξ(θ))

Γ(4)
4

(ω,ξ(θ))

Γ(4)
5

(ω,ξ(θ))

Γ(4)
6

(ω,ξ(θ))

Γ(4)
7

(ω,ξ(θ))

(b) Spectral functions for σa = 0.2.

The amplitude of first seven spectral functions of order 4 for a
particular random sample under applied force. The spectral functions
are obtained for two different standard deviation levels of the
underlying random field: σa = {0.10,0.20}.
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Error minimization in the Hilbert space Model Reduction

Model Reduction by reduced number of modes

(Stochastic modal reduction) The solution of the discretized stochastic
finite element equation (4) can be expressed by the series
representation

û(ω, θ) =
p∑

k=1

ck Γ̂k (ω, ξ(θ))φk (55)

such that the error is minimized in a least-square sense. ck ,
Γ̂k (ω, ξ(ω)) and φk can be obtained following the procedure described
in the previous section by letting the indices j , k upto p in Eqs. (46) and
(47).
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Error minimization in the Hilbert space Computational method

Computational method

The mean vector can be obtained as

ū= E [û(θ)] =
p∑

k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (56)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ)− ū) (û(θ)− ū)T

]
=

p∑

k=1

p∑

j=1

ckcjΣΓkjφkφ
T
j (57)

where the elements of the covariance matrix of the spectral
functions are given by

ΣΓkj = E
[(

Γ̂k (ξ(θ))− E
[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]

(58)
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Error minimization in the Hilbert space Computational method

Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the
mean mass and stiffness matrices to generate the orthonormal
basis vectors: K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(θ), i = 1,2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φ

T
k f(ω)

Λ0k
(ω)+

∑M
i=1 ξi(θ)Λik

(ω)
, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S−1(ω)b(ω) ∈ R
n, where

b(ω) = f̃(ω)⊙ Γ(ω), S(ω) = Λ0(ω)⊙ D0(ω) +
∑M

i=1 Ã i(ω)⊙ Di(ω)

and Di(ω) = E
[
Γ(ω, θ)ξi(θ)Γ

T (ω, θ)
]
,∀ i = 0,1,2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω, θ) =

∑p
k=1 ck (ω)Γk (ξ(ω, θ))φk
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Numerical illustration The Euler-Bernoulli beam

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending
modulus

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus:
2 × 1011 Pa.

We study the deflection of the beam under the action of a
harmonic point load on the free end.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (59)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.

The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (60)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/2 is considered in the present
numerical study.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The random field is Gaussian with correlation length µa = L/2. The
results are compared with the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 80.

The number of random variables in KL expansion used for
discretizing the stochastic domain is 18 (90% of variability
retained).

Simulations have been performed with 10,000 MCS samples and
for two values of standard deviation of the random field,
σa = 0.1,0.2.

Constant modal damping is taken with 1% damping factor for all
modes.

Frequency range of interest: 0 − 600 Hz at an interval of 2 Hz.

Upto 4th order spectral functions have been considered in the
present problem. Comparison have been made with 4th order
Polynomial choas results.
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Numerical illustration The Euler-Bernoulli beam

Frequency domain response of the beam
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(c) Beam deflection for σa = 0.1.
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(d) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the
Euler-Bernoulli beam under unit amplitude harmonic point load at the
free end. The response is obtained with 10,000 sample MCS and for
σa = {0.10,0.20}. The proposed Galerkin approach needs solution of
a 14 × 14 linear system of equations only
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Numerical illustration The Euler-Bernoulli beam

Standard deviation of the beam response
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(e) Standard deviation of the re-
sponse for σa = 0.1.
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(f) Standard deviation of the re-
sponse for σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam
under unit amplitude harmonic point load at the free end. The
response is obtained with 10,000 sample MCS and for
σa = {0.10,0.20}.
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Numerical illustration The Euler-Bernoulli beam

Standard deviation vs field variability
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(g) Standard deviation at 246Hz.
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(h) Standard deviation at 418Hz.

The standard deviation of the tip deflection for different values of the
variability of the random field (stochastic elastic modulus). The
response is obtained with 10,000 sample MCS and for
σa = {0.05,0.10,0.15,0.20}. 246 and 418 Hz correspond to the
anti-resonance and resonance frequencies of the beam respectively.
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Numerical illustration The Euler-Bernoulli beam

Probability density function of the tip deflection
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(i) PDF for σa = 0.1.
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(j) PDF for σa = 0.2.

The probability density function of the deflection of the tip of the beam
under a unit amplitude harmonic point load at 418 Hz (resonance
frequency). The correlation length of the random field describing the
bending rigidity is taken to be µa = L/2. The pdfs are obtained with
10,000 sample MCS and two values of σa = 0.10,0.20.
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Numerical illustration The Euler-Bernoulli beam

Mean of the response: time domain

(k) Mean deflection, σa = 0.1. (l) Mean deflection, σa = 0.2.

The mean deflection of the tip of the cantilever beam under an unit
impulse load at time t = 0 for the duration of 1/800 seconds. The
response of the reduced order spectral function method is obtained
with 10,000 sample MCS and for σa = {0.10,0.20}.
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Numerical illustration The Euler-Bernoulli beam

Standard deviation of the response: time domain

(m) Standard deviation of deflection,
σa = 0.1.

(n) Standard deviation of deflection,
σa = 0.2.

The standard deviation of the deflection of the tip of the cantilever
beam under an unit impulse load at time t = 0 for the duration of 1/800
seconds. The response of the reduced order spectral function method
is obtained with 10,000 sample MCS and for σa = {0.10,0.20}.
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Conclusions

Conclusions

1 The stochastic partial differential equations for structural dynamics
is considered.

2 The solution is projected into the modal basis and the associated
stochastic coefficient functions are obtained at each frequency
step (or time step).

3 The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices.

4 If p < n number of orthonormal vectors are used and M is the
number of random variables, then the computational complexity
grows in O(Mp2) + O(p3) for large M and p in the worse case.
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Conclusions

Discussions

The proposed method takes advantage of the fact that for a given
maximum frequency only a small number of modes are necessary
to represent the dynamic response. This modal reduction leads to
a significantly smaller basis. This type of reduction is difficult to
incorporate within the scope of PC as no information regarding the
system matrices are used in constructing the orthogonal
polynomial basis.
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