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Introduction Stochastic Partial Differential Equations

Stochastic PDEs

We consider the stochastic elliptic partial differential equation (PDE)

Lθ{a(r, θ),u(r, θ)} = p(r) (1)

The stochastic operator Lθ can be

Lθ ≡ ∂
∂x

{
AE(x , θ) ∂

∂x (•)
}

for axial deformation of rods

Lθ ≡ ∂2

∂x2

{
EI(x , θ) ∂2

∂x2 (•)
}

for bending deformation of beams

Here a : Rd ×Θ → R is a random field, which can be viewed as a set
of random variables indexed by r ∈ R

d . We assume the random field
a(r, θ) to be stationary and square integrable. Based on the physical
problem the random field a(r, θ) can be used to model different
physical quantities (e.g., AE(x , θ), EI(x , θ)).
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Introduction Stochastic Partial Differential Equations

Discretized Stochastic PDE

The random process a(r, θ) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (2)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1,2, · · · (3)
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Introduction Stochastic Partial Differential Equations

Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (4)

The underlying random process H(x , θ) can be expanded using the
Karhunen-Loève expansion in the interval −a ≤ x ≤ a as

H(x , θ) =
∞∑

j=1

ξj(θ)
√

λjϕj(x) (5)

Using the notation c = 1/b, the corresponding eigenvalues and eigenfunctions for odd j are given by

λj =
2c

ω2
j + c2

, ϕj (x) =
cos(ωj x)

√

√

√

√a +
sin(2ωj a)

2ωj

, where tan(ωj a) =
c

ωj
, (6)

and for even j are given by

λj =
2c

ωj
2 + c2

, ϕj (x) =
sin(ωj x)

√

√

√

√a −

sin(2ωj a)

2ωj

, where tan(ωj a) =
ωj

−c
. (7)
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Introduction Stochastic Partial Differential Equations

Discrete equation for stochastic mechanics

Truncating the KL expansion upto the M-th term and discretising
the displacement field, the equation for static deformation can be
expresses as [

A0 +

M∑

i=1

ξi(θ)Ai

]
u(θ) = f (8)

The aim is to efficiently solve for u(θ).

Note: Equation (8) can also be obtained with other considerations,
such as random variable models.

The matrices Ai can also be viewed as sensitivity matrices
Ai =

∂A
∂ξi

- can be obtained form a general purpose FE software

For damped structural dynamical systems A i , i = 0, · · · ,M
matrices in general become frequency dependent and complex.
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Introduction Stochastic Partial Differential Equations

Polynomial Chaos expansion

Using the Polynomial Chaos expansion, the solution (a vector
valued function) can be expressed as

u(θ) = u i0h0 +

∞∑

i1=1

u i1h1(ξi1(θ))

+

∞∑

i1=1

i1∑

i2=1

u i1,i2h2(ξi1(θ), ξi2(θ))

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

u i1i2i3h3(ξi1(θ), ξi2(θ), ξi3(θ))

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

u i1i2i3i4 h4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + . . . ,

Here u i1,...,ip ∈ R
n are deterministic vectors to be determined.
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Introduction Stochastic Partial Differential Equations

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (9)

where Hk(ξ(θ)) are the polynomial chaoses.

The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!
j!(M − 1)!

(10)
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Introduction Stochastic Partial Differential Equations

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk ∈ R
n.




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1








u0

u1
...

uP−1





=





f0

f1
...

fP−1





(11)

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Introduction Stochastic Partial Differential Equations

Polynomial Chaos expansion: Some Observations

The basis is a function of the pdf of the random variables only. For
example, Hermite polynomials for Gaussian pdf, Legender’s
polynomials for uniform pdf.

The physics of the underlying problem (static, dynamic, heat
conduction, transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the
projection can be more than n (depends on the number of random
variables).

The functional form of the response is a pure polynomial in
random variables.
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Introduction Stochastic Partial Differential Equations

Mathematical nature of the solution

The elements of the solution vector are not simple polynomials,
but ratio of polynomials in ξ(θ).

Remark

If all A i ∈ R
n×n are matrices of rank n, then the elements of u(θ) are

the ratio of polynomials of the form

p(n−1)(ξ1(θ), ξ2(θ), . . . , ξM(θ))

p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ))
(12)

where p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ)) is an n-th order complete
multivariate polynomial of variables ξ1(θ), ξ2(θ), . . . , ξM(θ).
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Introduction Stochastic Partial Differential Equations

Mathematical nature of the solution

Suppose we denote

A(θ) =

[
A0 +

M∑

i=1

ξi(θ)Ai

]
∈ R

n×n (13)

so that
u(θ) = A−1(θ)f (14)

From the definition of the matrix inverse we have

A−1 =
Adj(A)

det (A)
=

CT
a

det (A)
(15)

where Ca is the matrix of cofactors. The determinant of A contains a
maximum of n number of products of Akj and their linear combinations.
Note from Eq. (13) that

Akj(θ) = A0kj +

M∑

i=1

ξi(θ)A ikj
(16)
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Introduction Stochastic Partial Differential Equations

Mathematical nature of the solution

Since all the matrices are of full rank, the determinant contains a
maximum of n number of products of linear combination of
random variables in Eq. (16). On the other hand, each entries of
the matrix of cofactors, contains a maximum of (n − 1) number of
products of linear combination of random variables in Eq. (16).
From Eqs. (14) and (15) it follows that

u(θ) =
CT

a f
det (A)

(17)

Therefore, the numerator of each element of the solution vector
contains linear combinations of the elements of the cofactor
matrix, which are complete polynomials of order (n − 1).
The result derived in this theorem is important because the
solution methods proposed for stochastic finite element analysis
essentially aim to approximate the ratio of the polynomials given in
Eq. (12).
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Introduction Stochastic Partial Differential Equations

Polynomial Chaos expansion

We can ‘split’ the Polynomial Chaos type of expansions as

û(θ) =
n∑

k=1

Hk (ξ(θ))uk +
P∑

k=n+1

Hk (ξ(θ))uk (18)

According to the spanning property of a complete basis in R
n it is

always possible to project û(θ) in a finite dimensional vector basis
for any θ ∈ Θ. Therefore, in a vector polynomial chaos expansion
(18), all uk for k > n must be linearly dependent.

This is the motivation behind seeking a finite dimensional
expansion.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Proposition

There exist a finite set of functions Γk : (Rm ×Θ) → (R×Θ) and an
orthonormal basis φk ∈ R

n for k = 1,2, . . . ,n such that the series

û(θ) =
n∑

k=1

Γk (ξ(θ))φk (19)

converges to the exact solution of the discretized stochastic finite
element equation (8) with probability 1.

Outline of the derivation: The first step is to generate a complete
orthonormal basis. We use the eigenvectors φk ∈ R

n of the matrix A0

such that
A0φk = λ0k

φk ; k = 1,2, . . . n (20)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We define the matrix of eigenvalues and eigenvectors

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ R
n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R

n×n (21)

Eigenvalues are ordered in the ascending order: λ01 < λ02 < . . . < λ0n .
Since Φ is an orthogonal matrix we have Φ

−1 = Φ
T so that:

Φ
T A0Φ = Λ0; A0 = Φ

−T
Λ0Φ

−1 and A−1
0 = ΦΛ

−1
0 Φ

T (22)

We also introduce the transformations

Ã i = Φ
T A iΦ ∈ R

n×n; i = 0,1,2, . . . ,M (23)

Note that Ã0 = Λ0, a diagonal matrix and

A i = Φ
−T ÃiΦ

−1 ∈ R
n×n; i = 1,2, . . . ,M (24)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Suppose the solution of Eq. (8) is given by

û(θ) =

[
A0 +

M∑

i=1

ξi(θ)Ai

]−1

f (25)

Using Eqs. (21)–(24) and the orthonormality of Φ one has

û(θ) =

[
Φ

−T
Λ0Φ

−1 +
M∑

i=1

ξi(θ)Φ
−T Ã iΦ

−1

]−1

f = ΦΨ (ξ(θ))ΦT f (26)

where

Ψ (ξ(θ)) =

[
Λ0 +

M∑

i=1

ξi(θ)Ãi

]−1

(27)

and the M-dimensional random vector

ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T (28)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the Ãi

matrices as
Ã i = Λi +∆i , i = 1,2, . . . ,M (29)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag

[
λi1, λi2 , . . . , λin

]
∈ R

n×n (30)

and ∆i = Ã i − Λi is an off-diagonal only matrix.

Ψ (ξ(θ)) =



Λ0 +

M∑

i=1

ξi(θ)Λi

︸ ︷︷ ︸
Λ(ξ(θ))

+

M∑

i=1

ξi(θ)∆i

︸ ︷︷ ︸
∆(ξ(θ))




−1

(31)

where Λ (ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ξ(θ)) is an

off-diagonal only matrix.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We rewrite Eq. (31) as

Ψ (ξ(θ)) =
[
Λ (ξ(θ))

[
In + Λ

−1 (ξ(θ))∆ (ξ(θ))
]]−1

(32)

The above expression can be represented using a Neumann type of
matrix series as

Ψ (ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ
−1 (ξ(θ))∆ (ξ(θ))

]s
Λ
−1 (ξ(θ)) (33)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Polynomial Chaos expansion

Taking an arbitrary r -th element of û(θ), Eq. (26) can be rearranged to
have

ûr (θ) =
n∑

k=1

Φrk




n∑

j=1

Ψkj (ξ(θ))
(
φT

j f
)

 (34)

Defining

Γk (ξ(θ)) =

n∑

j=1

Ψkj (ξ(θ))
(
φT

j f
)

(35)

and collecting all the elements in Eq. (34) for r = 1,2, . . . ,n one has

û(θ) =
n∑

k=1

Γk (ξ(θ))φk (36)
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Spectral decomposition in a vector space Properties of the spectral functions

Spectral functions

Definition
The functions Γk (ξ(θ)) , k = 1,2, . . . n are called the spectral functions
as they are expressed in terms of the spectral properties of the
coefficient matrices of the governing discretized equation.

The main difficulty in applying this result is that each of the
spectral functions Γk (ξ(θ)) contain infinite number of terms and
they are highly nonlinear functions of the random variables ξi(θ).

For computational purposes, it is necessary to truncate the series
after certain number of terms.

Different order of spectral functions can be obtained by using
truncation in the expression of Γk (ξ(θ))
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Spectral decomposition in a vector space Properties of the spectral functions

First-order spectral functions

Definition

The first-order spectral functions Γ
(1)
k (ξ(θ)), k = 1,2, . . . ,n are

obtained by retaining one term in the series (33).

Retaining one term in (33) we have

Ψ
(1) (ξ(θ)) = Λ

−1 (ξ(θ)) or Ψ
(1)
kj (ξ(θ)) =

δkj

λ0k +
∑M

i=1 ξi(θ)λik

(37)

Using the definition of the spectral function in Eq. (35), the first-order
spectral functions can be explicitly obtained as

Γ
(1)
k (ξ(θ)) =

n∑

j=1

Ψ
(1)
kj (ξ(θ))

(
φT

j f
)
=

φT
k f

λ0k +
∑M

i=1 ξi(θ)λik

(38)

From this expression it is clear that Γ(1)k (ξ(θ)) are non-Gaussian
random variables even if ξi(θ) are Gaussian random variables.
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Spectral decomposition in a vector space Properties of the spectral functions

Second-order spectral functions

Definition

The second-order spectral functions Γ
(2)
k (ξ(θ)), k = 1,2, . . . ,n are

obtained by retaining two terms in the series (33).

Retaining two terms in (33) we have

Ψ
(2) (ξ(θ)) = Λ

−1 (ξ(θ))− Λ
−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ)) (39)

Using the definition of the spectral function in Eq. (35), the
second-order spectral functions can be obtained in closed-form as

Γ
(2)
k (ξ(θ)) =

φT
k f

λ0k +
∑M

i=1 ξi(θ)λik

−

n∑

j=1

(
φT

j f
)∑M

i=1 ξi(θ)∆ikj(
λ0k

+
∑M

i=1 ξi(θ)λik

)(
λ0j

+
∑M

i=1 ξi(θ)λij

) (40)
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Spectral decomposition in a vector space Properties of the spectral functions

Analysis of spectral functions

Remark

The linear combination of the spectral functions has the same
functional form in (ξ1(θ), ξ2(θ), . . . , ξM(θ)) as the elements of the
solution vector, that is,

ûr (θ) ≡
p(n−1)

r (ξ1(θ), ξ2(θ), . . . , ξM(θ))

p(n)
r (ξ1(θ), ξ2(θ), . . . , ξM(θ))

, ∀r = 1,2, . . . ,n (41)

When first-order spectral functions (38) are considered, we have

û(1)
r (θ) =

n∑

k=1

Γ
(1)
k (ξ(θ))φrk =

n∑

k=1

φT
k f

λ0k
+
∑M

i=1 ξi(θ)λik

φrk (42)

All (λ0k
+
∑M

i=1 ξi(θ)λik ) are different for different k because it is
assumed that all eigenvalues λ0k are distinct.
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Spectral decomposition in a vector space Properties of the spectral functions

Analysis of spectral functions

Carrying out the above summation one has n number of products of
(λ0k

+
∑M

i=1 ξi(θ)λik ) in the denominator and n sums of (n − 1) number
of products of (λ0k

+
∑M

i=1 ξi(θ)λik ) in the numerator, that is,

û(1)
r (θ) =

∑n
k=1(φ

T
k f)φrk

∏n−1
j=1 6=k

(
λ0j

+
∑M

i=1 ξi(θ)λij

)

∏n−1
k=1

(
λ0j

+
∑M

i=1 ξi(θ)λij

) (43)
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Spectral decomposition in a vector space Properties of the spectral functions

Summary of the basis functions (spectral functions)

The basis functions are:
1 not polynomials in ξi(θ) but ratio of polynomials.
2 independent of the nature of the random variables (i.e. applicable

to Gaussian, non-Gaussian or even mixed random variables).
3 not general but specific to a problem as it utilizes the eigenvalues

and eigenvectors of the systems matrices.
4 such that truncation error depends on the off-diagonal terms of

the matrix ∆ (ξ(θ)).

Next we use these spectral functions as trial functions within a
Galerkin error minimization scheme.
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Error minimization The Galerkin approach

The Galerkin approach

There exist a set of finite functions Γ̂k : (Rm ×Θ) → (R×Θ), constants
ck ∈ R and orthonormal vectors φk ∈ R

n for k = 1,2, . . . ,n such that
the series

û(θ) =
n∑

k=1

ck Γ̂k (ξ(θ))φk (44)

converges to the exact solution of the discretized stochastic finite
element equation (8) in the mean-square sense provided the vector
c = {c1, c2, . . . , cn}T satisfies the n × n algebraic equations S c = b
with

Sjk =

M∑

i=0

Ãijk Dijk ; ∀ j , k = 1,2, . . . ,n; Ãijk = φT
j A iφk , (45)

Dijk = E
[
ξi(θ)Γ̂j(ξ(θ))Γ̂k (ξ(θ))

]
and bj = E

[
Γ̂j(ξ(θ))

] (
φT

j f
)
. (46)
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Error minimization The Galerkin approach

The Galerkin approach

The error vector can be obtained as

ε(θ) =

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− f ∈ R

n (47)

The solution is viewed as a projection where
{
Γ̂k (ξ(θ))φk

}
∈ R

n

are the basis functions and ck are the unknown constants to be
determined.

The coefficients ck are evaluated using the Galerkin approach so
that the error is made orthogonal to the basis functions, that is,
mathematically

ε(θ)⊥
(
Γ̂j(ξ(θ))φj

)
or

〈
Γ̂j(ξ(θ))φj , ε(θ)

〉
= 0 ∀ j = 1,2, . . . ,n

(48)
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Error minimization The Galerkin approach

The Galerkin approach

Imposing the orthogonality condition and using the expression of
the error one has

E

[
Γ̂j(ξ(θ))φ

T
j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− Γ̂j(ξ(θ))φ

T
j f

]
= 0

(49)
Interchanging the E [•] and summation operations, this can be
simplified to

n∑

k=1

(
M∑

i=0

(
φT

j A iφk

)
E
[
ξi(θ)Γ̂j(ξ(θ))Γ̂k (ξ(θ))

])
ck =

E
[
Γ̂j(ξ(θ))

] (
φT

j f
)

(50)

or

n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (51)
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Error minimization POD like Model Reduction

Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing
order such that

λ01 < λ02 < . . . < λ0n (52)

From the expression of the spectral functions observe that the
eigenvalues appear in the denominator:

Γ
(1)
k (ξ(ω)) =

φT
k f

λ0k +
∑M

i=1 ξi(ω)λik

(53)

The series can be truncated based on the magnitude of the
eigenvalues as the higher terms becomes smaller. Therefore one
could only retain the dominant terms in the series (POD like
reduction).

Adhikari (Swansea) Reduced Spectral Approach for SFEM 4-8 April, 2011 30 / 60



Error minimization POD like Model Reduction

Model Reduction by reduced number of basis

One can select a small value ǫ such that λ01/λ0p < ǫ for some
value of p. Based on this discussion we have the following
proposition.

Proposition

(Reduced orthonormal basis) Suppose there exist an ǫ and p < n such
that λ01/λ0p < ǫ. Then the solution of the discretized stochastic finite
element equation (8) can be expressed by the series representation

û(ω) =
p∑

k=1

ck Γ̂k (ξ(ω))φk (54)

such that the error is minimized in a least-square sense. ck , Γ̂k (ξ(ω))
and φk can be obtained following the procedure described in the
previous section by letting the indices j, k upto p in Eqs. (45) and (46).
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Error minimization Computational method

Computational method

The mean vector can be obtained as

ū= E [û(θ)] =
p∑

k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (55)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ)− ū) (û(θ)− ū)T

]
=

p∑

k=1

p∑

j=1

ckcjΣΓkjφkφ
T
j (56)

where the elements of the covariance matrix of the spectral
functions are given by

ΣΓkj = E
[(

Γ̂k (ξ(θ))− E
[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]

(57)
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Error minimization Computational method

Summary of the computational method

1 Solve the eigenvalue problem associated with the mean matrix A0

to generate the orthonormal basis vectors: A0Φ = ΦΛ0

2 Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(θ), i = 1,2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ξ(θ)) =
φ

T
k f

λ0k
+
∑M

i=1 ξi (θ)λik

, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c = S−1b ∈ R
n, where b = f̃ ⊙ Γ,

S = Λ0 ⊙ D0 +
∑M

i=1 Ã i ⊙ Di and

Di = E
[
Γ(θ)ξi(θ)Γ

T (θ)
]
,∀ i = 0,1,2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(θ) =

∑p
k=1 ckΓk (ξ(θ))φk
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Numerical illustration Cantilever beam

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending
modulus

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus:
2 × 1011 Pa.

We study the deflection of the beam under the action of a point
load on the free end.
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Numerical illustration Cantilever beam

Problem details

We assume that the bending modulus of the cantilever beam is a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (58)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.

The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (59)

where µa is the correlation length and σa is the standard deviation.

Two correlation lengths are considered in the numerical studies:
µa = L/2 and µa = L/10.

Adhikari (Swansea) Reduced Spectral Approach for SFEM 4-8 April, 2011 35 / 60



Numerical illustration Cantilever beam

Problem details

Case 1: The random field is Gaussian with µa = L/2 with n = 600
and M = 4. The results are compared with the polynomial chaos
expansion.

Case 2: The random field is Uniform with µa = L/2 with n = 2400
and M = 29.

Case 3: The random field is Uniform with µa = L/2 with n = 2400
and M = 111.
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Numerical illustration Cantilever beam

Eigensolutions of the beam
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Figure: The eigenvalues and eigenvectors of the stiffness matrix A0. For
ǫ = 0.01, the number of reduced eigenvectors p = 6 such that λ01/λ0p < ǫ.
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Numerical illustration Case 1: Comparison with polynomial chaos results

Pdf: larger correlation length
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(a) Probability density function for σa =

0.05.
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(b) Probability density function for σa =

0.1.

The probability density function of the normalized tip deflection of the
cantilever beam under the action of point load on the free end (10,000
sample MCS).
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Numerical illustration Case 1: Comparison with polynomial chaos results

Pdf: larger correlation length
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(c) Probability density function for σa =

0.15.
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(d) Probability density function for σa =

0.2.

For n = 600 and M = 4, the fourth-order PC needs solution of a linear system
of equation of size 42,000, compared to only 6 with the proposed Galerkin
approach. Direct MCS: 43.2131m; PC: 16.8559m; 1st order spectral:
2.8860m; 2nd order spectral: 3.2448m; and 4th order spectral: 3.2604s.
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Numerical illustration Case 1: Comparison with polynomial chaos results

Error in moments: larger correlation length

Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
4th order PC 0.0864 0.0267 0.1041 0.1462

1st order spectral 0.0603 0.2289 0.5384 1.0589
2nd order spectral 0.0048 0.0062 0.0140 0.0454
4th order spectral 0.0047 0.0048 0.0053 0.0069

4th order PC 0.7143 0.9065 1.4948 0.1800
1st order spectral 1.1871 1.6784 3.0980 5.1614
2nd order spectral 0.1011 0.5166 1.4668 3.2479
4th order spectral 0.0179 0.0153 0.0004 0.0886

Percentage errors in the mean and standard deviation of the
normalized tip deflection with Gaussian random field model. The direct
MCS results are used as the reference solution. The fourth-order
spectral method turns out to be the most accurate, followed by the
fourth-order PC.
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Numerical illustration Case 2: Uniform random field with larger correlation length

Moments: larger correlation length
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(e) Mean of the normalized deflection.
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(f) Standard deviation of the normalized
deflection.

Figure: The number of random variable used: M = 29. The number of
degrees of freedom: n = 2400.
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Numerical illustration Case 2: Uniform random field with larger correlation length

Error in moments: larger correlation length

Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
Mean 1st order

spectral
0.1602 0.4415 0.9475 1.7444

2nd order
spectral

0.0845 0.1303 0.2211 0.3867

4th order
spectral

0.0845 0.1285 0.2105 0.3458

Standard 1st order
spectral

0.0350 0.9037 2.4522 4.9665

deviation 2nd order
spectral

0.2958 0.8689 1.9842 3.7927

4th order
spectral

0.1642 0.3030 0.5618 1.0063

Percentage errors in the mean and standard deviation of the tip
deflection with uniform random field and correlation length µa = L/2
(n = 2400 and M = 29).
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Numerical illustration Case 2: Uniform random field with larger correlation length

Pdf: larger correlation length
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(a) Probability density function for σa =

0.05.
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(b) Probability density function for σa =

0.1.

The probability density function of the normalized deflection.
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Numerical illustration Case 2: Uniform random field with larger correlation length

Pdf: larger correlation length
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(c) Probability density function for σa =

0.15.
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(d) Probability density function for σa =

0.2.

For n = 2400 and M = 29, the second-order PC needs solution of a linear
system of equation of size 72,000. Direct MCS: 19.2590 hours; 1st order
spectral: 109.6687 seconds; 2nd order spectral: 112.7731 seconds; and 4th
order spectral: 116.6419 seconds
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Numerical illustration Case 3: Uniform random field with smaller correlation length

Moments: smaller correlation length
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(e) Mean of the normalized deflection.
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(f) Standard deviation of the normalized
deflection.

Figure: The number of random variable used: M = 111. The number of
degrees of freedom: n = 2400.
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Numerical illustration Case 3: Uniform random field with smaller correlation length

Error in moments: smaller correlation length

Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
Mean 1st order

spectral
0.2488 0.7974 1.7671 3.2555

2nd order
spectral

0.1434 0.3725 0.8007 1.5174

4th order
spectral

0.1432 0.3697 0.7854 1.4641

Standard 1st order
spectral

3.7039 5.4718 8.5930 13.3714

deviation 2nd order
spectral

0.4704 1.8630 4.4737 8.6448

4th order
spectral

0.2561 0.9733 2.3849 4.7576

Percentage errors in the mean and standard deviation of the tip
deflection with uniform random field and correlation length µa = L/10
(n = 2400 and M = 111).
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Numerical illustration Case 3: Uniform random field with smaller correlation length

Pdf: smaller correlation length
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(a) Probability density function for σa =

0.05.
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(b) Probability density function for σa =

0.1.

The probability density function of the normalized deflection.
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Numerical illustration Case 3: Uniform random field with smaller correlation length

Pdf: smaller correlation length
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(c) Probability density function for σa =

0.15.
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(d) Probability density function for σa =

0.2.

For n = 2400 and M = 111, the second-order PC needs solution of a linear
system of equation of size 268,800. Direct MCS: 37.1910 hours; 1st order
spectral: 137.6085 seconds; 2nd order spectral: 140.9937 seconds; and 4th
order spectral: 142.7097 seconds.
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Stochastic dynamical systems

Stochastic Structural dynamic problems (hyperbolic equat ions)

Discretising the stochastic PDE along with the boundary conditions
results in:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f0(t) (60)

where u(θ, t) is the discretized response vector,
M(θ) = M0 +

∑p
i=1 µi(θi)Mi ∈ R

n×n is the random mass matrix,
K(θ) = K0 +

∑p
i=1 νi(θi)K i ∈ R

n×n is the random stiffness matrix, and
C(θ) ∈ R

n×n as the random damping matrix. Taking the Fourier
transform of (60)

[
−ω2M(θ) + iωC(θ) + K(θ)

]
ũ(θ, ω) = f̃0(ω) (61)

where ũ(θ, ω) is the complex frequency domain system response
amplitude, f̃0(ω) is the amplitude of the harmonic force.
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Stochastic dynamical systems

Stochastic dynamic problems

Proportional damping is considered for which
C(θ) = ζ1M(θ) + ζ2K(θ)

Grouping the random variables as

ξi(θ) = µi(θ) and ξi+p(θ) = νi(θ) for i = 1,2, . . . ,p

The equation of motion (61) becomes

A0(ω) +

2p∑

i=1

ξi(θi)A i(ω)


 ũ(ω, θ) = f̃0(ω) (62)

where A0 and A i ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the
damping matrices ensemble.
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Stochastic dynamical systems

Stochastic dynamic problems

The matrices A0 and Ai can be expressed as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0 (63)

A i(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1,2, . . . ,p (64)

and A j(ω) = [iωζ2 + 1]K j for j = p + 1,p + 2, . . . ,2p .

Solving the generalized eigenvalue problem

K0φk = λkM0φk ; k = 1,2, . . . n (65)

the response in the frequency domain can be expressed as

ũ(ω, θ) =
p∑

k=1

ck (ω)Γ̂k (ω, ξ(θ))φk (66)
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Stochastic dynamical systems

Mean of the frequency response function
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(e) Mean for σa = 0.05.
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(f) Mean for σa = 0.1.

The mean the tip deflection as a function of driving frequency (driving
point FRF).
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Stochastic dynamical systems

Mean of the frequency response function
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(g) Mean for σa = 0.15.
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(h) Mean for σa = 0.2.

Constant modal damping of 1% for all modes, n = 2400 and M = 18,
10k samples, 7 modes retained in the Galerkin procedure.
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Stochastic dynamical systems

Standard deviation of the frequency response function
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(i) Standard deviation for σa = 0.05.
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(j) Standard deviation for σa = 0.1.

The standard deviation the tip deflection as a function of driving
frequency (driving point FRF).
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Stochastic dynamical systems

Standard deviation of the frequency response function
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(k) Standard deviation for σa = 0.15.
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(l) Standard deviation for σa = 0.2.

Constant modal damping of 1% for all modes, n = 2400 and M = 18,
10k samples, 7 modes retained in the Galerkin procedure.
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Conclusions

Conclusions

We consider discretized stochastic partial differential equations.
The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated coefficient functions
are obtained.
The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices.
If p < n number of orthonormal vectors are used and M is the
number of random variables, then the computational complexity
grows in O(Mp2) + O(p3) for large M and p in the worse case.
We consider a problem with 29 and 111 random variables and
n = 2400 degrees of freedom. A second-order PC would require
the solution of equations of dimension 72,000 and 268,800
respectively. In comparison, the proposed Galerkin approach
requires the solution of algebraic equations of dimension p = 6
only.
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Conclusions

Future works

Extension to hyperbolic (work in progress) and elliptical equations

Extension to transient dynamic problems - time domain analysis

Improved integration method, superior sampling strategy,
collocation method

Rigorous analysis of convergence

Non-liner stochastic problems

Integration with commercial finite element packages
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Conclusions

Discussions

The only information used in constructing the polynomial chaos
basis is the probability density function of the random variables
involved.
However, more information is available - these include (a) there
are matrices A i , i = 0,1,2 . . .M, (b) they are symmetric and of
dimension n, (c) A0 is positive definite, and (d) there exist a
ordering ‖A i‖ ≥ ‖Ai+1‖. The proposed method constructs a
customized basis for elliptic problems using these ‘additional’
information.
In the PC method these information are used in the Galerkin error
minimization step, which is much further down the line. Whereas
in the proposed method, the basis functions themselves are
created using these information. As a result, the error to be
minimized in the Galerkin is much smaller to start with compared
to the PC and consequently a very small number of constants are
necessary.
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Conclusions

Discussions

The true nature of the solution is not polynomials in the random
variables but a ratio of two polynomials where the denominator
has higher degree than the numerator. The proposed spectral
basis functions have this correct mathematical form.

A vector of dimension n can be uniquely represented as a linear
combination of n orthogonal vectors. In the PC approach,
whenever P > n, the additional P − n coefficient vectors are
linearly independent. Therefore they can be simply represented
as a constant times the other vectors. But the PC method
explicitly determines these linearly dependent vectors by solving
large number of equations. This huge additional cost has been
avoided in the proposed approach by a-priori selecting a
orthonormal basis from the system matrices.
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Conclusions

Discussions

The proposed method takes advantage of the difference in the
magnitude of the eigenvalues of the A0. This POD-like model
reduction leads to a significantly smaller basis. This type of
reduction is difficult to incorporate within the scope of PC as no
information regarding the system matrices are used in
constructing the orthogonal polynomial basis.
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