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Introduction Piezoelectric vibration energy harvesting

Piezoelectric vibration energy harvesting

The harvesting of ambient vibration energy for use in powering
low energy electronic devices has formed the focus of much
recent research.

Of the published results that focus on the piezoelectric effect as
the transduction method, almost all have focused on harvesting
using cantilever beams and on single frequency ambient energy,
i.e., resonance based energy harvesting. Several authors have
proposed methods to optimize the parameters of the system to
maximize the harvested energy.

Some authors have considered energy harvesting under wide
band excitation.
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Introduction The role of uncertainty

Why uncertainty is important for energy harvesting?

In the context of energy harvesting of ambient vibration, the input
excitation may not be always known exactly.

There may be uncertainties associated with the numerical values
considered for various parameters of the harvester. This might
arise, for example, due to the difference between the true values
and the assumed values.

If there are several nominally identical energy harvesters to be
manufactured, there may be genuine parametric variability within
the ensemble.

Any deviations from the assumed excitation may result an
optimally designed harvester to become sub-optimal.
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Introduction The role of uncertainty

Types of uncertainty

Suppose the set of coupled equations for energy harvesting:

L{u(t)} = f(t) (1)

Uncertainty in the input excitations

For this case in general f(t) is a random function of time. Such
functions are called random processes.

f(t) can be stationary or non-stationary random processes

Uncertainty in the system

The operator L{•} is in general a function of parameters
θ1, θ2, · · · , θn ∈ R.

The uncertainty in the system can be characterised by the joint
probability density function pΘ1,Θ2,··· ,Θn (θ1, θ2, · · · , θn).
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Single Degree of Freedom Electromechanical Models Linear Systems

SDOF electromechanical models
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Schematic diagrams of piezoelectric energy harvesters with two
different harvesting circuits. (a) Harvesting circuit without an inductor,
(b) Harvesting circuit with an inductor.
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Single Degree of Freedom Electromechanical Models Linear Systems

Governing equations

For the harvesting circuit without an inductor, the coupled
electromechanical behavior can be expressed by the linear ordinary
differential equations

mẍ(t) + cẋ(t) + kx(t) − θv(t) = f (t) (2)

θẋ(t) + Cpv̇(t) +
1
Rl

v(t) = 0 (3)

For the harvesting circuit with an inductor, the electrical equation
becomes

θẍ(t) + Cpv̈(t) +
1
Rl

v̇(t) +
1
L

v(t) = 0 (4)
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Single Degree of Freedom Electromechanical Models Nonlinear System

Simplified piezomagnetoelastic model

Schematic of the
piezomagnetoelastic device. The beam system is also referred to as
the ‘Moon Beam’.
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Single Degree of Freedom Electromechanical Models Nonlinear System

Governing equations

The nondimensional equations of motion for this system are

ẍ + 2ζ ẋ −
1
2

x(1 − x2)− χv = f (t), (5)

v̇ + λv + κẋ = 0, (6)

where x is the dimensionless transverse displacement of the beam tip,
v is the dimensionless voltage across the load resistor, χ is the
dimensionless piezoelectric coupling term in the mechanical equation,
κ is the dimensionless piezoelectric coupling term in the electrical
equation, λ ∝ 1/RlCp is the reciprocal of the dimensionless time
constant of the electrical circuit, Rl is the load resistance, and Cp is the
capacitance of the piezoelectric material. The force f (t) is proportional
to the base acceleration on the device. If we consider the inductor,
then the second equation will be v̈ + λv̇ + βv + κẍ = 0.
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Single Degree of Freedom Electromechanical Models Nonlinear System

Possible physically realistic cases

Depending on the system and the excitation, several cases are
possible:

Linear system excited by harmonic excitation

Linear system excited by stochastic excitation

Linear stochastic system excited by harmonic/stochastic excitation

Nonlinear system excited by harmonic excitation

Nonlinear system excited by stochastic excitation

Nonlinear stochastic system excited by harmonic/stochastic
excitation

This talk is focused on application of random vibration theory to
various energy harvesting problems
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Our equations:

mẍ(t) + cẋ(t) + kx(t)− θv(t) = −mẍb(t) (7)

θẋ(t) + Cpv̇(t) +
1
Rl

v(t) = 0 (8)

Transforming both the equations into the frequency domain and
dividing the first equation by m and the second equation by Cp we
obtain

(
−ω2 + 2iωζωn + ω2

n

)
X (ω)−

θ

m
V (ω) = ω2Xb(ω) (9)

iω
θ

Cp
X (ω) +

(
iω +

1
CpRl

)
V (ω) = 0 (10)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

The natural frequency of the harvester, ωn, and the damping factor, ζ,
are defined as

ωn =

√
k
m

and ζ =
c

2mωn
. (11)

Dividing the preceding equations by ωn and writing in matrix form one
has [(

1 − Ω2
)
+ 2iΩζ − θ

k
iΩαθ

Cp
(iΩα+ 1)

]{
X
V

}
=

{
Ω2Xb

0

}
, (12)

where the dimensionless frequency and dimensionless time constant
are defined as

Ω =
ω

ωn
and α = ωnCpRl . (13)

α is the time constant of the first order electrical system,
non-dimensionalized using the natural frequency of the mechanical
system.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Inverting the coefficient matrix, the displacement and voltage in the
frequency domain can be obtained as

{
X
V

}
=

1
∆1

[
(iΩα+1) θ

k

−iΩαθ
Cp

(1−Ω2)+2iΩζ

]{
Ω2Xb

0

}
=

{
(iΩα+1)Ω2Xb/∆1

−iΩ3 αθ
Cp

Xb/∆1

}
, (14)

where the determinant of the coefficient matrix is

∆1(iΩ) = (iΩ)3α+ (2 ζ α+ 1) (iΩ)2 +
(
α+ κ2α+ 2 ζ

)
(iΩ) + 1 (15)

and the non-dimensional electromechanical coupling coefficient is

κ2 =
θ2

kCp
. (16)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

Mean power

The average harvested power due to the white-noise base
acceleration with a circuit without an inductor can be obtained as
E

[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb )

]
= π mακ2

(2 ζ α2+α)κ2+4 ζ2α+(2α2+2)ζ
.

From Equation (14) we obtain the voltage in the frequency domain
as

V =
−iΩ3 αθ

Cp

∆1(iΩ)
Xb. (17)

We are interested in the mean of the normalized harvested power
when the base acceleration is Gaussian white noise, that is
|V |2/(Rlω

4Φxbxb).
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

The spectral density of the acceleration ω4Φxbxb and is assumed to be
constant. After some algebra, from Equation (17), the normalized
power is

P̃ =
|V |2

(Rlω4Φxbxb)
=

kακ2

ω3
n

Ω2

∆1(iΩ)∆
∗
1(iΩ)

. (18)

Using linear stationary random vibration theory, the average
normalized power can be obtained as

E

[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb)

]
=

kακ2

ω3
n

∫ ∞

−∞

Ω2

∆1(iΩ)∆
∗
1(iΩ)

dω (19)

From Equation (15) observe that ∆1(iΩ) is a third order polynomial in
(iΩ). Noting that dω = ωndΩ and from Equation (15), the average
harvested power can be obtained from Equation (19) as

E

[
P̃
]
= E

[
|V |2

(Rlω4Φxbxb)

]
= mακ2I(1) (20)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit without an inductor

I(1) =
∫ ∞

−∞

Ω2

∆1(iΩ)∆
∗
1(iΩ)

dΩ. (21)

After some algebra, this integral can be evaluated as

I(1) =
π

α

det




0 1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1




det




2 ζ α+ 1 −1 0

−α α+ κ2α+ 2 ζ 0

0 −2 ζ α− 1 1




(22)

Combining this with Equation (20) we obtain the average harvested
power due to white-noise base acceleration.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Normalised mean power: numerical illustration
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The normalized mean power of a harvester without an inductor as a
function of α and ζ, with κ = 0.6. Maximizing the average power with
respect to α gives the condition α2

(
1 + κ2

)
= 1 or in terms of physical

quantities R2
l Cp

(
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)
= m.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit with an inductor

The electrical equation becomes

θẍ(t) + Cpv̈(t) +
1
Rl

v̇(t) +
1
L

v(t) = 0 (23)

where L is the inductance of the circuit. Transforming equation (23)
into the frequency domain and dividing by Cpω

2
n one has

− Ω2 θ

Cp
X +

(
−Ω2 + iΩ

1
α
+

1
β

)
V = 0 (24)

where the second dimensionless constant is defined as

β = ω2
nLCp, (25)

Two equations can be written in a matrix form as
[
(1−Ω2)+2iΩζ − θ

k

−Ω2 αβθ

Cp
α(1−βΩ2)+iΩβ

]{
X
V

}
=

{
Ω2Xb

0

}
. (26)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit with an inductor

Inverting the coefficient matrix, the displacement and voltage in the
frequency domain can be obtained as

{
X
V

}
=

1
∆2

[
α(1−βΩ2)+iΩβ θ

k

Ω2 αβθ
Cp

(1−Ω2)+2iΩζ

]{
Ω2Xb

0

}

=

{
(α(1−βΩ2)+iΩβ)Ω2Xb/∆2

Ω4 αβθ

Cp
Xb/∆2

}
(27)

where the determinant of the coefficient matrix is

∆2(iΩ) = (iΩ)4β α+ (2 ζ β α+ β) (iΩ)3

+
(
β α+ α+ 2 ζ β + κ2β α

)
(iΩ)2 + (β + 2 ζ α) (iΩ) + α. (28)
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Circuit with an inductor

Mean power

The average harvested power due to the white-noise base
acceleration with a circuit with an inductor can be obtained as
E

[
P̃
]
= mαβκ2π(β+2αζ)

β(β+2αζ)(1+2αζ)(ακ2+2ζ)+2α2ζ(β−1)2 .

This can be obtained in a very similar to the previous case.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Normalised mean power: numerical illustration
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The normalized mean power of a harvester with an inductor as a
function of α and β, with ζ = 0.1 and κ = 0.6.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a
function of β for α = 0.6, ζ = 0.1 and κ = 0.6. The * corresponds to
the optimal value of β(= 1) for the maximum mean harvested power.
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Optimal Energy Harvester Under Gaussian Excitation Circuit without an inductor

Optimal parameter selection
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The normalized mean power of a harvester with an inductor as a
function of α for β = 1, ζ = 0.1 and κ = 0.6. The * corresponds to the
optimal value of α(= 1.667) for the maximum mean harvested power.
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Stochastic System Parameters

Stochastic system parameters

Energy harvesting devices are expected to be produced in bulk
quantities

It is expected to have some parametric variability across the
‘samples’

How can we take this into account and optimally design the
parameters?

The natural frequency of the harvester, ωn, and the damping factor, ζn,
are assumed to be random in nature and are defined as

ωn = ω̄nΨω (29)

ζ = ζ̄Ψζ (30)

where Ψω and Ψζ are the random parts of the natural frequency and
damping coefficient. ω̄n and ζ̄ are the mean values of the natural
frequency and damping coefficient.
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Stochastic System Parameters

Mean harvested power: Harmonic excitation

The average (mean) normalized power can be obtained as

E [P] = E

[
|V |2

(Rlω4X 2
b )

]

=
k̄ακ2Ω2

ω̄3
n

∫ ∞

−∞

∫ ∞

−∞

fΨω
(x1)fΨζ

(x2)

∆1(iΩ, x1, x2)∆
∗
1(iΩ, x1, x2)

dx1dx2 (31)

where

∆1(iΩ,Ψω,Ψζ) = (iΩ)3α+
(
2ζ̄αΨωΨζ + 1

)
(iΩ)2+

(
αΨ2

ω + κ2α+ 2ζ̄ΨωΨζ

)
(iΩ) + Ψ2

ω (32)

The probability density functions (pdf) of Ψω and Ψζ are denoted by
fΨω

(x) and fΨζ
(x) respectively.
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Stochastic System Parameters

The mean power
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The mean power for various values of standard deviation in natural
frequency with ω̄n = 670.5 rad/s,Ψζ = 1, α = 0.8649, κ2 = 0.1185.
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Stochastic System Parameters

The mean power
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The mean harvested power for various values of standard deviation of
the natural frequency, normalised by the deterministic power
(ω̄n = 670.5 rad/s,Ψζ = 1, α = 0.8649, κ2 = 0.1185).
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Stochastic System Parameters

Optimal parameter selection

The optimal value of α:

α2
opt ≈

(c1 + c2σ
2 + 3c3σ

4)

(c4 + c5σ2 + 3c6σ4)
(33)

where

c1 =1 +
(

4ζ̄2 − 2
)
Ω2 +Ω4, c2 = 6 +

(
4ζ̄2 − 2

)
Ω2, c3 = 1, (34)

c4 =
(

1 + 2κ2 + κ4
)
Ω2 +

(
4ζ̄2 − 2 − 2κ2

)
Ω4 +Ω6, (35)

c5 =
(

2κ2 + 6
)
Ω2 +

(
4ζ̄2 − 2

)
Ω4, c6 = Ω2, (36)

and σ is the standard deviation in natural frequency.
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Stochastic System Parameters

Optimal parameter selection

The optimal value of κ:

κ2
opt ≈

1
(α Ω)

√
(d1 + d2σ2 + d3σ4) (37)

where

d1 =1 +
(

4ζ̄2 + α2 − 2
)
Ω2 +

(
4ζ̄2α2 − 2α2 + 1

)
Ω4 + α2Ω6 (38)

d2 =6 +
(

4ζ̄2 + 6α2 − 2
)
Ω2 +

(
4ζ̄2α2 − 2α2

)
Ω4 (39)

d3 =3 + 3α2Ω2 (40)
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Equivalent Linearisation Approach

Nonlinear coupled equations

ẍ + 2ζ ẋ + g(x)− χv = f (t) (41)

v̇ + λv + κẋ = 0, (42)

The nonlinear stiffness is represented as g(x) = −1
2(x − x3).

Assuming a non-zero mean random excitation (i.e., f (t) = f0(t) + mf )
and a non-zero mean system response (i.e., x(t) = x0(t) + mx ), the
following equivalent linear system is considered,

ẍ0 + 2ζ ẋ0 + a0x0 + b0 − χv = f0(t) + mf (43)

where f0(t) and x0(t) are zero mean random processes. mf and mx are
the mean of the original processes f (t) and x(t) respectively. a0 and
b0 are the constants to be determined with b0 = mf and a0 represents
the square of the natural frequency of the linearized system ω2

eq.
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Equivalent Linearisation Approach

Linearised equations

We minimise the expectation of the error norm i.e.,
(E

[
ǫ2
]
,with ǫ = g(x)− a0x0 − b0). To determine the constants a0 and

b0 in terms of the statistics of the response x , we take partial
derivatives of the error norm w.r.t. a0 and b0 and equate them to zero
individually.

∂

∂a0
E

[
ǫ2
]
=E [g(x)x0]− a0E

[
x2

0

]
− b0E [x0] (44)

∂

∂b0
E

[
ǫ2
]
=E [g(x)]− a0E [x0]− b0 (45)

Equating (44) and (45) to zero, we get,

a0 =
E [g(x)x0]

E
[
x2

0

] =
E [g(x)x0]

σ2
x

(46)

b0 = E [g(x)] = mf (47)
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Equivalent Linearisation Approach

Responses of the piezomagnetoelastic oscillator
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Simulated responses of the piezomagnetoelastic oscillator in terms of the

standard deviations of displacement and voltage (σx and σv ) as the standard deviation of the random excitation σf varies. (a)

gives the ratio of the displacement and excitation; (b) gives the ratio of the voltage and excitation; and (c) shows the variance of

the voltage, which is proportional to the mean power.
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Equivalent Linearisation Approach

Phase portraits
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Phase portraits for λ = 0.05, and the stochastic force for (a) σf = 0.025,

(b) σf = 0.045, (c) σf = 0.065. Note that the increasing noise level overcomes the potential barrier resulting in a significant

increase in the displacement x .
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Equivalent Linearisation Approach

Voltage output
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Voltage output due to Gaussian white noise (ζ = 0.01, χ = 0.05, and
κ = 0.5 and λ = 0.01.
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Equivalent Linearisation Approach

Voltage output
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Voltage output due to Lévy noise (ζ = 0.01, χ = 0.05, and κ = 0.5 and
λ = 0.01.
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Equivalent Linearisation Approach

Inverted beam harvester
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(a) Schematic diagram of inverted beam harvester, (b) a typical phase
portrait of the tip mass.
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Equivalent Linearisation Approach

Energy harvesting from bridge vibration
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(a) Schematic diagram of a beam with a moving point load, (b) The
variation in the energy generated by the harvester located at L/3 with
α for a single vehicle traveling at different speeds, u
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Equivalent Linearisation Approach

Energy harvesting DVA
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(a) Schematic diagram of energy harvesting dynamic vibration
absorber attached to a single degree of freedom vibrating system,
(b)Harvested power in mW/m2for nondimensional coupling coefficient
κ2 = 0.3
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Conclusions

Summary of the results

Vibration energy based piezoelectric and magnetopiezoelectric
energy harvesters are expected to operate under a wide range of
ambient environments. This talk considers energy harvesting of
such systems under harmonic and random excitations.

Optimal design parameters were obtained using the theory of
linear random vibration

Nonlinearity of the system can be exploited to scavenge more
energy over wider operating conditions

Uncertainty in the system parameters can have dramatic affect on
energy harvesting. This should be taken into account for optimal
design

Stochastic jump process models can be used for the calculation of
harvested power

Adhikari (Swansea) Vibration Energy Harvesting Under Uncertainty January 2012 42 / 43



Conclusions

Further details

1 Ali, S. F., Friswell, M. I. and Adhikari, S., ”Analysis of energy harvesters for highway bridges”, Journal of Intelligent
Material Systems and Structures, 22[16] (2011), pp. 1929-1938.

2 Jacquelin, E., Adhikari, S. and Friswell, M. I., ”Piezoelectric device for impact energy harvesting”, Smart Materials and
Structures, 20[10] (2011), pp. 105008:1-12.

3 Litak, G., Borowiec, B., Friswell, M. I. and Adhikari, S., ”Energy harvesting in a magnetopiezoelastic system driven by
random excitations with uniform and Gaussian distributions”, Journal of Theoretical and Applied Mechanics, 49[3] (2011),
pp. 757-764..

4 Ali, S. F., Adhikari, S., Friswell, M. I. and Narayanan, S., ”The analysis of piezomagnetoelastic energy harvesters under
broadband random excitations”, Journal of Applied Physics, 109[7] (2011), pp. 074904:1-8

5 Ali, S. F., Friswell, M. I. and Adhikari, S., ”Piezoelectric energy harvesting with parametric uncertainty”, Smart Materials
and Structures, 19[10] (2010), pp. 105010:1-9.

6 Friswell, M. I. and Adhikari, S., ”Sensor shape design for piezoelectric cantilever beams to harvest vibration energy”,
Journal of Applied Physics, 108[1] (2010), pp. 014901:1-6.

7 Litak, G., Friswell, M. I. and Adhikari, S., ”Magnetopiezoelastic energy harvesting driven by random excitations”, Applied
Physics Letters, 96[5] (2010), pp. 214103:1-3.

8 Adhikari, S., Friswell, M. I. and Inman, D. J., ”Piezoelectric energy harvesting from broadband random vibrations”, Smart
Materials and Structures, 18[11] (2009), pp. 115005:1-7.
Under Review

9 Ali, S. F. and Adhikari, S., ”Energy harvesting dynamic vibration absorbers”.

10 Friswell, M. I., Ali, S. F., Adhikari, S., Lees, A.W. , Bilgen, O. and Litak, G., ”Nonlinear piezoelectric vibration energy
harvesting from an inverted cantilever beam with tip mass”.

Adhikari (Swansea) Vibration Energy Harvesting Under Uncertainty January 2012 43 / 43


	Introduction
	Piezoelectric vibration energy harvesting
	The role of uncertainty

	Single Degree of Freedom Electromechanical Models
	Linear Systems
	Nonlinear System

	Optimal Energy Harvester Under Gaussian Excitation
	Circuit without an inductor

	Stochastic System Parameters
	Equivalent Linearisation Approach
	Conclusions

