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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nominally identical sys-
tems)
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A complex structural dynamical system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite Element) model
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Uncertainty propagation: key challenges

The main difficulties are:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and
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Uncertainty propagation (1)

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications (building
under earthquake load)
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Uncertainty propagation (2)

Nonparametric approaches : Such as the Random matrix
theory:

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications (eg,
noise propagation in vehicles)
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Dynamics of a general linear system

The equation of motion:

Mq̈(t) +Cq̇(t) +Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K become
random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices (and
consequently in the eigensolutions)
to predict the variability in the response vector q
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Random matrix model for dynamical system

Suppose H(x, θ) is a distributed random field describing a system parameter. This can be
expanded using the Karhunen-Loève expansion as

H(x, θ) = H0(x) + ǫ
M∑

j=1

ξj(θ)
√

λjϕj(x) (2)

where H0(x) is the mean of the random field, ǫ is its standard deviation and M is the
number of terms used to truncate the infinite series.

Substituting this in the equation of motion and following the usual finite element method,
and of the system matrix can be expressed as

G(θ) = G0 + ǫG

M∑

j=1

ξGj
(θ)Gj (3)

Q: how non parametric uncertainties can be taken into account?
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n×m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n×m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X−M)Ψ−1(X−M)T

}

(4)

This distribution is usually denoted as X ∼ Nn,p (M,Σ⊗Ψ).
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Matrix variate Gamma distribution

A n× n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a and
Ψ ∈ R

+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1
|W|a−

1
2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here the
multivariate gamma function:

Γn (a) = π
1
4
n(n−1)

n
∏

k=1

Γ

[

a−
1

2
(k − 1)

]

; forℜ(a) > (n− 1)/2
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Wishart matrix

A n× n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

|S|
1
2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(5)

This distribution is usually denoted as S ∼ Wn(p,Σ).
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by M, C
and K respectively. Using the notation G (which stands for any
one the system matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R+

n → R. We have the following
constrains to obtain pG (G):

∫

G>0

pG (G) dG = 1 (normalization) (6)

and
∫

G>0

G pG (G) dG = G (the mean matrix) (7)
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Further constraints

Suppose that the inverse moments up to order ν of the
system matrix exist. This implies that E

[
∥

∥G−1
∥

∥

F

ν]
should be

finite. Here the Frobenius norm of matrix A is given by

‖A‖F =
(

Trace
(

AAT
))1/2

.

Taking the logarithm for convenience, the condition for the
existence of the inverse moments can be expresses by

E
[

ln |G|−ν] < ∞
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The random matrix model

Following the maximum entropy method it can be shown that
the system matrices are distributed as Wishart matrices, i.e.,
G ∼ Wn(G0, δ

2
G)

Here G0 is the mean and the dispersion parameter
(normalized) standard deviation of the system matrices:

δ2G =
E
[

‖G− E [G] ‖2F
]

‖E [G] ‖2F
. (8)

This method is computationally expensive as the simulation
of two Wishart matrices and the solution of a generaized
eigenvalue problem is necessary for each sample.
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The dispersion parameter

δ2G =

E

[∥∥∥ǫG
∑M

j=1 ξGj
(θ)Gj

∥∥∥
2

F

]

‖E [G] ‖2F
(9)

Since both trace and expectation operators are linear they can be swaped. Doing this we obtain

δ2G =
ǫ2
G
Trace

(
E
[
(
∑M

j=1

∑M
k=1 ξGj

(θ)ξGk
(θ)GjGk)

])

‖G0 ‖2F
(10)

Recalling that the matrices Gj are not random and {ξG1 (θ), ξG2 (θ), . . . } is a set of uncorrelated

random variables with zero mean and E
[
ξGj

(θ)ξGk
(θ)

]
= δjk, we have

δ2G =
ǫ2
G
Trace

(
(
∑M

j=1

∑M
k=1 E

[
ξGj

(θ)ξGk
(θ)

]
GjGk)

)

‖G0 ‖2F

=
ǫ2
G
Trace

(
(
∑M

j=1 G
2
j )
)

‖G0 ‖2F
= ǫ2G

∑M
j ‖(Gj)‖2F
‖G0 ‖2F

(11)
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Reduced random matrix approach (1)

Taking the Laplace transform of the equation of motion:

[
s2M+ sC+K

]
q̄(s) = f̄(s) (12)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the system matrices

are random matrices.

The system eigenvalue problem is given by

Kφj = ω2
jMφj , j = 1, 2, . . . , n (13)

where ω2
j and φj are respectively the eigenvalues and mass-normalized eigenvectors of

the system.

Suppose the number of modes to be retained is m. In general m ≪ n. We form the
truncated undamped modal matrices

Ω = diag [ω1, ω2, . . . , ωm] ∈ R
m×m and Φ = [φ1,φ2, . . . ,φm] ∈ R

n×m (14)

so that ΦTKeΦ = Ω2 and ΦTMΦ = Im
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Reduced random matrix approach (2)

Transforming it into the modal coordinates:

[

s2Im + sC′ +Ω2
]

q̄′ = f̄
′

(15)

Here

C′ = ΦTCΦ = 2ζΩ, q̄ = Φq̄′ and f̄
′
= ΦT f̄ (16)

When we consider random systems, the matrix of
eigenvalues Ω2 will be a random matrix of dimension m.
Suppose this random matrix is denoted by Ξ ∈ R

m×m:

Ω2 ∼ Ξ (17)
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Reduced random matrix approach (3)

Since Ξ is a symmetric and positive definite matrix, it can be
diagonalized by a orthogonal matrix Ψr such that

ΨT
r ΞΨr = Ω2

r (18)

Here the subscript r denotes the random nature of the
eigenvalues and eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = Im we obtain

q̄′ =
[

s2Im + sC′ +Ω2
]−1

f̄
′

(19)

= Ψr

[

s2Im + 2sζΩr +Ω2
r

]−1
ΨT

r f̄
′

(20)
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Reduced random matrix approach (4)

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[

s2Im + 2sζΩr +Ω2
r

]−1
(ΦΨr)

T f̄(s)

=
m
∑

j=1

xT
rj
f̄(s)

s2 + 2sζjωrj + ω2
rj

xrj .

Here

Ωr = diag [ωr1 , ωr2 , . . . , ωrm ] , Xr = ΦΨr = [xr1 ,xr2 , . . . ,xrm ]

are respectively the matrices containing random eigenvalues
and eigenvectors of the system.
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Wishart system matrices

M and K are Wishart matrices. For this case M ∼ Wn(p1,Σ1),
K ∼ Wn(p1,Σ1) with E [M] = M0 and E [M] = M0.
Here

Σ1 = M0/p1, p1 =
γM + 1

δ2M
(21)

and Σ2 = K0/p2, p2 =
γK + 1

δ2K
(22)

γG = {Trace (G0)}
2/Trace

(

G0
2
)

(23)
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Parameter-estimation for the reduced matrix (1)

We have Ξ ∼ Wm

(

p,Ω2
0/θ

)

with E
[

Ξ−1
]

= Ω−2
0 and δΞ = δH .

This requires the simulation of one n× n uncorrelated Wishart
matrix and the solution of an n× n standard eigenvalue problem.
The parameters can be obtained as

p = n+ 1 + θ and θ =
(1 + γH)

δ2H
− (n+ 1) (24)
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Parameter-estimation for the reduced matrix (2)

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}2

Trace
(
H0

2
) =

{
Trace

(
Ω2

0

)}2

Trace
(
Ω4

0

) =

(∑
j ω

2
0j

)2

∑
j ω

4
0j

(25)

Obtain the dispersion parameter of the generalized Wishart matrix

δH =

(
p12 + (p2 − 2− 2n) p1 + (−n− 1) p2 + n2 + 1 + 2n

)
γH

p2 (−p1 + n) (−p1 + n+ 3)

+
p12 + (p2 − 2n) p1 + (1− n) p2 − 1 + n2

p2 (−p1 + n) (−p1 + n+ 3)
(26)
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Computational strategy (1)

Calculate the parameters

θ =
(1 + βH)

δ2
H

− (m+ 1) and p = [m+ 1 + θ] (27)

where p is approximated to the nearest integer of m+ 1 + θ.

Create an m× p matrix Y such that

Yij = ω0i Ŷij/
√
θ; i = 1, 2, . . . ,m; j = 1, 2, . . . , p (28)

where Ŷij are independent and identically distributed (i.i.d.) Gaussian random numbers
with zero mean and unit standard deviation.

Simulate the m×m Wishart random matrix

Ξ = YYT or Ξij =
ω0iω0j

θ

p∑

k=1

ŶikŶjk; i = 1, 2, . . . ,m; j = 1, 2, . . . ,m (29)

Since Ξ is symmetric, only the upper or lower triangular part need to be simulated.
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Computational strategy (2)

Solve the symmetric eigenvalue problem (Ωr,Ψr ∈ R
m×m) for every sample

ΞΨr = Ω2
rΨr (30)

and obtain the random eigenvector matrix

Xr = Φ0Ψr = [xr1 ,xr2 , . . . ,xrm ] ∈ R
n×m (31)

Finally calculate the dynamic response in the frequency domain as

q̄r(iω) =
m∑

j=1

xT
rj
f̄(s)

−ω2 + 2iωζjωrj + ω2
rj

xrj (32)

The samples of the response in the time domain can also be obtained from the random
eigensolutions as

qr(t) =
m∑

j=1

arj (t)xrj , where arj (t) =
1

ωrj

∫ t

0
xT
rj
f(τ)e

−ζjωrj
(t−τ)

sin
(
ωrj (t− τ)

)
dτ

(33)
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Numerical Examples
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A vibrating cantilever plate
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Baseline Model: Thin plate elements with 0.7% modal damping assumed for all
the modes.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0× 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness
are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (34)

µ(x) = µ̄ (1 + ǫµf2(x)) (35)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (36)

and t(x) = t̄ (1 + ǫtf4(x)) (37)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and
ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.

Edinburgh , 14 June 2010 A Reduced Random Matrix Approach for Structural Dynamics – p.33/52



Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by
attaching 10 oscillators with random spring stiffnesses at
random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally.
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Methodologies compared

Method 1 - Mass and stiffness matrices are fully correlated Wishart matrices: For this case
M ∼ Wn(pM ,ΣM ), K ∼ Wn(pK ,ΣK) with E [M] = M0 and E [M] = M0. This method
requires the simulation of two n× n fully correlated Wishart matrices and the solution of a
n× n generalized eigenvalue problem with two fully populated matrices. The
computational cost of this approach is ≈ 2O(n3).

Method 2 - Generalized Wishart Matrix: For this case Ξ ∼ Wn

(
p,Ω2

0/θ
)

with
E
[
Ξ−1

]
= Ω

−2
0 and δΞ = δH . This requires the simulation of one n× n uncorrelated

Wishart matrix and the solution of an n× n standard eigenvalue problem. The
computational cost of this approach is ≈ O(n3).

Method 3 - Reduced diagonal Wishart Matrix: For this case Ξ̃ ∼ Wm

(
p̃, Ω̃

2
0/θ

)
with

E
[
Ξ̃

−1
]
= Ω̃

−2
0 and δ ˜Ξ

= δH . This requires the simulation of one m×m uncorrelated

Wishart matrix and the solution of a m×m standard eigenvalue problem. For large
complex systems m can be significantly smaller than n. The computational cost of this
approach is ≈ O(m3).
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Mean of cross-FRF: Utype 1
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Direct simulation

Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.078 and σK = 0.205.
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Mean of driving-point-FRF: Utype 1
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Mean of the amplitude of the response of the driving-point-FRF of the plate, n =

1200, σM = 0.078 and σK = 0.205.
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Standard deviation of cross-FRF: Utype 1
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Standard deviation of the amplitude of the response of the cross-FRF of the plate,
n = 1200, σM = 0.078 and σK = 0.205.
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Standard deviation of driving-point-FRF: Utype 1
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M and K are fully correlated Wishart
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Direct simulation

Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.078 and σK = 0.205.

Edinburgh , 14 June 2010 A Reduced Random Matrix Approach for Structural Dynamics – p.39/52



Experimental investigation for
uncertainty type 2 (randomly attached

oscillators)
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A cantilever plate: front view

The test rig for the cantilever plate; front view (to appear in Probabilistic Engineer-
ing Mechanics).
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Comparison of driving-point-FRF
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Reduced diagonal Wishart
Experiment

Comparison of the mean of the amplitude obtained using the experiment and the
reduced Wishart matrix approach for the plate with randomly attached oscillators
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Comparison of Cross-FRF
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Reduced diagonal Wishart
Experiment

Comparison of the mean of the amplitude obtained using the experiment and the
reduced Wishart matrix approach for the plate with randomly attached oscillators

Edinburgh , 14 June 2010 A Reduced Random Matrix Approach for Structural Dynamics – p.44/52



Comparison of driving-point-FRF
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Reduced diagonal Wishart
Experiment

Comparison of relative standard deviation of the amplitude obtained using the
experiment and the reduced Wishart matrix approach for the plate with randomly
attached oscillators
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Comparison of Cross-FRF
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Reduced diagonal Wishart
Experiment

Comparison of relative standard deviation of the amplitude obtained using the
experiment and the reduced Wishart matrix approach for the plate with randomly
attached oscillators
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Integration with ANSYS TM

Input

Output

The Finite Element (FE) model of an aircraft wing (5907 degrees-of-freedom).
The width is 1.5m, length is 20.0m and the height of the aerofoil section is 0.3m.
The material properties are: Young’s modulus 262Mpa, Poisson’s ratio 0.3 and
mass density 888.10kg/m3. Input node number: 407 and the output node number
96. A 2% modal damping factor is assumed for all modes.
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Vibration modes

Mode 3, frequency 19.047Hz, Mode 5, frequency 53.628Hz

Mode 10, frequency 168.249Hz, Mode 20, frequency 403.711Hz
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Mean of a Cross-FRF
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Standard deviation of a Cross-FRF
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Conclusions

Linear multiple degrees of freedom dynamic systems with
uncertain properties are considered.

A general uncertain propagation approach based on
reduced Wishart random matrix is discussed and the results
are compared with experimental results.

Based on numerical and experimental studies, a suitable
simple Wishart random matrix model has been identified and
a simulation based computational method has been
proposed.

The proposed reduced approach has been integrated with a
commercial FE software.
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