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Introduction Stochastic Partial Differential Equations for dynamical systems

Stochastic PDEs

We consider the stochastic elliptic partial differential equation (PDE)

ρ(r, θ)
∂2U(r, t , θ)

∂t2 + Lα
∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (1)

The stochastic operator Lβ can be
Lβ ≡ ∂

∂x AE(x , θ) ∂
∂x axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams
Lα denotes the stochastic damping, which is mostly proportional in
nature.
Here α, β : Rd ×Θ→ R are stationary square integrable random fields,
which can be viewed as a set of random variables indexed by r ∈ Rd .
Based on the physical problem the random field a(r, θ) can be used to
model different physical quantities (e.g., AE(x , θ), EI(x , θ)).
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discretized Stochastic PDE

A random process a(r, θ) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (2)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation∫

D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1,2, · · · (3)

For non-Gaussian random fields (e.g. uniform, lognormal), Eq. 2
can represented with a PC type expansion and different sets of
orthogonal polynomials from the Weiner-Askey scheme can be
utilized to represent the trial basis.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discrete equation for stochastic mechanics

The stochastic PDE along with the boundary conditions results in:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (4)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ Rn×n is the random mass matrix,
K(θ) = K0 +

∑p
i=1 νi(θi)Ki ∈ Rn×n is the random stiffness matrix,

C(θ) ∈ Rn×n as the random damping matrix and f(t) is the forcing
vector
The mass and stiffness matrices have been expressed in terms of
their deterministic components (M0 and K0) and the
corresponding random contributions (Mi and Ki) obtained from
discretizing the stochastic field with a finite number of random
variables (µi(θi) and νi(θi)) and their corresponding spatial basis
functions.
Proportional damping model is considered for which
C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Frequency domain analysis

For the harmonic analysis of the structural system, taking the
Fourier transform[

−ω2M(θ) + iωC(θ) + K(θ)
]

ũ(θ, ω) = f̃(ω) (5)

where ũ(θ, ω) is the complex frequency domain system response
amplitude, f̃(ω) is the amplitude of the harmonic force.
For convenience we group the random variables associated with
the mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1(θ) = νj(θ) for i = 1,2, . . . ,p1

and j = 1,2, . . . ,p2
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Introduction Stochastic Partial Differential Equations for dynamical systems

Discrete equation for stochastic mechanics

Using M = p1 + p2 which we have(
A0(ω) +

M∑
i=1

ξi(θ)Ai(ω)

)
ũ(ω, θ) = f̃(ω) (6)

where A0 and Ai ∈ Cn×n represent the complex deterministic and
stochastic parts respectively of the mass, the stiffness and the
damping matrices ensemble.
For the case of proportional damping the matrices A0 and Ai can
be written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1] K0, (7)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1,2, . . . ,p1 (8)

and Aj+p1(ω) = [iωζ2 + 1] Kj for j = 1,2, . . . ,p2 .
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

Using the Polynomial Chaos expansion, the solution (a vector
valued function) can be expressed as

u(θ) = ui0h0 +
∞∑

i1=1

ui1h1(ξi1(θ))

+
∞∑

i1=1

i1∑
i2=1

ui1,i2h2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3(ξi1(θ), ξi2(θ), ξi3(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4 h4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + . . . ,

Here ui1,...,ip ∈ Rn are deterministic vectors to be determined.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (9)

where Hk (ξ(θ)) are the polynomial chaoses.
The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
(10)
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk for every
frequency point:

A0,0 · · · A0,P−1
A1,0 · · · A1,P−1

...
...

...
AP−1,0 · · · AP−1,P−1




u0
u1
...

uP−1

 =


f0
f1
...

fP−1

 (11)

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion: Some Observations

The basis is a function of the pdf of the random variables only. For
example, Hermite polynomials for Gaussian pdf, Legender’s
polynomials for uniform pdf.
The physics of the underlying problem (static, dynamic, heat
conduction, transients....) cannot be incorporated in the basis.
For an n-dimensional output vector, the number of terms in the
projection can be more than n (depends on the number of random
variables).
The functional form of the response is a pure polynomial in
random variables.
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Introduction Stochastic Partial Differential Equations for dynamical systems

Polynomial Chaos expansion

We can ‘split’ the Polynomial Chaos type of expansions as

û(θ) =
n∑

k=1

Hk (ξ(θ))uk +
P∑

k=n+1

Hk (ξ(θ))uk (12)

According to the spanning property of a complete basis in Rn it is
always possible to project û(θ) in a finite dimensional vector basis
for any θ ∈ Θ. Therefore, in a vector polynomial chaos expansion
(12), all uk for k > n must be linearly dependent.
This is the motivation behind seeking a finite dimensional
expansion.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

It can be shown that there exist a finite set of complex frequency
dependent functions Γk (ω, ξ(θ)) and a complete basis φk ∈ Rn for
k = 1,2, . . . ,n such that the series

û(ω, θ) =
n∑

k=1

Γk (ω, ξ(θ))φk (13)

converges to the exact solution of the discretized stochastic finite
element equation (4) with probability 1.
Outline of the derivation: In the first step a complete basis is generated
with the eigenvectors φk ∈ Rn of the generalized eigenvalue problem

K0φk = λ0k M0φk ; k = 1,2, . . .n (14)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ Rn×n;Φ = [φ1,φ2, . . . ,φn] ∈ Rn×n

(15)
Eigenvalues are ordered in the ascending order:
λ01 < λ02 < . . . < λ0n .
We use the orthogonality property of the modal matrix Φ as

ΦT K0Φ = λ0, and ΦT M0Φ = I (16)

Using these we have

ΦT A0Φ = ΦT
(

[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (17)

This gives ΦT A0Φ = Λ0 and A0 = Φ−TΛ0Φ
−1, where

Λ0 =
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.

S. Adhikari (Swansea) Stochastic Structural Dynamics 4-6 January, 2012 16 / 44



Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Hence, Λ0 can also be written as

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ Cn×n (18)

where λ0j =
(
−ω2 + iωζ1

)
+ (iωζ2 + 1)λj and λj is as defined in

Eqn. (15). We also introduce the transformations

Ãi = ΦT AiΦ ∈ Cn×n; i = 0,1,2, . . . ,M. (19)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ−T ÃiΦ
−1 ∈ Cn×n; i = 1,2, . . . ,M. (20)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Suppose the solution of Eq. (4) is given by

û(ω, θ) =

[
A0(ω) +

M∑
i=1

ξi(θ)Ai(ω)

]−1

f(ω) (21)

Using Eqs. (15)–(20) and the mass and stiffness orthogonality of Φ
one has

û(ω, θ) =

[
Φ−TΛ0(ω)Φ−1 +

M∑
i=1

ξi(θ)Φ−T Ãi(ω)Φ−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑
i=1

ξi(θ)Ãi(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ−T f(ω)
(22)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T .
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the Ãi
matrices as

Ãi = Λi + ∆i , i = 1,2, . . . ,M (23)

Here the diagonal matrix

Λi = diag
[
Ã
]

= diag
[
λi1 , λi2 , . . . , λin

]
∈ Rn×n (24)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =

Λ0(ω) +
M∑

i=1

ξi(θ)Λi(ω)︸ ︷︷ ︸
Λ(ω,ξ(θ))

+
M∑

i=1

ξi(θ)∆i(ω)︸ ︷︷ ︸
∆(ω,ξ(θ))



−1

(25)

where Λ (ω, ξ(θ)) ∈ Rn×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an
off-diagonal only matrix.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We rewrite Eq. (25) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In + Λ−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]]−1
(26)

The above expression can be represented using a Neumann type of
matrix series as

Ψ (ω, ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]s
Λ−1 (ω, ξ(θ)) (27)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Taking an arbitrary r -th element of û(ω, θ), Eq. (22) can be rearranged
to have

ûr (ω, θ) =
n∑

k=1

Φrk

 n∑
j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
) (28)

Defining

Γk (ω, ξ(θ)) =
n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(29)

and collecting all the elements in Eq. (28) for r = 1,2, . . . ,n one has

û(ω, θ) =
n∑

k=1

Γk (ω, ξ(θ))φk (30)
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Spectral decomposition in a vector space Properties of the spectral functions

Spectral functions

Definition
The functions Γk (ω, ξ(θ)) , k = 1,2, . . .n are the frequency-adaptive
spectral functions as they are expressed in terms of the spectral
properties of the coefficient matrices at each frequency of the
governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number
of terms and they are highly nonlinear functions of the random
variables ξi(θ).
For computational purposes, it is necessary to truncate the series
after certain number of terms.
Different order of spectral functions can be obtained by using
truncation in the expression of Γk (ω, ξ(θ))
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Spectral decomposition in a vector space Properties of the spectral functions

First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1,2, . . . ,n

are obtained by retaining as many terms in the series expansion in
Eqn. (27).

Retaining one and two terms in (27) we have

Ψ(1) (ω, ξ(θ)) = Λ−1 (ω, ξ(θ)) (31)

Ψ(2) (ω, ξ(θ)) = Λ−1 (ω, ξ(θ))− Λ−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ))
(32)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are non-Gaussian random variables even if ξi(θ) are Gaussian
random variables.

S. Adhikari (Swansea) Stochastic Structural Dynamics 4-6 January, 2012 23 / 44



Spectral decomposition in a vector space Properties of the spectral functions

Summary of the basis functions (frequency-adaptive spectral
functions)

The basis functions are:
1 not polynomials in ξi(θ) but ratio of polynomials.
2 independent of the nature of the random variables (i.e. applicable

to Gaussian, non-Gaussian or even mixed random variables).
3 not general but specific to a problem as it utilizes the eigenvalues

and eigenvectors of the systems matrices.
4 such that truncation error depends on the off-diagonal terms of

the matrix ∆ (ω, ξ(θ)).
5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial
functions within a Galerkin error minimization scheme.
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

There exists a set of finite functions Γ̂k (ω, ξ(θ)), constants ck ∈ C and
vectors φk ∈ Rn for k = 1,2, . . . ,n such that the series

û(ω, θ) =
n∑

k=1

ck (ω)Γ̂k (ω, ξ(θ))φk (33)

converges to the exact solution of the discretized stochastic finite
element equation (4) in the mean-square sense provided the vector
c = {c1, c2, . . . , cn}T satisfies the n × n complex algebraic equations
S(ω) c(ω) = b(ω) with

Sjk =
M∑

i=0

Ãijk Dijk ; ∀ j , k = 1,2, . . . ,n; Ãijk = φT
j Aiφk , (34)

Dijk = E
[
ξi(θ)Γ̂j(ω, ξ(θ))Γ̂k (ω, ξ(θ))

]
,bj = E

[
Γ̂j(ω, ξ(θ))

] (
φT

j f(ω)
)
.

(35)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ck Γ̂k (ω, ξ(θ))φk

)
− f(ω) ∈ CN×N

(36)
The solution is viewed as a projection where

{
Γ̂k (ξ(θ))φk

}
∈ Rn

are the basis functions and ck are the unknown constants to be
determined. This is done for each frequency step.
The coefficients ck are evaluated using the Galerkin approach so
that the error is made orthogonal to the basis functions, that is,
mathematically

ε(ω, θ)⊥
(

Γ̂j(ξ(θ))φj

)
V
〈

Γ̂j(ω, ξ(θ))φj , ε(ω, θ)
〉

= 0∀ j = 1,2, . . . ,n
(37)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

Imposing the orthogonality condition and using the expression of
the error one has

E

[
Γ̂j(ξ(θ))φT

j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− Γ̂j(ξ(θ))φT

j f

]
= 0,∀j

(38)
Interchanging the E [•] and summation operations, this can be
simplified to

n∑
k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi(θ)Γ̂j(ξ(θ))Γ̂k (ξ(θ))

])
ck =

E
[
Γ̂j(ξ(θ))

] (
φT

j f
)

(39)

or
n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (40)
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Error minimization in the Hilbert space Model Reduction

Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing
order such that

λ01 < λ02 < . . . < λ0n (41)

From the expression of the spectral functions observe that the
eigenvalues appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φT
k f(ω)

Λ0k (ω) +
∑M

i=1 ξi(ω)Λik (ω)
(42)

The series can be truncated based on the magnitude of the
eigenvalues as the higher terms becomes smaller. Hence for the
frequency domain analysis all the eigenvalues that cover almost
twice the frequency range under consideration is chosen.
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Error minimization in the Hilbert space Model Reduction

Model Reduction by reduced number of basis

Proposition

(modal reduction) Then the solution of the discretized stochastic finite
element equation (4) can be expressed by the series representation

û(ω, θ) =

p∑
k=1

ck Γ̂k (ξ(ω, θ))φk (43)

such that the error is minimized in a least-square sense. ck ,
ω̂, Γk (ξ(ω)) and φk can be obtained following the procedure described
in the previous section by letting the indices j , k upto p in Eqs. (34) and
(35).
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Error minimization in the Hilbert space Computational method

Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑
k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (44)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ)− ū) (û(θ)− ū)T

]
=

p∑
k=1

p∑
j=1

ckcjΣΓkjφkφ
T
j (45)

where the elements of the covariance matrix of the spectral
functions are given by

ΣΓkj = E
[(

Γ̂k (ξ(θ))− E
[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]
(46)
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Error minimization in the Hilbert space Computational method

Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the
mean mass and stiffness matrices to generate the orthonormal
basis vectors: K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(θ), i = 1,2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φT

k f(ω)

Λ0k
(ω)+

∑M
i=1 ξi (θ)Λik

(ω)
, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S−1(ω)b(ω) ∈ Rn, where
b(ω) = f̃(ω)� Γ(ω), S(ω) = Λ0(ω)� D0(ω) +

∑M
i=1 Ãi(ω)� Di(ω)

and Di(ω) = E
[
Γ(ω, θ)ξi(θ)ΓT (ω, θ)

]
,∀ i = 0,1,2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω, θ) =

∑p
k=1 ck (ω)Γk (ξ(ω, θ))φk
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Numerical illustration The Euler-Bernoulli beam

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending
modulus

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus:
2 × 1011 Pa.
We study the deflection of the beam under the action of a
harmonic point load on the free end.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (47)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.
The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (48)

where µa is the correlation length and σa is the standard deviation.
A correlation length of µa = L/2 is considered in the present
numerical study.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The random field is Gaussian with correlation length µa = L/2. The
results are compared with the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 80.
The number of random variables in KL expansion used for
discretizing the stochastic domain is 18 (90% of variability
retained).
Simulations have been performed with 10,000 MCS samples and
for two values of standard deviation of the random field,
σa = 0.1,0.2.
Constant modal damping is taken with 1% damping factor for all
modes.
Frequency range of interest: 0− 600 Hz at an interval of 2 Hz.
Upto 4th order spectral functions have been considered in the
present problem. Comparison have been made with 4th order
Polynomial choas results.
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Numerical illustration The Euler-Bernoulli beam

Frequency domain response of the beam
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(a) Beam deflection for σa = 0.1.
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(b) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the
Euler-Bernoulli beam under unit amplitude harmonic point load at the
free end. The response is obtained with 10,000 sample MCS and for
σa = {0.10,0.20}. The proposed Galerkin approach needs solution of
a 14× 14 linear system of equations only
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Numerical illustration The Euler-Bernoulli beam

Standard deviation of the beam response
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(c) Standard deviation of the re-
sponse for σa = 0.1.
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(d) Standard deviation of the re-
sponse for σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam
under unit amplitude harmonic point load at the free end. The
response is obtained with 10,000 sample MCS and for
σa = {0.10,0.20}.

S. Adhikari (Swansea) Stochastic Structural Dynamics 4-6 January, 2012 36 / 44



Numerical illustration The Euler-Bernoulli beam

Standard deviation vs field variability
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(e) Standard deviation at 246Hz.
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(f) Standard deviation at 418Hz.

The standard deviation of the tip deflection for different values of the
variability of the random field (stochastic elastic modulus). The
response is obtained with 10,000 sample MCS and for
σa = {0.05,0.10,0.15,0.20}. 246 and 418 Hz correspond to the
anti-resonance and resonance frequencies of the beam respectively.
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Numerical illustration The Euler-Bernoulli beam

Probability density function of the tip deflection
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(g) PDF for σa = 0.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Deflection (m)

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n
ct

io
n
  
at

 4
1
8
H

z 
fo

r 
σ

a =
 0

.2

 

 

direct MCS

2nd order Galerkin

3rd order Galerkin

4th order Galerkin

4th order PC

(h) PDF for σa = 0.2.

The probability density function of the deflection of the tip of the beam
under a unit amplitude harmonic point load at 418 Hz (resonance
frequency). The correlation length of the random field describing the
bending rigidity is taken to be µa = L/2. The pdfs are obtained with
10,000 sample MCS and two values of σa = 0.10,0.20.
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Conclusions

Conclusions

1 The stochastic partial differential equations for structural dynamics
is considered.

2 The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated stochastic coefficient
functions are obtained at each frequency step.

3 The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices.

4 If p < n number of orthonormal vectors are used and M is the
number of random variables, then the computational complexity
grows in O(Mp2) + O(p3) for large M and p in the worse case.
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Conclusions

Discussions

The only information used in constructing the polynomial chaos
basis is the probability density function of the random variables
involved.
However, more information is available - these include (a) there
are matrices Ai , i = 0,1,2 . . .M, (b) they are symmetric and of
dimension n, (c) A0 has a specific form K0 − ω2M0, and (d) there
exist an ordering ‖Ai‖ ≥ ‖Ai+1‖. The proposed method constructs
a customized basis for dynamic problems using these ‘additional’
information.
In the PC method these information are used in the Galerkin error
minimization step, which is much further down the line. Whereas
in the proposed method, the basis functions themselves are
created using these information. As a result, the error to be
minimized in the Galerkin is much smaller to start with compared
to the PC and consequently a very small number of constants are
necessary.
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Conclusions

Discussions

The true nature of the solution is not polynomials in the random
variables but a ratio of two polynomials where the denominator
has higher degree than the numerator. The proposed spectral
basis functions have this correct mathematical form.
A vector of dimension n can be uniquely represented as a linear
combination of n orthogonal vectors. In the PC approach,
whenever P > n, the additional P − n coefficient vectors are
linearly independent. Therefore they can be simply represented
as a constant times the other vectors. But the PC method
explicitly determines these linearly dependent vectors by solving
large number of equations. This huge additional cost has been
avoided in the proposed approach by a-priori selecting a
orthonormal basis from the system matrices.
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Conclusions

Discussions

The proposed method takes advantage of the fact that for a given
maximum frequency only a small number of modes are necessary
to represent the dynamic response. This modal reduction leads to
a significantly smaller basis. This type of reduction is difficult to
incorporate within the scope of PC as no information regarding the
system matrices are used in constructing the orthogonal
polynomial basis.
The polynomial basis of the PC method remains the same for all
values of frequency, however, the spectral functions used in the
present approach changes with frequency which allows for a
better estimation of the response variables.
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