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Dynamics of linear systems

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K become
random matrices.

The main objective of the ‘forward problem’ is to predict the
variability in the response vector q.

There can be two broad possibilities:

quantify uncertainties in the system matrices first and then
obtain uncertainties in the response

directly quantify uncertainties in the eigenvalues &
eigenvectors and then obtain uncertainties in the response
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Stochastic dynamic response

Taking the Laplace transform of the equation of motion:

[

s2M + sC + K
]

q̄(s) = f̄(s) (2)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the system matrices

are random matrices.

The system eigenvalue problem is given by

Kφj = ω2

j Mφj , j = 1, 2, . . . , n (3)

where ω2

j and φj are respectively the eigenvalues and mass-normalized eigenvectors of
the system.

We define the matrices

Ω = diag [ω1, ω2, . . . , ωn] and Φ = [φ1, φ2, . . . , φn] . (4)

so that ΦT KeΦ = Ω2 and ΦT MΦ = In (5)
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Stochastic dynamic response

Transforming it into the modal coordinates:

[

s2In + sC′ + Ω2
]

q̄′ = f̄
′

(6)

Here

C′ = ΦTCΦ = 2ζΩ, q̄ = Φq̄′ and f̄
′
= ΦT f̄ (7)

When we consider random systems, the matrix of
eigenvalues Ω2 will be a random matrix of dimension n.
Suppose this random matrix is denoted by Ξ ∈ R

n×n:

Ω2 ∼ Ξ (8)
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Stochastic dynamic response

Since Ξ is a symmetric and positive definite matrix, it can be
diagonalized by a orthogonal matrix Ψr such that

ΨT
r ΞΨr = Ω2

r (9)

Here the subscript r denotes the random nature of the
eigenvalues and eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = In we obtain

q̄′ =
[

s2In + sC′ + Ω2
]−1

f̄
′

(10)

= Ψr

[

s2In + 2sζΩr + Ω2
r

]−1
ΨT

r f̄
′

(11)
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Stochastic dynamic response

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[

s2In + 2sζΩr + Ω2
r

]−1
(ΦΨr)

T f̄(s)

=

n
∑

j=1

xT
rj
f̄(s)

s2 + 2sζjωrj
+ ω2

rj

xrj
.

Here

Ωr = diag [ωr1
, ωr2

, . . . , ωrn
] , Xr = ΦΨr = [xr1

,xr2
, . . . ,xrn

]

are respectively the matrices containing random eigenvalues
and eigenvectors of the system.
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Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic finite element modeling) the mean
(G0) and the (normalized) variance (dispersion parameter) (δG) of the system matrices:

δ2

G =
E

[

‖G − E [G] ‖2

F

]

‖E [G] ‖2

F

. (12)

It can be proved that a positive definite symmetric matrix can e expressed by a Wishart
matrix G ∼ Wn(p,Σ) with

p = n + 1 + θ and Σ = G0/θ (13)

where

θ =
1

δ2

G

{1 + γG} − (n + 1) (14)

and

γG =
{Trace (G0)}2

Trace
(

G0
2
) (15)
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Parameter-selection for structural dynamics

Approach 1: M and K are fully correlated Wishart (most complex).
For this case M ∼ Wn(p1,Σ1), K ∼ Wn(p1,Σ1) with E [M] = M0

and E [M] = M0. This method requires the simulation of two
n × n fully correlated Wishart matrices and the solution of a n × n

generalized eigenvalue problem with two fully populated matrices.
Here

Σ1 = M0/p1, p1 =
γM + 1

δ2
M

(16)

and Σ2 = K0/p2, p2 =
γK + 1

δ2
K

(17)

γG = {Trace (G0)}2/Trace
(

G0
2
)

(18)
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Parameter-selection for structural dynamics

Approach 2: Scalar Wishart (most simple) In this case it is
assumed that

Ξ ∼ Wn

(

p,
a2

n
In

)

(19)

Considering E [Ξ] = Ω2
0 and δΞ = δH the values of the unknown

parameters can be obtained as

p =
1 + γH

δ2
H

and a2 = Trace
(

Ω2
0

)

/p (20)
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Parameter-selection for structural dynamics

Approach 3: Diagonal Wishart with different entries (something in
the middle). For this case Ξ ∼ Wn

(

p,Ω2
0/θ

)

with E
[

Ξ−1
]

= Ω−2
0

and δΞ = δH . This requires the simulation of one n × n

uncorrelated Wishart matrix and the solution of an n × n standard
eigenvalue problem.
The parameters can be obtained as

p = n + 1 + θ and θ =
(1 + γH)

δ2
H

− (n + 1) (21)
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Parameter-selection for structural dynamics

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}2

Trace
(

H0
2
) =

{

Trace
(

Ω2

0

)}2

Trace
(

Ω4

0

) =

(

∑

j ω2

0j

)

2

∑

j ω4

0j

(22)

Obtain the dispersion parameter of the generalized Wishart matrix

δH =

(

p1
2 + (p2 − 2 − 2 n) p1 + (−n − 1) p2 + n2 + 1 + 2 n

)

γH

p2 (−p1 + n) (−p1 + n + 3)

+
p1

2 + (p2 − 2 n) p1 + (1 − n) p2 − 1 + n2

p2 (−p1 + n) (−p1 + n + 3)
(23)
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A vibrating cantilever plate
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Baseline Model: Thin plate elements with 0.7% modal damping assumed for all
the modes.
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Uncertainty modeling by random fields

The Young’s modulus, Poissons ratio, mass density and thickness
are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (24)

µ(x) = µ̄ (1 + ǫµf2(x)) (25)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (26)

and t(x) = t̄ (1 + ǫtf4(x)) (27)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and
ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Mean of the driving-FRF
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Mean of the amplitude of the response of the driving-FRF of the plate, n = 1200,
σM = 0.078 and σK = 0.205.
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Mean of a cross-FRF
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Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.078 and σK = 0.205.
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Standard deviation of the driving-point-FRF
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Standard deviation of a cross-point-FRF
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Direct simulation

Standard deviation of the amplitude of the response of a cross-point-FRF of the
plate, n = 1200, σM = 0.078 and σK = 0.205.
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Summary so far ...

We can choose a ‘surrogate’ random matrix model to ‘replace’
the actual stochastic dynamic system by a Wishart matrix
Ξ ∼ Wn

(

p,Ω2
0/θ

)

with E
[

Ξ−1
]

= Ω−2
0 and δΞ = δH . Here

p = n + 1 + θ, θ =
(1 + γH)

δ2

H

− (n + 1), γH =

(

∑

j ω2

0j

)

2

∑

j ω4

0j

(28)

and

δH =

(

p1
2 + (p2 − 2 − 2 n) p1 + (−n − 1) p2 + n2 + 1 + 2 n

)

γH

p2 (−p1 + n) (−p1 + n + 3)

+
p1

2 + (p2 − 2 n) p1 + (1 − n) p2 − 1 + n2

p2 (−p1 + n) (−p1 + n + 3)
(29)
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Eigenvalue density

Knowing what surrogate model to use, now we want to
develop analytical methods to obtain response statistics.
The aim is to bypass the Monte Carlo simulation approach
shown before (although MCS on the surrogate is more
efficient compared to MCS of the actual system).

Eigenvalue density is a key part for developing analytical
approaches.

Our main result is that the density of the eigenvalues have
the ‘self averaging’ property. This implies that the density of
the eigenvalues of nominally identical systems have very
strong convergence property.
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Linear Eigenvalue Statistic

Let Ξ be a n × n random matrix and {λl}n
l=1

its eigenvalues. Then the (empirical)
eigenvalue density is

ρn(λ) = n−1

n
∑

l=1

δ(λ − λl), (30)

where δ is the Dirac delta-function.

Without loss of generality we define a linear eigenvalue statistics for any sufficiently smooth
test function ϕ as

Nn[ϕ] = n−1

n
∑

l=1

ϕ(λl) =

∫

ϕ(µ)ρn(µ)dµ (31)

Note that ρn in equation (30) correspond formally to ϕ(µ) = δ(λ − µ) for a given λ.
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Strong convergence

We can prove that the fluctuations of Nn[ϕ] around its expectation E{Nn[ϕ]} vanish
sufficiently fast in the limit

n → ∞ →, p → ∞, p/n → c ∈ (0,∞) (32)

To this end we obtain a bound for the variance

Var{Nn[ϕ]} = E{|Nn[ϕ]|2} − |E{Nn[ϕ]}2

of Nn[ϕ]. The bound is

Var{Nn[ϕ]} ≤ 4
√

3

n2p
Tr Σ2(max

λ∈R

|ϕ′(λ)|)2. (33)

It is valid for real symmetric as well as for hermitian Wishart matrices.

Considering maxp,n n−1TrΣ2 ≤ C < ∞. and maxλ∈R |ϕ′(λ)| < ∞, we obtain that

Var{Nn[ϕ]} = O(n−2) (34)
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Marc̆enko-Pastur density

We proved that the eigenvalue density of a (large) random
system converges to a deterministic limit. But where does it
converges to?

The converged density is NOT universal but depends on the
property underlying matrix.

In the case, where Σ = In and p/n = c > 1 we have

ρ(λ) =
1

2πλ

{

√

(a+ − λ)(λ − a−), λ ∈ [a−, a+],

0, λ /∈ [a−, a+],
(35)

where a± = (1 ±√
c)2.
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Density of the baseline plate model
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The density of 1200 eigenvalues of the baseline model.
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Density of random plate - 1
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Marcenko−Pastur density
Density from the baseline model
Densities from random realisations

The density of eigenvalues of the plate with randomly inhomogeneous material
properties.
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Density of random plate - 2
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Marcenko−Pastur density
Density from the baseline model
Densities from random realisations

The density of eigenvalues of the plate with randomly attached oscillators.
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A cantilever plate: front view

The test rig for the cantilever plate; front view.
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Random FRFs
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One hundred measured FRF amplitudes with the mean, 95% and 5% probability
lines.
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Eigenvalue density: baseline model
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Histograms from the baseline model
Density from the baseline model
Marchenko−Pastur density

The density of first 40 experimentally measured eigenvalues of the baseline plate.
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Eigenvalue density: random system
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Marchenko−Pastur density
Density from the baseline model
Densities from random realisations

The density of first 40 experimentally measured eigenvalues of the plate with 10
randomly attached oscillators.
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Eigenvalue density: strong convergence

The density of first 40 experimentally measured eigenvalues of the plate with 10
randomly attached oscillators.
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Conclusions

This talk concentrated on Uncertainty Propagation (UP) in
linear structural dynamic problems.

A general UP approach based on Wishart random matrix is
discussed and a suitable simple Wishart random matrix
model has been identified.

Based on analytical, numerical and experimental studies, it
was shown that the density of eigenvalues has an extremely
strong convergence property [O (n−2)].

It was shown that the Marc̆enko-Pastur density fits the
experimental and well as numerically obtained density very
well.
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