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A general overview of computational mechanics
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Ensembles of structural systems

Many structural dynamic systems are manufactured in a production line (nominally identical sys-
tems)
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A complex structural system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite Element) model

University of Bradford, 8 December 2009 Uncertainty in structural mechanics – p.6/70



Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (deter-
ministic)

Unknown Analysis (forward
problem)

FEM/BEM/Finite
difference

Known (deter-
ministic)

Incorrect (deter-
ministic)

Known (deter-
ministic)

Updating/calibration Modal updating

Known (deter-
ministic)

Unknown Known (deter-
ministic)

System identifica-
tion

Kalman filter

Assumed (de-
terministic)

Unknown (de-
terministic)

Prescribed Design Design optimisa-
tion

Unknown Partially Known Known Structural Health
Monitoring (SHM)

SHM methods

Known (deter-
ministic)

Known (deter-
ministic)

Prescribed Control Modal control

Known (ran-
dom)

Known (deter-
ministic)

Unknown Random vibration Random vibration
methods
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Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (ran-
dom)

Unknown Stochastic analysis
(forward problem)

SFEM/RMT

Known (ran-
dom)

Incorrect (ran-
dom)

Known (ran-
dom)

Probabilistic updat-
ing/calibration

Bayesian calibra-
tion

Assumed (ran-
dom/deterministic)

Unknown (ran-
dom)

Prescribed (ran-
dom)

Probabilistic de-
sign

RBOD

Known (ran-
dom/deterministic)

Partially known
(random)

Partially known
(random)

Joint state and pa-
rameter estimation

Particle Kalman
Filter/Ensemble
Kalman Filter

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from
experiment and
model (random)

Model validation Validation meth-
ods

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from dif-
ferent computa-
tions (random)

Model verification verification meth-
ods
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Uncertainty propagation: key challenges

The main difficulties are:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and
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Current approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications (building
under earthquake load, steering column vibration in cars)
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Current UP approaches - 2

Nonparametric approaches : Such as the Random Matrix
Theory (RMT):

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
do not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications (eg,
noise propagation in vehicles)
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Random continuous dynamical systems

The equation of motion:

ρ(r, θ)
∂2U(r, t)

∂t2
+L1

∂U(r, t)

∂t
+L2U(r, t) = p(r, t); r ∈ D, t ∈ [0, T ]

(1)

U(r, t) is the displacement variable, r is the spatial position vector
and t is time.

ρ(r, θ) is the random mass distribution of the system, p(r, t)

is the distributed time-varying forcing function, L1 is the
random spatial self-adjoint damping operator, L2 is the
random spatial self-adjoint stiffness operator.

Eq (1) is a Stochastic Partial Differential Equation (SPDE)
[ie, the coefficients are random processes].
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Stochastic Finite Element Method

Problems of structural dynamics in which the uncertainty in specifying mass and stiffness of the
structure is modeled within the framework of random fields can be treated using the Stochastic
Finite Element Method (SFEM). The application of SFEM in linear structural dynamics typically
consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary
conditions

2. Replacement of the element property random fields by an equivalent set of a finite number
of random variables. This step, known as the ‘discretisation of random fields’ is a major
step in the analysis.

3. Formulation of the equation of motion of the form D(ω)u = f where D(ω) is the random
dynamic stiffness matrix, u is the vector of random nodal displacement and f is the applied
forces. In general D(ω) is a random symmetric complex matrix.

4. Calculation of the response statistics by either (a) solving the random eigenvalue problem,
or (b) solving the set of complex random algebraic equations.
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Spectral Decomposition of random fields-2

Suppose H(r, θ) is a random field with a covariance function CH(r1, r2) defined in a space Ω.
Since the covariance function is finite, symmetric and positive definite it can be represented by a
spectral decomposition. Using this spectral decomposition, the random process H(r, θ) can be
expressed in a generalized fourier type of series as

H(r, θ) = H0(r) +
∞
∑

i=1

√

λiξi(θ)ϕi(r) (2)

where ξi(θ) are uncorrelated random variables, λi and ϕi(r) are eigenvalues and eigenfunctions
satisfying the integral equation

∫

Ω
CH(r1, r2)ϕi(r1)dr1 = λiϕi(r2), ∀ i = 1, 2, · · · (3)

The spectral decomposition in equation (2) is known as the Karhunen-Loève (KL) expansion. The
series in (2) can be ordered in a decreasing series so that it can be truncated after a finite number
of terms with a desired accuracy.
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (4)

The underlying random process H(x, θ) can be expanded using the Karhunen-Loève expansion in
the interval −a ≤ x ≤ a as

H(x, θ) =
∞
∑

j=1

ξj(θ)
√

λjϕj(x) (5)

Using the notation c = 1/b, the corresponding eigenvalues and eigenfunctions for odd j are given
by

λj =
2c

ω2
j + c2

, ϕj(x) =
cos(ωjx)

√

a +
sin(2ωja)

2ωj

, where tan(ωja) =
c

ωj
, (6)

and for even j are given by

λj =
2c

ωj
2 + c2

, ϕj(x) =
sin(ωjx)

√

a −
sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c
. (7)
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Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L with random bending
stiffness and mass distribution:

∂2

∂x2

[

EI(x, θ)
∂2Y (x, t)

∂x2

]

+ ρA(x, θ)
∂2Y (x, t)

∂t2
= p(x, t). (8)

Y (x, t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x): mass per unit length, and
p(x, t): applied forcing. Consider

EI(x, θ) = EI0 (1 + ǫ1F1(x, θ)) (9)

and ρA(x, θ) = ρA0 (1 + ǫ2F2(x, θ)) (10)

The subscript 0 indicates the mean values, 0 < ǫi << 1 (i=1,2) are deterministic constants and
the random fields Fi(x, θ) are taken to have zero mean, unit standard deviation and covariance
Rij(ξ). Since, EI(x, θ) and ρA(x, θ) are strictly positive, Fi(x, θ) (i=1,2) are required to satisfy
the conditions P [1 + ǫiFi(x, θ) ≤ 0] = 0.
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Example: A beam with random properties

We express the shape functions for the finite element analysis of Euler-Bernoulli beams as

N(x) = Γ s(x) (11)

where

Γ =
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and s(x) =
[

1, x, x2, x3
]T

. (12)

The element stiffness matrix:

Ke(θ) =

∫ ℓe

0
N

′′

(x)EI(x, θ)N
′′T

(x) dx =

∫ ℓe

0
EI0 (1 + ǫ1F1(x, θ))N

′′

(x)N
′′T

(x) dx. (13)
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Example: A beam with random properties

Expanding the random field F1(x, θ) in KL expansion

Ke(θ) = Ke0 + ∆Ke(θ) (14)

where the deterministic and random parts are

Ke0 = EI0

∫ ℓe

0
N

′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ǫ1

NK
∑

j=1

ξKj(θ)
√

λKjKej . (15)

The constant NK is the number of terms retained in the Karhunen-Loève expansion and ξKj(θ)

are uncorrelated Gaussian random variables with zero mean and unit standard deviation. The
constant matrices Kej can be expressed as

Kej = EI0

∫ ℓe

0
ϕKj(xe + x)N

′′

(x)N
′′T

(x) dx (16)
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Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0 + ∆Me(θ) (17)

The deterministic and random parts is given by

Me0 = ρA0

∫ ℓe

0
N(x)NT (x) dx and ∆Me(θ) = ǫ2

NM
∑

j=1

ξMj(θ)
√

λMjMej . (18)

The constant NM is the number of terms retained in Karhunen-Loève expansion and the constant
matrices Mej can be expressed as

Mej = ρA0

∫ ℓe

0
ϕMj(xe + x)N(x)NT (x) dx. (19)
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Example: A beam with random properties

These element matrices can be assembled to form the global random stiffness and mass matrices
of the form

K(θ) = K0 + ∆K(θ) and M(θ) = M0 + ∆M(θ). (20)

Here the deterministic parts K0 and M0 are the usual global stiffness and mass matrices
obtained form the conventional finite element method. The random parts can be expressed as

∆K(θ) = ǫ1

NK
∑

j=1

ξKj(θ)
√

λKjKj and ∆M(θ) = ǫ2

NM
∑

j=1

ξMj(θ)
√

λMjMj (21)

The element matrices Kej and Mej have been assembled into the global matrices Kj and Mj .
The total number of random variables depend on the number of terms used for the truncation of
the infinite series. This in turn depends on the respective correlation lengths of the underlying
random fields; the smaller the correlation length, the higher the number of terms required and vice
versa.
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Dynamics of a general linear system

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (22)

Due to the presence of uncertainty M, C and K become
random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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Random Matrix Method (RMM)

The methodology :

Derive the matrix variate probability density functions of
M, C and K using available information.
Propagate the uncertainty (using Monte Carlo simulation
or analytical methods) to obtain the response statistics
(or pdf)
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n × m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ ⊗ Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(23)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

|S|
1
2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(24)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Distribution of the system matrices

The distribution of the random system matrices M, C and K
should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of the dynamic
stiffness matrix D(ω) = −ω2M + iωC + K should exist ∀ω.
This ensures that the moments of the response exist for all
frequency values.
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by M, C

and K respectively. Using the notation G (which stands for any
one the system matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the following

constrains to obtain pG (G):

∫

G>0

pG (G) dG = 1 (normalization) (25)

and
∫

G>0

G pG (G) dG = G (the mean matrix) (26)
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Further constraints

Suppose that the inverse moments up to order ν of the
system matrix exist. This implies that E

[∥

∥G−1
∥

∥

F

ν]
should be

finite. Here the Frobenius norm of matrix A is given by

‖A‖F =
(

Trace
(

AAT
))1/2

.

Taking the logarithm for convenience, the condition for the
existence of the inverse moments can be expresses by

E
[

ln |G|−ν] < ∞
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MEnt distribution - 1

The Lagrangian becomes:

L
(

pG
)

= −

∫

G>0

pG (G) ln
{

pG (G)
}

dG+

(λ0 − 1)

(
∫

G>0

pG (G) dG − 1

)

− ν

∫

G>0

ln |G| pG dG

+ Trace

(

Λ1

[
∫

G>0

G pG (G) dG − G

])

(27)

Note: ν cannot be obtained uniquely!
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MEnt distribution - 2

Using the calculus of variation

∂L
(

pG
)

∂pG
= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G) − ln |G|ν

or pG (G) = exp {−λ0} |G|ν etr {−Λ1G}
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MEnt distribution - 3

Using the matrix variate Laplace transform
(T ∈ Rn,n,S ∈ Cn,n, a > (n + 1)/2)

∫

T>0

etr {−ST} |T|a−(n+1)/2 dT = Γn(a) |S|−a

and substituting pG (G) into the constraint equations it can be
shown that

pG (G) = r−nr {Γn(r)}−1
∣

∣G
∣

∣

−r
|G|ν etr

{

−rG
−1

G
}

(28)

where r = ν + (n + 1)/2.
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MEnt Distribution - 4

Comparing it with the Wishart distribution we have: If ν-th or-

der inverse-moment of a system matrix G ≡ {M,C,K} exists

and only the mean of G is available, say G, then the maximum-

entropy pdf of G follows the Wishart distribution with parame-

ters p = (2ν + n + 1) and Σ = G/(2ν + n + 1), that is G ∼

Wn

(

2ν + n + 1,G/(2ν + n + 1)
)

.
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Properties of the distribution

Covariance tensor of G:

cov (Gij, Gkl) =
1

2ν + n + 1

(

GikGjl + GilGjk

)

Normalized standard deviation matrix

σ2
G =

E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

=
1

2ν + n + 1







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







σ2
G ≤

1 + n

2ν + n + 1
and ν ↑ ⇒ δ2

G ↓.
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Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic
finite element modeling) the mean (G0) and the (normalized)
standard deviation (σG) of the system matrices:

σ2
G =

E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

. (29)

The parameters of the Wishart distribution can be identified
using the expressions derived before.
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Stochastic dynamic response

Taking the Laplace transform of the equation of motion:

[

s2M + sC + K
]

q̄(s) = f̄(s) (30)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the system matrices

are random matrices.

The system eigenvalue problem is given by

Kφj = ω2
j Mφj , j = 1, 2, . . . , n (31)

where ω2
j and φj are respectively the eigenvalues and mass-normalized eigenvectors of

the system.

We define the matrices

Ω = diag [ω1, ω2, . . . , ωn] and Φ = [φ1, φ2, . . . , φn] . (32)

so that ΦT KeΦ = Ω2 and ΦT MΦ = In (33)
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Stochastic dynamic response

Transforming it into the modal coordinates:

[

s2In + sC′ + Ω2
]

q̄′ = f̄
′

(34)

Here

C′ = ΦTCΦ = 2ζΩ, q̄ = Φq̄′ and f̄
′
= ΦT f̄ (35)

When we consider random systems, the matrix of
eigenvalues Ω2 will be a random matrix of dimension n.
Suppose this random matrix is denoted by Ξ ∈ R

n×n:

Ω2 ∼ Ξ (36)
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Stochastic dynamic response

Since Ξ is a symmetric and positive definite matrix, it can be
diagonalized by a orthogonal matrix Ψr such that

ΨT
r ΞΨr = Ω2

r (37)

Here the subscript r denotes the random nature of the
eigenvalues and eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = In we obtain

q̄′ =
[

s2In + sC′ + Ω2
]−1

f̄
′

(38)

= Ψr

[

s2In + 2sζΩr + Ω2
r

]−1
ΨT

r f̄
′

(39)
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Stochastic dynamic response

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[

s2In + 2sζΩr + Ω2
r

]−1
(ΦΨr)

T f̄(s)

=

n
∑

j=1

xT
rj
f̄(s)

s2 + 2sζjωrj
+ ω2

rj

xrj
.

Here

Ωr = diag [ωr1 , ωr2 , . . . , ωrn ] , Xr = ΦΨr = [xr1 ,xr2 , . . . ,xrn]

are respectively the matrices containing random eigenvalues
and eigenvectors of the system.
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Parameter-selection of Wishart matrices

Approach 1: M and K are fully correlated Wishart (most complex).
For this case M ∼ Wn(p1,Σ1), K ∼ Wn(p1,Σ1) with E [M] = M0

and E [M] = M0. This method requires the simulation of two
n × n fully correlated Wishart matrices and the solution of a n × n

generalized eigenvalue problem with two fully populated matrices.
Here

Σ1 = M0/p1, p1 =
γM + 1

δM

(40)

and Σ2 = K0/p2, p2 =
γK + 1

δK

(41)

γG = {Trace (G0)}
2/Trace

(

G0
2
)

(42)
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Parameter-selection of Wishart matrices

Approach 2: Scalar Wishart (most simple) In this case it is
assumed that

Ξ ∼ Wn

(

p,
a2

n
In

)

(43)

Considering E [Ξ] = Ω2
0 and δΞ = δH the values of the unknown

parameters can be obtained as

p =
1 + γH

δ2
H

and a2 = Trace
(

Ω2
0

)

/p (44)
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Parameter-selection of Wishart matrices

Approach 3: Diagonal Wishart with different entries (something in
the middle). For this case Ξ ∼ Wn

(

p,Ω2
0/θ

)

with E
[

Ξ−1
]

= Ω−2
0

and δΞ = δH . This requires the simulation of one n × n

uncorrelated Wishart matrix and the solution of an n × n standard
eigenvalue problem.
The parameters can be obtained as

p = n + 1 + θ and θ =
(1 + γH)

δ2
H

− (n + 1) (45)
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Parameter-selection of Wishart matrices

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}

2

Trace
(

H0
2
) =

{

Trace
(

Ω2
0

)}2

Trace
(

Ω4
0

) =

(

∑

j ω2
0j

)2

∑

j ω4
0j

(46)

Obtain the dispersion parameter of the generalized Wishart matrix

δH =

(

p1
2 + (p2 − 2 − 2 n) p1 + (−n − 1) p2 + n2 + 1 + 2 n

)

γH

p2 (−p1 + n) (−p1 + n + 3)

+
p1

2 + (p2 − 2 n) p1 + (1 − n) p2 − 1 + n2

p2 (−p1 + n) (−p1 + n + 3)
(47)
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A vibrating cantilever plate
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Baseline Model: Thin plate elements with 0.7% modal damping assumed for all
the modes.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered for the ex-
periment.
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Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness
are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (48)

µ(x) = µ̄ (1 + ǫµf2(x)) (49)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (50)

and t(x) = t̄ (1 + ǫtf4(x)) (51)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and
ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by
attaching 10 oscillators with random spring stiffnesses at
random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally.
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Mean of cross-FRF
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Direct simulation

Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.078 and σK = 0.205.
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Error in the mean of cross-FRF
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Error in the mean of the amplitude of the response of the cross-FRF of the plate,
n = 1200, σM = 0.078 and σK = 0.205.

University of Bradford, 8 December 2009 Uncertainty in structural mechanics – p.49/70



Standard deviation of driving-point-FRF
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Error in the standard deviation of driving-point-FRF
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M and K are fully correlated Wishart
Scalar Wishart
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Error in the standard deviation of the amplitude of the response of the driving-
point-FRF of the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Experimental investigation for
uncertainty type 2 (randomly attached

oscillators)
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A cantilever plate: top view

Experimental setup showing the shaker and ac- celerometer locations.
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A cantilever plate: bottom view

Experimental setup showing a realization of the attached oscillators.
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Comparison of driving-point-FRF
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Comparison of the mean of the amplitude obtained using the experiment and
three Wishart matrix approaches for the plate with randomly attached oscillators
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Comparison of Cross-FRF
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Comparison of the mean of the amplitude obtained using the experiment and
three Wishart matrix approaches for the plate with randomly attached oscillators
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Comparison of driving-point-FRF
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Comparison of relative standard deviation of the amplitude obtained using the
experiment and three Wishart matrix approaches for the plate with randomly at-
tached oscillators
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Comparison of Cross-FRF
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Comparison of relative standard deviation of the amplitude obtained using the
experiment and three Wishart matrix approaches for the plate with randomly at-
tached oscillators
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Identification of uncertain systems
(inverse problmes)
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Identification of random field

How to identify random field corresponding to the system
parameters from experimental observations is a major
concern for various aero-mechanical systems.

Suppose we know the nominal values of the system
parameters and the ‘deviations’ are not very large from the
nominal values.

We proposed a simple approach based on sensitivity
analysis and KL expansion.

University of Bradford, 8 December 2009 Uncertainty in structural mechanics – p.60/70



Eigen-sensitivity based approach

Let us consider the random beam example discussed earlier
for illustration .

The random eigenvalue problem can be expressed as

[K0 + ∆K(θ)]φi = ω2
i [M0 + ∆M(θ)]φi. (52)

Recall that ∆K(θ) and ∆M(θ) can be expressed as sums of
random variables.

The eigenvalues ωi(related to the resonance frequencies of
the system) can be obtained from experiments.
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Eigen-sensitivity based approach

Using the Karhunen-Loève expansion of the stiffness and mass matrices and the first-order
perturbation method, each eigenvalue can be expressed as

ωi ≈ ω0i +

NK
∑

j=1

∂ωi

∂ξKj
ξKj(θ) +

NM
∑

j=1

∂ωi

∂ξMj
ξMj(θ). (53)

∂K

∂ξKj
= ǫ1

√

λKjKj and
∂M

∂ξMj
= ǫ2

√

λMjMj , (54)

The derivative of the eigenvalues can be obtained as

∂ωi

∂ξKj
= sij = ǫ1

√

λKj
φT

0iKjφ0i

2ω0i
(55)

and
∂ωi

∂ξMj
= si(NK+j) = −ǫ2

1

2
ω0i

√

λMjφT
0iMjφ0i. (56)
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Eigen-sensitivity based approach

Suppose m number of natural frequencies have been
measured. Combining the preceding four equations for all m
we can express

ω ≈ ω0 + S ξ (57)

Here the elements of the m × (NK + NM) sensitivity matrix S
are given before and the (NK + NM) dimensional vector of
updating parameters ξ is

ξ =
[

ξK1 ξK2 . . . ξKNK
ξM1 ξM2 . . . ξMNM

]T

. (58)
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Eigen-sensitivity based approach

This problem may be expressed as the minimization of J ,
where

J(ξ) = ‖ωm − ω(ξ)‖2 = εT ε; ε = ωm − ω(ξ). (59)

Here ωm is the vector of measured natural frequencies
corresponding to the predicted natural frequencies ω(ξ),
ξR

np is the vector of unknown parameters, and ε is the
modal residual vector.

The samples of reconstructed random field can be obtained
using the truncated series

H(r, θ) = H0(r) +

np
∑

i=1

√

λiξi(θ)ϕi(r) (60)
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Eigen-sensitivity based approach

Assuming there are more measurements than parameters
the updated parameter estimate is obtained using the
pseudo inverse as

ξ =
[

STS
]−1

ST (ωm − ω0) . (61)

It is often convenient to weight the measurements to give the
penalty function

J(ξ) = εTWε (62)

where W is the weighting matrix. Optimizing this penalty
function gives the parameter estimate

ξ =
[

STWS
]−1

STW (ωm − ω0) . (63)
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Eigen-sensitivity based approach: summary

The iterative procedure can be computationally implemented using the following steps:

1. Set the counter r = 0, select the error tolerance ǫe, number of parameters np, number of
modes m and initialize ξ = 0 ∈ R

np . For numerical stability np < m.

2. Increase the counter r = r + 1

3. Obtain the system matrices K(r) and M(r) using equations KL expansion

4. Solve the undamped eigenvalue problem K(r)φ
(r)
i = ω

(r)2

i M(r)φ
(r)
i

5. Obtain the sensitivity matrix S(r) ∈ R
m×np with elements s

(r)
ij = ǫ1

√

λKj
φ(r)T

i
Kjφ

(r)
i

2ω
(r)
i

and s
(r)
i(NK+j)

= −ǫ2
1
2
ω

(r)
i

√

λMjφ
(r)T

i Mjφ
(r)
i , ∀ i, j

6. Calculate the updated parameter vector

ξ(r+1) =
[

S(r)T

WS(r)
]−1

S(r)T

W
(

ωm − ω(r)
)

7. Calculate the difference ǫ =
∥

∥

∥
ξ(r+1) − ξ(r))

∥

∥

∥

8. If ǫ ≤ ǫe then exit, else go back to step 2.
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Sample realizations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Length along the beam (m)

EI
 (N

m2 )

 

 

baseline value

perturbed values

Some random realizations of the bending rigidity EI of the beam for correlation
length b = L/3 and strength parameter ǫ1 = 0.2
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Reconstructed samples
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Baseline, actual and reconstructed values of the bending rigidity (EI) along the
length of the beam; m = 26, np = 6
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Conclusions

Uncertainties need to be taken into account for credible
predictions using computational methods.

This talk concentrated on uncertainty propagation and
identification in structural dynamic problems.

A general uncertainty propagation approach based on
Wishart random matrix is discussed and the results are
compared with experimental results.

Based on numerical and experimental studies, a suitable
simple Wishart random matrix model has been identified.

A sensitivity based method for identification of random field
has been proposed.
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Summary of research activities

Dynamics of Complex Engineering Systems
Generally damped systems
Uncertainty quantification

Inverse problems and model updating
Linear systems (stochastic model updating)
Nonlinear systems (kalman filtering)

Bio & Nanomechanics
Carbon nanotube, Graphene sheet
Cell mechanics, mechanics of DNA

Renewable Energy
Wind energy quantification
Piezoelectric vibration energy harvesting
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