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Introduction Stochastic elliptic PDEs

Stochastic elliptic PDE

We consider the stochastic elliptic partial differential equation
(PDE)

−∇ [a(r, ω)∇u(r, ω)] = p(r); r in D (1)

with the associated boundary condition

u(r, ω) = 0; r on ∂D (2)

Here a : Rd × Ω→ R is a random field, which can be viewed as a
set of random variables indexed by r ∈ Rd .
We assume the random field a(r, ω) to be stationary and square
integrable. Based on the physical problem the random field a(r, ω)
can be used to model different physical quantities.
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Introduction Stochastic elliptic PDEs

Discretized Stochastic PDE

The random process a(r, ω) can be expressed in a generalized
fourier type of series known as the Karhunen-Loève expansion

a(r, ω) = a0(r) +
∞∑

i=1

√
νiξi(ω)ϕi(r) (3)

Here a0(r) is the mean function, ξi(ω) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation∫
D

Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1,2, · · · .
Truncating the series (3) upto the M-th term, substituting a(r, ω) in
the governing PDE (1) and applying the boundary conditions, the
discretized equation can be written as[

A0 +
M∑

i=1

ξi(ω)Ai

]
u(ω) = f (4)
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(ω) =
P∑

k=1

Hk (ξ(ω))uk (5)

where Hk (ξ(ω)) are the polynomial chaoses.
The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
(6)
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Introduction Stochastic elliptic PDEs

Some basics of linear algebra

Definition

(Linearly independent vectors) A set of vectors {φ1,φ2, . . . ,φn} is
linearly independent if the expression

∑n
k=1 αkφk = 0 if and only if

αk = 0 for all k = 1,2, . . . ,n.

Remark

(The spanning property) Suppose {φ1,φ2, . . . ,φn} is a complete basis
in the Hilbert space H. Then for every nonzero u ∈ H, it is possible to
choose α1, α2, . . . , αn 6= 0 uniquely such that
u = α1φ1 + α2φ2 + . . . αnφn.
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Introduction Stochastic elliptic PDEs

Polynomial Chaos expansion

We can ‘split’ the Polynomial Chaos type of expansions as

û(ω) =
n∑

k=1

Hk (ξ(ω))uk +
P∑

k=n+1

Hk (ξ(ω))uk (7)

According to the spanning property of a complete basis in Rn it is
always possible to project û(ω) in a finite dimensional vector basis
for any ω ∈ Ω. Therefore, in a vector polynomial chaos expansion
(7), all uk for k > n must be linearly dependent.
This is the motivation behind seeking a finite dimensional
expansion.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Theorem

There exist a finite set of functions Γk : (Rm × Ω)→ (R× Ω) and an
orthonormal basis φk ∈ Rn for k = 1,2, . . . ,n such that the series

û(ω) =
n∑

k=1

Γk (ξ(ω))φk (8)

converges to the exact solution of the discretized stochastic finite
element equation (4) with probability 1.

Outline of the proof: The first step is to generate a complete
orthonormal basis. We use the eigenvectors φk ∈ Rn of the matrix A0
such that

A0φk = λ0kφk ; k = 1,2, . . .n (9)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Suppose the solution of Eq. (4) is given by

û(ω) =

[
A0 +

M∑
i=1

ξi(ω)Ai

]−1

f (10)

Using the eigenvector matrix and the orthonormality of Φ one has

û(ω) =

[
Φ−TΛ0Φ

−1 +
M∑

i=1

ξi(ω)Φ−T ÃiΦ
−1

]−1

f = ΦΨ (ξ(ω))ΦT f

(11)
where

Ψ (ξ(ω)) =

[
Λ0 +

M∑
i=1

ξi(ω)Ãi

]−1

(12)

and the M-dimensional random vector

ξ(ω) = {ξ1(ω), ξ2(ω), . . . , ξM(ω)}T (13)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the Ãi
matrices as

Ãi = Λi + ∆i , i = 1,2, . . . ,M (14)

Here the diagonal matrix

Λi = diag
[
Ã
]

= diag
[
λi1 , λi2 , . . . , λin

]
∈ Rn×n (15)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ξ(ω)) =

Λ0 +
M∑

i=1

ξi(ω)Λi︸ ︷︷ ︸
Λ(ξ(ω))

+
M∑

i=1

ξi(ω)∆i︸ ︷︷ ︸
∆(ξ(ω))



−1

(16)

where Λ (ξ(ω)) ∈ Rn×n is a diagonal matrix and ∆ (ξ(ω)) is an
off-diagonal only matrix.
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

We rewrite Eq. (16) as

Ψ (ξ(ω)) =
[
Λ (ξ(ω))

[
In + Λ−1 (ξ(ω))∆ (ξ(ω))

]]−1
(17)

The above expression can be represented using a Neumann type of
matrix series as

Ψ (ξ(ω)) =
∞∑

s=0

(−1)s
[
Λ−1 (ξ(ω))∆ (ξ(ω))

]s
Λ−1 (ξ(ω)) (18)
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space

Polynomial Chaos expansion

Taking an arbitrary r -th element of û(ω), Eq. (11) can be rearranged to
have

ûr (ω) =
n∑

k=1

Φrk

 n∑
j=1

Ψkj (ξ(ω))
(
φT

j f
) (19)

Defining

Γk (ξ(ω)) =
n∑

j=1

Ψkj (ξ(ω))
(
φT

j f
)

(20)

and collecting all the elements in Eq. (19) for r = 1,2, . . . ,n one has

û(ω) =
n∑

k=1

Γk (ξ(ω))φk (21)
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Spectral decomposition in a vector space Properties of the spectral functions

Spectral functions

Definition
The functions Γk (ξ(ω)) , k = 1,2, . . .n are called the spectral functions
as they are expressed in terms of the spectral properties of the
coefficient matrices of the governing discretized equation.

The main difficulty in applying this result is that each of the
spectral functions Γk (ξ(ω)) contain infinite number of terms and
they are highly nonlinear functions of the random variables ξi(ω).
For computational purposes, it is necessary to truncate the series
after certain number of terms.
Different order of spectral functions can be obtained by using
truncation in the expression of Γk (ξ(ω))

Adhikari (SU) Reduced methods for SPDE 26 May 2010 13 / 33



Spectral decomposition in a vector space Properties of the spectral functions

First-order spectral functions

Definition

The first-order spectral functions Γ
(1)
k (ξ(ω)), k = 1,2, . . . ,n are

obtained by retaining one term in the series (18).

Retaining one term in (18) we have

Ψ(1) (ξ(ω)) = Λ−1 (ξ(ω)) or Ψ
(1)
kj (ξ(ω)) =

δkj

λ0k +
∑M

i=1 ξi(ω)λik
(22)

Using the definition of the spectral function in Eq. (20), the first-order
spectral functions can be explicitly obtained as

Γ
(1)
k (ξ(ω)) =

n∑
j=1

Ψ
(1)
kj (ξ(ω))

(
φT

j f
)

=
φT

k f
λ0k +

∑M
i=1 ξi(ω)λik

(23)

From this expression it is clear that Γ
(1)
k (ξ(ω)) are non-Gaussian

random variables even if ξi(ω) are Gaussian random variables.
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Spectral decomposition in a vector space Properties of the spectral functions

Second-order spectral functions

Definition

The second-order spectral functions Γ
(2)
k (ξ(ω)), k = 1,2, . . . ,n are

obtained by retaining two terms in the series (18).

Retaining two terms in (18) we have

Ψ(2) (ξ(ω)) = Λ−1 (ξ(ω))− Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω)) (24)

Using the definition of the spectral function in Eq. (20), the
second-order spectral functions can be obtained in closed-form as

Γ
(2)
k (ξ(ω)) =

φT
k f

λ0k +
∑M

i=1 ξi(ω)λik

−

n∑
j=1

(
φT

j f
)∑M

i=1 ξi(ω)∆ikj(
λ0k +

∑M
i=1 ξi(ω)λik

)(
λ0j +

∑M
i=1 ξi(ω)λij

) (25)
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Spectral decomposition in a vector space Properties of the spectral functions

Relationship with PC

Theorem

There exist a finite set of functions Γ̃k : (Rm × Ω)→ (R× Ω) and an
orthonormal basis φk ∈ Rn for k = 1,2, . . . ,n such that a vector
polynomial chaos expansion can be expressed by

û(ω) =
n∑

k=1

Γ̃k (ξ(ω))φk (26)
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Spectral decomposition in a vector space Properties of the spectral functions

Relationship with PC

Outline of the proof:

u(ω) = ui0h0 +
∞∑

i1=1

ui1h1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

ui1,i2h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4 h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(27)

where ui1,...,ip ∈ Rn are deterministic vectors to be determined. Using
the spanning property of the orthonormal basis φk ∈ Rn in Remark 1,
each of the ui1,...,ip can be uniquely expressed as

ui1,...,ip = α
(1)
i1,...,ip

φ1 + α
(2)
i1,...,ip

φ2 + . . .+ α
(n)
i1,...,ip

φn (28)
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Spectral decomposition in a vector space Properties of the spectral functions

Relationship with PC

Substituting this in Eq. (27) and collecting all the coefficients
associated with each orthonormal vector φk the theorem is proved
where

Γ̃k (ξ(ω)) = α
(k)
i0

h0 +
∞∑

i1=1

α
(k)
i1

h1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

α
(k)
i1,i2

h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

α
(k)
i1i2i3

h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

α
(k)
i1i2i3i4

h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(29)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

There exist a set of finite functions Γ̂k : (Rm × Ω)→ (R× Ω), constants
ck ∈ R and orthonormal vectors φk ∈ Rn for k = 1,2, . . . ,n such that
the series

û(ω) =
n∑

k=1

ck Γ̂k (ξ(ω))φk (30)

converges to the exact solution of the discretized stochastic finite
element equation (4) in the mean-square sense provided the vector
c = {c1, c2, . . . , cn}T satisfies the n × n algebraic equations S c = b
with

Sjk =
M∑

i=0

Ãijk Dijk ; ∀ j , k = 1,2, . . . ,n; Ãijk = φT
j Aiφk , (31)

Dijk = E
[
ξi(ω)Γ̂j(ξ(ω))Γ̂k (ξ(ω))

]
and bj = E

[
Γ̂j(ξ(ω))

] (
φT

j f
)
.

(32)
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Error minimization in the Hilbert space The Galerkin approach

The Galerkin approach

The error vector can be obtained as

ε(ω) =

(
M∑

i=0

Aiξi(ω)

)(
n∑

k=1

ck Γ̂k (ξ(ω))φk

)
− f ∈ Rn (33)

The solution is viewed as a projection where
{

Γ̂k (ξ(ω))φk

}
∈ Rn

are the basis functions and ck are the unknown constants to be
determined.
We wish to obtain the coefficients ck such that the error norm
χ2 = 〈ε(ω), ε(ω)〉 is minimum. This can be achieved using the
Galerkin approach so that the error is made orthogonal to the
basis functions, that is, mathematically

ε(ω)⊥
(

Γ̂j(ξ(ω))φj

)
or

〈
Γ̂j(ξ(ω))φj , ε(ω)

〉
= 0 ∀ j = 1,2, . . . ,n

(34)
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Error minimization in the Hilbert space Computational method

Summary of the computational method

1 Solve the eigenvalue problem associated with the mean matrix A0
to generate the orthonormal basis vectors: A0Φ = Λ0Φ

2 Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(ω), i = 1,2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ξ(ω)) =
φT

k f
λ0k

+
∑M

i=1 ξi (ω)λik

4 Obtain the coefficient vector: c = S−1b ∈ Rn, where b = f̃� Γ,
S = Λ0 � D0 +

∑M
i=1 Ãi � Di and

Di = E
[
Γ(ω)ξi(ω)ΓT (ω)

]
, ∀ i = 0,1,2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω) =

∑n
k=1 ck Γk (ξ(ω))φk
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Error minimization in the Hilbert space Computational method

Computational complexity

The spectral functions Γ̂k (ξ(ω)) are highly non-Gaussian in nature
and do not in general enjoy any orthogonality properties like the
Hermite polynomials or any other orthogonal polynomials with
respect to the underlying probability measure.
The coefficient matrix S and the vector b should be obtained
numerically using the Monte Carlo simulation or other numerical
integration technique.
The simulated spectral functions can also be ‘recycled’ to obtain
the statistics and probability density function (pdf) of the solution.
The main computational cost of the proposed method depends on
(a) the solution of the matrix eigenvalue problem, (b) the
generation of the coefficient matrices Di , and (c) the calculation of
the coefficient vector by solving linear matrix equation.
For large M and n, asymptotically the computational cost
becomes Cs = O(Mn2) + O(n3).
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Numerical illustration ZnO nanowires

Collection of ZnO

Uncertainties in ZnO NWs in the close up view. The uncertain
parameter include geometric parameters such as the length and the
cross sectional area along the length, boundary condition and material
properties.
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Numerical illustration ZnO nanowires

ZnO nanowires

(a) The SEM image of a collection of ZnO NW
showing hexagonal cross sectional area.

(b) The continuum idealization of a
cantilevered ZnO NW under an AFM
tip

Adhikari (SU) Reduced methods for SPDE 26 May 2010 24 / 33



Numerical illustration ZnO nanowires

Problem details

We study the deflection of ZnO NW under the AFM tip considering
stochastically varying bending modulus. The variability of the
deflection is particularly important as the harvested energy from
the bending depends on it.
We assume that the bending modulus of the ZnO NW is a
homogeneous stationary Gaussian random field of the form

EI(x , ω) = EI0(1 + a(x , ω)) (35)

where x is the coordinate along the length of ZnO NW, EI0 is the
estimate of the mean bending modulus, a(x , ω) is a zero mean
stationary Gaussian random field.
The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (36)

where µa is the correlation length and σa is the standard deviation.
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Numerical illustration ZnO nanowires

Problem details

We consider a long nanowire where the continuum model has
been validated.
We use the baseline parameters for the ZnO NW from Gao and
Wang (Nano Letters 7 (8) (2007), 2499–2505) as the length
L = 600nm, diameter d = 50nm and the lateral point force at the
tip fT = 80nN.
Using these data, the baseline deflection can be obtained as
δ0 = 145nm. We normalize our results with this baseline value for
convenience.
The correlation length considered in the numerical studies:
µa = L/10.
The number of terms M in the KL expansion becomes 67 (95%
capture).
The nanowire is divided into 50 beam elements of equal length.
The number of degrees of freedom of the model n = 100
(standard beam element).

Adhikari (SU) Reduced methods for SPDE 26 May 2010 26 / 33



Numerical illustration ZnO nanowires

Moments

(c) Mean of the normalized deflection. (d) Standard deviation of the normalized
deflection.

Figure: The number of random variable used: M = 67. The number of
degrees of freedom: n = 100.
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Numerical illustration ZnO nanowires

Error in moments

Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20
Mean 1st order

Galerkin
0.1761 0.7206 1.6829 3.1794

2nd order
Galerkin

0.0007 0.0113 0.0642 0.6738

Standard 1st order
Galerkin

3.9543 5.9581 9.0305 14.6568

deviation 2nd order
Galerkin

0.3222 1.8425 4.6781 8.9037

Percentage error in the mean and standard deviation of the deflection
of the ZnO NW under the AFM tip when correlation length is µa = L/3.
For n = 100 and M = 67, if the second-order PC was used, one would
need to solve a linear system of equation of size 234,500. The results
shown here are obtained by solving a linear system of equation of size
100 using the proposed Galerkin approach.
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Numerical illustration ZnO nanowires

Pdf

(a) Probability density function for σa =
0.1.

(b) Probability density function for σa =
0.2.

The probability density function of the normalized deflection δ/δ0 of the
ZnO NW under the AFM tip (δ0 = 145nm).
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Conclusions

Conclusions

The only informaion used in the classical PC is the pdf of the
random variables.
Here, additionally, the following information, coming from the
discreised PDE, are used:

A0 is symmetric and positive definite (used to generate the
orthonormal basis)
‖Ai‖ ≥ ‖Ai+1‖ , i = 0,1,2,3 . . . (used to generate the coefficient
functions)

This is a ‘bespoke’ approach
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Conclusions

Conclusions

(c) Basic building blocks. (d) Possible ‘solution’.

An analogy of PC based solution.
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Conclusions

Conclusions

Basic building blocks for the proposed method
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Conclusions

Conclusions

1 We consider discretised stochastic elliptic partial differential
equations.

2 The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated coefficient functions
are obtained.

3 The coefficient functions, called as the spectral functions, are
expressed in terms of the spectral properties of the system
matrices.

4 If n is the size of the discretized matrices and M is the number of
random variables, then the computational complexity grows in
O(Mn2) + O(n3) for large M and n in the worse case.

5 We consider a problem with 67 random variables and n = 100
degrees of freedom. A second-order PC would require the
solution of equations of dimension 234,500. In comparison, the
proposed Galerkin approach requires the solution of algebraic
equations of dimension n only.
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