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Introduction Uncertainty in computational mechanics

Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric parameters,
friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific knowledge
about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate into the
model when they are calibrated against experimental results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite element
analysis, and
(e) model uncertainty - genuine randomness in the model such as
uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Introduction Stochastic elliptic PDEs

Stochastic elliptic PDE

We consider the stochastic elliptic partial differential equation
(PDE)

−∇ [a(r, θ)∇u(r, θ)] = p(r); r in D (1)

with the associated boundary condition

u(r, θ) = 0; r on ∂D (2)

Here a : Rd ×Θ→ R is a random field, which can be viewed as a
set of random variables indexed by r ∈ Rd .
We assume the random field a(r, θ) to be stationary and square
integrable. Based on the physical problem the random field a(r, θ)
can be used to model different physical quantities.
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Introduction Stochastic elliptic PDEs

Discretized Stochastic PDE

The random process a(r, θ) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (3)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation∫

D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1,2, · · · (4)
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Introduction Stochastic elliptic PDEs

Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (5)

The underlying random process H(x , θ) can be expanded using the
Karhunen-Loève expansion in the interval −a ≤ x ≤ a as

H(x , θ) =
∞∑

j=1

ξj(θ)
√
λjϕj(x) (6)

Using the notation c = 1/b, the corresponding eigenvalues and eigenfunctions for odd j are given by

λj =
2c

θ2
j + c2

, ϕj (x) =
cos(θj x)√√√√a +

sin(2θj a)

2θj

, where tan(θj a) =
c

θj
, (7)

and for even j are given by

λj =
2c

θj
2 + c2

, ϕj (x) =
sin(θj x)√√√√a−

sin(2θj a)

2θj

, where tan(θj a) =
θj

−c
. (8)
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Introduction Stochastic elliptic PDEs

Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of
length L with random bending stiffness and mass distribution:

∂2

∂x2

[
EI(x , θ)

∂2Y (x , t)
∂x2

]
+ ρA(x , θ)

∂2Y (x , t)
∂t2 = p(x , t). (9)

Y (x , t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x):
mass per unit length, and p(x , t): applied forcing. Consider

EI(x , θ) = EI0 (1 + ε1F1(x , θ)) (10)
and ρA(x , θ) = ρA0 (1 + ε2F2(x , θ)) (11)

The subscript 0 indicates the mean values, 0 < εi << 1 (i=1,2) are
deterministic constants and the random fields Fi(x , θ) are taken to
have zero mean, unit standard deviation and covariance Rij(ξ).
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Introduction Stochastic elliptic PDEs

Example: A beam with random properties

We can express the shape functions for the finite element analysis of
Euler-Bernoulli beams as

N(x) = R s(x) (12)

where

R =



1 0
−3

`e2

2

`e3

0 1
−2

`e2

1

`e2

0 0
3

`e2

−2

`e3

0 0
−1

`e2

1

`e2


and s(x) =

[
1, x, x2

, x3
]T
. (13)

The element stiffness matrix:

Ke(θ) =

∫ `e

0
N
′′

(x)EI(x, θ)N
′′T

(x) dx =

∫ `e

0
EI0 (1 + ε1F1(x, θ)) N

′′
(x)N

′′T
(x) dx. (14)
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Introduction Stochastic elliptic PDEs

Example: A beam with random properties

Expanding the random field F1(x , θ) in KL expansion

Ke(θ) = Ke0 + ∆Ke(θ) (15)

where the deterministic and random parts are

Ke0 = EI0
∫ `e

0
N
′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ε1

NK∑
j=1

ξKj(θ)
√
λKjKej .

(16)
The constant NK is the number of terms retained in the
Karhunen-Loève expansion and ξKj(θ) are uncorrelated Gaussian
random variables with zero mean and unit standard deviation. The
constant matrices Kej can be expressed as

Kej = EI0
∫ `e

0
ϕKj(xe + x)N

′′
(x)N

′′T
(x) dx (17)
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Introduction Stochastic elliptic PDEs

Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0 + ∆Me(θ) (18)

The deterministic and random parts is given by

Me0 = ρA0

∫ `e

0
N(x)NT (x) dx and ∆Me(θ) = ε2

NM∑
j=1

ξMj(θ)
√
λMjMej .

(19)
The constant NM is the number of terms retained in Karhunen-Loève
expansion and the constant matrices Mej can be expressed as

Mej = ρA0

∫ `e

0
ϕMj(xe + x)N(x)NT (x) dx . (20)
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Introduction Stochastic elliptic PDEs

Example: A beam with random properties

These element matrices can be assembled to form the global random
stiffness and mass matrices of the form

K(θ) = K0 + ∆K(θ) and M(θ) = M0 + ∆M(θ). (21)

Here the deterministic parts K0 and M0 are the usual global stiffness
and mass matrices obtained form the conventional finite element
method. The random parts can be expressed as

∆K(θ) = ε1

NK∑
j=1

ξKj(θ)
√
λKjKj and ∆M(θ) = ε2

NM∑
j=1

ξMj(θ)
√
λMjMj

(22)
The element matrices Kej and Mej can be assembled into the global
matrices Kj and Mj . The total number of random variables depend on
the number of terms used for the truncation of the infinite series. This
in turn depends on the respective correlation lengths of the underlying
random fields.
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Introduction Stochastic elliptic PDEs

Discrete equation for stochastic mechanics

Truncating the KL expansion upto the M-th term and discretising
the displacement field, the equation for static deformation can be
expresses as [

A0 +
M∑

i=1

ξi(θ)Ai

]
u(θ) = f (23)

The aim is to efficiently solve for u(θ).
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

Using the Polynomial Chaos expansion, the solution (a vector
valued function) can be expressed as

u(θ) = ui0h0 +
∞∑

i1=1

ui1h1(ξi1(θ))

+
∞∑

i1=1

i1∑
i2=1

ui1,i2h2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3(ξi1(θ), ξi2(θ), ξi3(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4 h4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + . . . ,

Here ui1,...,ip ∈ Rn are deterministic vectors to be determined.
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (24)

where Hk (ξ(θ)) are the polynomial chaoses.
The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
(25)
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk ∈ Rn.
A0,0 · · · A0,P−1
A1,0 · · · A1,P−1

...
...

...
AP−1,0 · · · AP−1,P−1




u0
u1
...

uP−1

 =


f0
f1
...

fP−1

 (26)

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Introduction Stochastic elliptic PDEs

Mathematical nature of the solution (1)

The elements of the solution vector are not simple polynomials,
but ratio of polynomials in ξ(θ).

Remark

If all Ai ∈ Rn×n are matrices of rank n, then the elements of u(θ) are
the ratio of polynomials of the form

p(n−1)(ξ1(θ), ξ2(θ), . . . , ξM(θ))

p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ))
(27)

where p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ)) is an n-th order complete
multivariate polynomial of variables ξ1(θ), ξ2(θ), . . . , ξM(θ).
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Introduction Stochastic elliptic PDEs

Mathematical nature of the solution (2)

Suppose we denote

A(θ) =

[
A0 +

M∑
i=1

ξi(θ)Ai

]
∈ Rn×n (28)

so that
u(θ) = A−1(θ)f (29)

From the definition of the matrix inverse we have

A−1 =
Adj(A)

det (A)
=

CT
a

det (A)
(30)

where Ca is the matrix of cofactors. The determinant of A contains a
maximum of n number of products of Akj and their linear combinations.
Note from Eq. (28) that

Akj(θ) = A0kj +
M∑

i=1

ξi(θ)Aikj (31)
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Introduction Stochastic elliptic PDEs

Mathematical nature of the solution (3)

Since all the matrices are of full rank, the determinant contains a
maximum of n number of products of linear combination of
random variables in Eq. (31). On the other hand, each entries of
the matrix of cofactors, contains a maximum of (n − 1) number of
products of linear combination of random variables in Eq. (31).
From Eqs. (29) and (30) it follows that

u(θ) =
CT

a f
det (A)

(32)

Therefore, the numerator of each element of the solution vector
contains linear combinations of the elements of the cofactor
matrix, which are complete polynomials of order (n − 1).
The result derived in this theorem is important because the
solution methods proposed for stochastic finite element analysis
essentially aim to approximate the ratio of the polynomials given in
Eq. (27).
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Introduction Stochastic elliptic PDEs

Some basics of linear algebra

Definition

(Linearly independent vectors) A set of vectors {φ1,φ2, . . . ,φn} is
linearly independent if the expression

∑n
k=1 αkφk = 0 if and only if

αk = 0 for all k = 1,2, . . . ,n.

Remark

(The spanning property) Suppose {φ1,φ2, . . . ,φn} is a complete basis
in the Hilbert space H. Then for every nonzero u ∈ H, it is possible to
choose α1, α2, . . . , αn 6= 0 uniquely such that
u = α1φ1 + α2φ2 + . . . αnφn.
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

We can ‘split’ the Polynomial Chaos type of expansions as

û(θ) =
n∑

k=1

Hk (ξ(θ))uk +
P∑

k=n+1

Hk (ξ(θ))uk (33)

According to the spanning property of a complete basis in Rn it is
always possible to project û(θ) in a finite dimensional vector basis
for any θ ∈ Θ. Therefore, in a vector polynomial chaos expansion
(33), all uk for k > n must be linearly dependent.
This is the motivation behind seeking a finite dimensional
expansion.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Theorem

There exist a finite set of functions Γk : (Rm ×Θ)→ (R×Θ) and an
orthonormal basis φk ∈ Rn for k = 1,2, . . . ,n such that the series

û(θ) =
n∑

k=1

Γk (ξ(θ))φk (34)

converges to the exact solution of the discretized stochastic finite
element equation (23) with probability 1.

Outline of proof: The first step is to generate a complete orthonormal
basis. We use the eigenvectors φk ∈ Rn of the matrix A0 such that

A0φk = λ0kφk ; k = 1,2, . . .n (35)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We define the matrix of eigenvalues and eigenvectors

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ Rn×n;Φ = [φ1,φ2, . . . ,φn] ∈ Rn×n (36)

Eigenvalues are ordered in the ascending order: λ01 < λ02 < . . . < λ0n .
Since Φ is an orthogonal matrix we have Φ−1 = ΦT so that:

ΦT A0Φ = Λ0; A0 = Φ−TΛ0Φ
−1 and A−1

0 = ΦΛ−1
0 ΦT (37)

We also introduce the transformations

Ãi = ΦT AiΦ ∈ Rn×n; i = 0,1,2, . . . ,M (38)

Note that Ã0 = Λ0, a diagonal matrix and

Ai = Φ−T ÃiΦ
−1 ∈ Rn×n; i = 1,2, . . . ,M (39)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Suppose the solution of Eq. (23) is given by

û(θ) =

[
A0 +

M∑
i=1

ξi(θ)Ai

]−1

f (40)

Using Eqs. (36)–(39) and the orthonormality of Φ one has

û(θ) =

[
Φ−TΛ0Φ

−1 +
M∑

i=1

ξi(θ)Φ−T ÃiΦ
−1

]−1

f = ΦΨ (ξ(θ))ΦT f (41)

where

Ψ (ξ(θ)) =

[
Λ0 +

M∑
i=1

ξi(θ)Ãi

]−1

(42)

and the M-dimensional random vector

ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T (43)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the Ãi
matrices as

Ãi = Λi + ∆i , i = 1,2, . . . ,M (44)

Here the diagonal matrix

Λi = diag
[
Ã
]

= diag
[
λi1 , λi2 , . . . , λin

]
∈ Rn×n (45)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ξ(θ)) =

Λ0 +
M∑

i=1

ξi(θ)Λi︸ ︷︷ ︸
Λ(ξ(θ))

+
M∑

i=1

ξi(θ)∆i︸ ︷︷ ︸
∆(ξ(θ))



−1

(46)

where Λ (ξ(θ)) ∈ Rn×n is a diagonal matrix and ∆ (ξ(θ)) is an
off-diagonal only matrix.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We rewrite Eq. (46) as

Ψ (ξ(θ)) =
[
Λ (ξ(θ))

[
In + Λ−1 (ξ(θ))∆ (ξ(θ))

]]−1
(47)

The above expression can be represented using a Neumann type of
matrix series as

Ψ (ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ−1 (ξ(θ))∆ (ξ(θ))

]s
Λ−1 (ξ(θ)) (48)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Polynomial Chaos expansion

Taking an arbitrary r -th element of û(θ), Eq. (41) can be rearranged to
have

ûr (θ) =
n∑

k=1

Φrk

 n∑
j=1

Ψkj (ξ(θ))
(
φT

j f
) (49)

Defining

Γk (ξ(θ)) =
n∑

j=1

Ψkj (ξ(θ))
(
φT

j f
)

(50)

and collecting all the elements in Eq. (49) for r = 1,2, . . . ,n one has

û(θ) =
n∑

k=1

Γk (ξ(θ))φk (51)
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Spectral decomposition in a vector space Properties of the spectral functions

Spectral functions

Definition
The functions Γk (ξ(θ)) , k = 1,2, . . .n are called the spectral functions
as they are expressed in terms of the spectral properties of the
coefficient matrices of the governing discretized equation.

The main difficulty in applying this result is that each of the
spectral functions Γk (ξ(θ)) contain infinite number of terms and
they are highly nonlinear functions of the random variables ξi(θ).
For computational purposes, it is necessary to truncate the series
after certain number of terms.
Different order of spectral functions can be obtained by using
truncation in the expression of Γk (ξ(θ))
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Spectral decomposition in a vector space Properties of the spectral functions

First-order spectral functions

Definition

The first-order spectral functions Γ
(1)
k (ξ(θ)), k = 1,2, . . . ,n are

obtained by retaining one term in the series (48).

Retaining one term in (48) we have

Ψ(1) (ξ(θ)) = Λ−1 (ξ(θ)) or Ψ
(1)
kj (ξ(θ)) =

δkj

λ0k +
∑M

i=1 ξi(θ)λik

(52)

Using the definition of the spectral function in Eq. (50), the first-order
spectral functions can be explicitly obtained as

Γ
(1)
k (ξ(θ)) =

n∑
j=1

Ψ
(1)
kj (ξ(θ))

(
φT

j f
)

=
φT

k f
λ0k +

∑M
i=1 ξi(θ)λik

(53)

From this expression it is clear that Γ
(1)
k (ξ(θ)) are non-Gaussian

random variables even if ξi(θ) are Gaussian random variables.
Adhikari (Swansea) Reduced Projection Approach for SFEM 14 September 2010 28 / 58



Spectral decomposition in a vector space Properties of the spectral functions

Second-order spectral functions

Definition

The second-order spectral functions Γ
(2)
k (ξ(θ)), k = 1,2, . . . ,n are

obtained by retaining two terms in the series (48).

Retaining two terms in (48) we have

Ψ(2) (ξ(θ)) = Λ−1 (ξ(θ))− Λ−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ)) (54)

Using the definition of the spectral function in Eq. (50), the
second-order spectral functions can be obtained in closed-form as

Γ
(2)
k (ξ(θ)) =

φT
k f

λ0k +
∑M

i=1 ξi(θ)λik

−

n∑
j=1

(
φT

j f
)∑M

i=1 ξi(θ)∆ikj(
λ0k +

∑M
i=1 ξi(θ)λik

)(
λ0j +

∑M
i=1 ξi(θ)λij

) (55)
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Spectral decomposition in a vector space Properties of the spectral functions

Analysis of spectral functions

Remark

The linear combination of the spectral functions has the same
functional form in (ξ1(θ), ξ2(θ), . . . , ξM(θ)) as the elements of the
solution vector, that is,

ûr (θ) ≡ p(n−1)
r (ξ1(θ), ξ2(θ), . . . , ξM(θ))

p(n)
r (ξ1(θ), ξ2(θ), . . . , ξM(θ))

, ∀r = 1,2, . . . ,n (56)

When first-order spectral functions (53) are considered, we have

û(1)
r (θ) =

n∑
k=1

Γ
(1)
k (ξ(θ))φrk =

n∑
k=1

φT
k f

λ0k +
∑M

i=1 ξi(θ)λik

φrk (57)

All (λ0k +
∑M

i=1 ξi(θ)λik ) are different for different k because it is
assumed that all eigenvalues λ0k are distinct.
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Spectral decomposition in a vector space Properties of the spectral functions

Analysis of spectral functions

Carrying out the above summation one has n number of products of
(λ0k +

∑M
i=1 ξi(θ)λik ) in the denominator and n sums of (n − 1) number

of products of (λ0k +
∑M

i=1 ξi(θ)λik ) in the numerator, that is,

û(1)
r (θ) =

∑n
k=1(φT

k f)φrk
∏n−1

j=16=k

(
λ0j +

∑M
i=1 ξi(θ)λij

)
∏n−1

k=1

(
λ0j +

∑M
i=1 ξi(θ)λij

) (58)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

There exist a set of finite functions Γ̂k : (Rm ×Θ)→ (R×Θ), constants
ck ∈ R and orthonormal vectors φk ∈ Rn for k = 1,2, . . . ,n such that
the series

û(θ) =
n∑

k=1

ck Γ̂k (ξ(θ))φk (59)

converges to the exact solution of the discretized stochastic finite
element equation (23) in the mean-square sense provided the vector
c = {c1, c2, . . . , cn}T satisfies the n × n algebraic equations S c = b
with

Sjk =
M∑

i=0

Ãijk Dijk ; ∀ j , k = 1,2, . . . ,n; Ãijk = φT
j Aiφk , (60)

Dijk = E
[
ξi(θ)Γ̂j(ξ(θ))Γ̂k (ξ(θ))

]
and bj = E

[
Γ̂j(ξ(θ))

] (
φT

j f
)
. (61)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

The error vector can be obtained as

ε(θ) =

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− f ∈ Rn (62)

The solution is viewed as a projection where
{

Γ̂k (ξ(θ))φk

}
∈ Rn

are the basis functions and ck are the unknown constants to be
determined.
We wish to obtain the coefficients ck such that the error norm
χ2 = 〈ε(θ), ε(θ)〉 is minimum. This can be achieved using the
Galerkin approach so that the error is made orthogonal to the
basis functions, that is, mathematically

ε(θ)⊥
(

Γ̂j(ξ(θ))φj

)
or

〈
Γ̂j(ξ(θ))φj , ε(θ)

〉
= 0 ∀ j = 1,2, . . . ,n

(63)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

Imposing the orthogonality condition and using the expression of
the error one has

E

[
Γ̂j(ξ(θ))φT

j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− Γ̂j(ξ(θ))φT

j f

]
= 0,∀j

(64)
Interchanging the E [•] and summation operations, this can be
simplified to

n∑
k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi(θ)Γ̂j(ξ(θ))Γ̂k (ξ(θ))

])
ck =

E
[
Γ̂j(ξ(θ))

] (
φT

j f
)

(65)

or
n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (66)
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Error minimization in the Hilbert space The Galerkin approach

Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing
order such that

λ01 < λ02 < . . . < λ0n (67)

From the expression of the spectral functions observe that the
eigenvalues appear in the denominator:

Γ
(1)
k (ξ(ω)) =

φT
k f

λ0k +
∑M

i=1 ξi(ω)λik

(68)

The series can be truncated based on the magnitude of the
eigenvalues as the higher terms becomes smaller. Therefore one
could only retain the dominant terms in the series (POD like
reduction).
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Error minimization in the Hilbert space The Galerkin approach

Model Reduction by reduced number of basis

One can select a small value ε such that λ01/λ0p < ε for some
value of p. Based on this discussion we have the following
proposition.

Proposiion

(reduced orthonormal basis) Suppose there exist an ε and p < n such
that λ01/λ0p < ε. Then the solution of the discretized stochastic finite
element equation (23) can be expressed by the series representation

û(ω) =

p∑
k=1

ck Γ̂k (ξ(ω))φk (69)

such that the error is minimized in a least-square sense. ck , Γ̂k (ξ(ω))
and φk can be obtained following the procedure described in the
previous section by letting the indices j , k upto p in Eqs. (60) and (61).

Adhikari (Swansea) Reduced Projection Approach for SFEM 14 September 2010 36 / 58



Error minimization in the Hilbert space Computational method

Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑
k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (70)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ)− ū) (û(θ)− ū)T

]
=

p∑
k=1

p∑
j=1

ckcjΣΓkjφkφ
T
j (71)

where the elements of the covariance matrix of the spectral
functions are given by

ΣΓkj = E
[(

Γ̂k (ξ(θ))− E
[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]
(72)
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Error minimization in the Hilbert space Computational method

Summary of the computational method

1 Solve the eigenvalue problem associated with the mean matrix A0
to generate the orthonormal basis vectors: A0Φ = Λ0Φ

2 Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(θ), i = 1,2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ξ(θ)) =
φT

k f
λ0k

+
∑M

i=1 ξi (θ)λik

, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c = S−1b ∈ Rn, where b = f̃� Γ,
S = Λ0 � D0 +

∑M
i=1 Ãi � Di and

Di = E
[
Γ(θ)ξi(θ)ΓT (θ)

]
,∀ i = 0,1,2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(θ) =

∑p
k=1 ck Γk (ξ(θ))φk
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Numerical illustration ZnO nanowires

Nanoscale Energy Harvesting: ZnO nanowires

ZnO materials have attracted extensive attention due to their
excellent performance in electronic, ferroelectric and piezoelectric
applications.
Nano-scale ZnO is an important material for the nanoscale energy
harvesting and scavenging.
Investigation and understanding of the bending of ZnO nanowires
are valuable for their potential application. For example, ZnO
nanowires are bend by rubbing against each other for energy
scavenging.
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Numerical illustration ZnO nanowires

Rubbing the right way

When ambient vibrations move a microfibre covered with zinc oxide
nanowires (blue) back and forth with respect to a similar fibre that has
been coated with gold (orange), electrical energy is produced because
ZnO is a piezoelectric material; Nature Nanotechnology, Vol 3, March
2008, pp 123.
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Numerical illustration ZnO nanowires

Power shirt
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Numerical illustration ZnO nanowires

Collection of ZnO

A collection of vertically grown ZnO NWs. This can be viewed as the
sample space for the application of stochastic finite element method.
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Numerical illustration ZnO nanowires

Collection of ZnO: Close up

Uncertainties in ZnO NWs in the close up view. The uncertain
parameter include geometric parameters such as the length and the
cross sectional area along the length, boundary condition and material
properties.
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Numerical illustration ZnO nanowires

ZnO nanowires

For the future nano energy scavenging devices several thousands
of ZnO NWs will be used simultaneously. This gives a natural
framework for the application of stochastic finite element method
due a large ‘sample space’.
ZnO NWs have the nano piezoelastic property so that the electric
charge generated is a function of the deformation.
It is therefore vitally important to look into the ensemble behavior
of the deformation of ZnO NW for the reliable estimate of
mechanical deformation and consequently the charge generation.
For the nano-scale application this is especially crucial as the
margin of error is very small. Here we study the deformation of a
cantilevered ZnO NW with stochastic properties under the Atomic
Force Microscope (AFM) tip.
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Numerical illustration ZnO nanowires

ZnO nanowires

(a) The SEM image of a collection of ZnO NW
showing hexagonal cross sectional area.

(b) The atomic structure of the cross
section of a ZnO NW (the red is O2

and the grey is Zn atom)
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Numerical illustration ZnO nanowires

ZnO nanowires

(c) The atomistic model of a ZnO NW
grown from a ZnO crystal in the (0, 0, 0, 1)
direction.

(d) The continuum idealization of a can-
tilevered ZnO NW under an AFM tip.
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Numerical illustration ZnO nanowires

Problem details

We study the deflection of ZnO NW under the AFM tip considering
stochastically varying bending modulus. The variability of the
deflection is particularly important as the harvested energy from
the bending depends on it.
We assume that the bending modulus of the ZnO NW is a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (73)

where x is the coordinate along the length of ZnO NW, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.
The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (74)

where µa is the correlation length and σa is the standard deviation.
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Numerical illustration ZnO nanowires

Problem details

We consider a long nanowire where the continuum model has
been validated.
We use the baseline parameters for the ZnO NW from Gao and
Wang (Nano Letters 7 (8) (2007), 2499–2505) as the length
L = 600nm, diameter d = 50nm and the lateral point force at the
tip fT = 80nN.
Using these data, the baseline deflection can be obtained as
δ0 = 145nm. We normalize our results with this baseline value for
convenience.
Two correlation lengths are considered in the numerical studies:
µa = L/3 and µa = L/10.
The number of terms M in the KL expansion becomes 24 and 67
(95% capture).
The nanowire is divided into 50 beam elements of equal length.
The number of degrees of freedom of the model n = 100
(standard beam element).
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Numerical illustration Results for larger correlation length

Moments: larger correlation length

(e) Mean of the normalized deflection. (f) Standard deviation of the normalized
deflection.

Figure: The number of random variable used: M = 24. The number of
degrees of freedom: n = 100.
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Numerical illustration Results for larger correlation length

Error in moments: larger correlation length

Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
Mean 1st order

Galerkin
0.1027 0.4240 1.0104 1.9749

2nd order
Galerkin

0.0003 0.0045 0.0283 0.1321

Standard 1st order
Galerkin

1.8693 3.0517 5.2490 11.3447

deviation 2nd order
Galerkin

0.2201 1.0425 2.7690 8.2712

Percentage error in the mean and standard deviation of the deflection
of the ZnO NW under the AFM tip when correlation length is µa = L/3.
For n = 100 and M = 24, if the second-order PC was used, one would
need to solve a linear system of equation of size 32400. The results
shown here are obtained by solving a linear system of equation of size
6 using the proposed Galerkin approach.
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Numerical illustration Results for larger correlation length

Pdf: larger correlation length

(a) Probability density function for σa =
0.05.

(b) Probability density function for σa =
0.1.

The probability density function of the normalized deflection δ/δ0 of the
ZnO NW under the AFM tip (δ0 = 145nm).
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Numerical illustration Results for larger correlation length

Pdf: larger correlation length

(c) Probability density function for σa =
0.15.

(d) Probability density function for σa =
0.2.

The probability density function of the normalized deflection δ/δ0 of the
ZnO NW under the AFM tip (δ0 = 145nm).
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Numerical illustration Results for smaller correlation length

Moments: smaller correlation length

(e) Mean of the normalized deflection. (f) Standard deviation of the normalized
deflection.

Figure: The number of random variable used: M = 67. The number of
degrees of freedom: n = 100.
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Numerical illustration Results for smaller correlation length

Error in moments: smaller correlation length

Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
Mean 1st order

Galerkin
0.1761 0.7206 1.6829 3.1794

2nd order
Galerkin

0.0007 0.0113 0.0642 0.6738

Standard 1st order
Galerkin

3.9543 5.9581 9.0305 14.6568

deviation 2nd order
Galerkin

0.3222 1.8425 4.6781 8.9037

Percentage error in the mean and standard deviation of the deflection
of the ZnO NW under the AFM tip when correlation length is µa = L/3.
For n = 100 and M = 67, if the second-order PC was used, one would
need to solve a linear system of equation of size 234,500. The results
shown here are obtained by solving a linear system of equation of size
6 using the proposed Galerkin approach.
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Numerical illustration Results for smaller correlation length

Pdf: smaller correlation length

(a) Probability density function for σa =
0.05.

(b) Probability density function for σa =
0.1.

The probability density function of the normalized deflection δ/δ0 of the
ZnO NW under the AFM tip (δ0 = 145nm).
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Numerical illustration Results for smaller correlation length

Pdf: smaller correlation length

(c) Probability density function for σa =
0.15.

(d) Probability density function for σa =
0.2.

The probability density function of the normalized deflection δ/δ0 of the
ZnO NW under the AFM tip (δ0 = 145nm).
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Conclusions

Conclusions

1 We consider discretised stochastic elliptic partial differential
equations.

2 The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated coefficient functions
are obtained.

3 The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices.

4 If p < n number of orthonormal vectors are used and M is the
number of random variables, then the computational complexity
grows in O(Mp2) + O(p3) for large M and p in the worse case.

5 We consider a problem with 24 and 67 random variables and
n = 100 degrees of freedom. A second-order PC would require
the solution of equations of dimension 32,400 and 234,500
respectively. In comparison, the proposed Galerkin approach
requires the solution of algebraic equations of dimension 6 only.
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