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Outline of the presentation

This paper aimed at designing shaped polyvinylidene fluoride
(PVDF) film modal sensor for Euler-Bernoulli beams with
uncertain properties.

Uncertainty Quantification (UQ) in structural dynamics

Brief review of existing approaches
Stochastic finite element method

Design of modal sensors - deterministic systems

Design of modal sensors - stochastic systems

Numerical results

Conclusions & future directions
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Sources of uncertainty in computational modeling

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Current UQ approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications (building
under earthquake load, steering column vibration in cars)
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Current UQ approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA):

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications (eg,
noise propagation in vehicles)
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Stochastic Finite Element Method-1

Problems of structural dynamics in which the uncertainty in
specifying mass and stiffness of the structure is modeled within
the framework of random fields can be treated using the
Stochastic Finite Element Method (SFEM). The application of
SFEM in linear structural dynamics typically consists of the
following key steps:

1. Selection of appropriate probabilistic models for parameter
uncertainties and boundary conditions

2. Replacement of the element property random fields by an
equivalent set of a finite number of random variables. This
step, known as the ‘discretisation of random fields’ is a major
step in the analysis.
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Stochastic Finite Element Method-1

1. Formulation of the equation of motion of the form D(ω)u = f

where D(ω) is the random dynamic stiffness matrix, u is the
vector of random nodal displacement and f is the applied
forces. In general D(ω) is a random symmetric complex
matrix.

2. Calculation of the response statistics by either (a) solving the
random eigenvalue problem, or (b) solving the set of
complex random algebraic equations.
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Distributed Stochastic Dynamical Systems

The equation of motion:

ρ(r, θ)
∂2U(r, t)

∂t2
+L1

∂U(r, t)

∂t
+L2U(r, t) = p(r, t); r ∈ D, t ∈ [0, T ]

(1)

U(r, t) is the displacement variable, r is the spatial position vector
and t is time.

ρ(r, θ) is the random mass distribution of the system, p(r, t)

is the distributed time-varying forcing function, L1 is the
random spatial self-adjoint damping operator, L2 is the
random spatial self-adjoint stiffness operator.

Eq (1) is a Stochastic Partial Differential Equation (SPDE)
[ie, the coefficients are random processes].
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Spectral Decomposition of random fields-1

Just like the displacement fields (or any other continuous
state variables) in the deterministic FEM, in SFEM we need
to discretise the random fields appearing in the governing
SPDE.

Various approaches (mid-point method, collocation method,
weighted integral approach etc) have been proposed in
literature.

Here we use the spectral decomposition of random fields
due to its useful mathematical properties (eg, orthogonal
eigenfunctions, mean-square convergence etc).
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Spectral Decomposition of random fields-2

Suppose H(r, θ) is a random field with a covariance function
CH(r1, r2) defined in a space Ω. Since the covariance
function is finite, symmetric and positive definite it can be
represented by a spectral decomposition.

Using this spectral decomposition, the random process
H(r, θ) can be expressed in a generalized fourier type of
series as

H(r, θ) = H0(r) +
∞

∑

i=1

√

λiξi(θ)ϕi(r) (2)

where ξi(θ) are uncorrelated random variables.
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Spectral Decomposition of random fields-3

λi and ϕi(r) are eigenvalues and eigenfunctions satisfying
the integral equation

∫

Ω

CH(r1, r2)ϕi(r1)dr1 = λiϕi(r2), ∀ i = 1, 2, · · · (3)

The spectral decomposition in equation (2) is known as the
Karhunen-Loève expansion. The series in (2) can be
ordered in a decreasing series so that it can be truncated
after a finite number of terms with a desired accuracy.
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (4)

The underlying random process H(x, θ) can be expanded using the Karhunen-Loève expansion in
the interval −a ≤ x ≤ a as

H(x, θ) =

∞
∑

n=1

[

ξn

√

λnϕn(x) + ξ∗n
√

λ∗
nϕ∗

n(x)
]

. (5)

The corresponding eigenvalues and eigenfunctions:

λn =
2c

ω2
n + c2

; ϕn(x) =
cos(ωnx)

√

a +
sin(2ωna)

2ωn

and tan(ωa) =
c

ω
; for even n (6)

λ∗
n =

2c

ω∗
n

2 + c2
; ϕ∗

n(x) =
sin(ω∗

nx)
√

a −
sin(2ω∗

na)

2ω∗
n

and tan(ω∗a) =
ω∗

−c
; for odd n (7)
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Equation of motion-1

Utilizing the series expansion of the random fields describing
the uncertain parameter of the system and dicretisation of
the displacement fields, the stochastic finite element model
of the structure can be represented in the form

M(θ)q̈ + D(θ)q̇ + K(θ)q = Bu (8)

y = Cq (9)

Here M(θ), D(θ) and K(θ) are the random mass, damping
and stiffness matrices based on the degrees of freedom, q.
The inputs to the structure, u, are applied via a matrix B

which determines the location and gain of the actuators (or
the actuator shape for distributed actuators).
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Equation of motion-2

The outputs, y, are obtained via the output matrix C which is
determined by the sensor shape. The notation θ is used to
denote random natures of the system matrices.

Due to the presence of uncertainty M(θ), D(θ) and K(θ)
become random matrices. These random matrices can be
expressed as

K(θ) = K0 + ∆K(θ), M(θ) = M0 + ∆M(θ)

and D(θ) = D0 + ∆D(θ) (10)
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Equation of motion-3

Here the ‘small’ random terms are

∆K(θ) =

NK
∑

j=1

ξKj
(θ)

√

λKj
Kj, ∆M(θ) =

NM
∑

j=1

ξMj
(θ)

√

λMj
Kj

∆D(θ) =

ND
∑

j=1

ξDj
(θ)

√

λDj
Kj

In the above expression ξKj
(θ), ξMj

(θ) and ξDj
(θ) are set of

uncorrelated random variables. The deterministic matrices
Kj, Mj and Dj are symmetric and non-negative definite.
These matrices depend on the eigenvectors corresponding
to the eigenvalue

√

λKj
,
√

λMj
and

√

λDj
respectively.
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Background of distributed transducer-1

The idea of using modal sensors and actuators for beam-
and plate-type structures has been a subject of intense
interest for many years.

Using modal sensors in active control reduces problems of
spillover, where high-frequency unmodelled modes affect the
stability of the closed-loop system. For example, a modal
sensor for a beam-type structure may be obtained by varying
the sensor width along the length of the beam.

An alternative to a large number of discrete transducers is to
employ distributed actuators and sensors, often
implemented using piezoelectric materials. Most papers
concerned with distributed transducers are concerned with
beams where the partial differential equations of motion may
be solved to derive the continuous mode shapes.
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Background of distributed transducer-2

Here a different approach is taken and the shape functions
of the underlying deterministic finite element model are used
to approximate the width of the piezoelectric material. In this
way, modal transducers may be designed for arbitrary
beam-type structures.

Also, by using additional constraints that not all degrees of
freedom are forced or sensed, modal transducers that only
cover part of a structure may be designed. Most of the
development will concern sensors, although actuators may
be dealt with in a similar way.
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Defining Shaped Sensors for Beam Structures-1

The shape of a transducer is a continuous function. However
this function needs to be parameterised to enable the
optimisation of the sensor shape.

The main idea: ‘recycle’ FE shape functions - Using the
shape functions of the underlying finite element model is a
convenient approach to approximate the width of the
piezoelectric material. In this way modal transducers may be
designed for arbitrary beam type structures. Furthermore
modal transducers that only cover part of a structure may be
designed.

Suppose a single polyvinylidene fluoride (PVDF) film sensor
is placed on the beam with a shape defined by a variable
width f (ξ), where ξ denotes the length along the beam
element.
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Defining Shaped Sensors for Beam Structures-2

Incorporated into f (ξ) is both the physical width of the
sensor, and also the polarisation profile of the material.

For an Euler-Bernoulli beam these shape functions, for
element number e, are

Ne1 (ξ) =

(

1 − 3
ξ2

ℓ2
e

+ 2
ξ3

ℓ3
e

)

, Ne2 (ξ) = ℓe

(

ξ

ℓe

− 2
ξ2

ℓ2
e

+ ξ3

ℓ3e

)

,

Ne3 (ξ) =

(

3
ξ2

ℓ2
e

− 2
ξ3

ℓ3
e

)

, Ne4 (ξ) = ℓe

(

−
ξ2

ℓ2
e

+
ξ3

ℓ3
e

)

,

(11)
where ℓe is the length of the element.
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Defining Shaped Sensors for Beam Structures-3

The sensor width within element number e is approximated
as

fe (ξ) =
[

Ne1 (ξ) Ne2 (ξ) Ne3 (ξ) Ne4 (ξ)
]



















fe1

fe2

fe3

fe4



















(12)

where the constants fei must be determined.

This approximation has the advantage that the width and
slope of the sensor are continuous at the nodes of the finite
element model.
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Defining Shaped Sensors for Beam Structures-4

The output (voltage or charge) from the part of the sensor
with element number e is

ye (t) = Ks

∫ ℓe

0

fe (ξ)
∂2we (ξ, t)

∂2ξ
dξ (13)

where the constant Ks is determined by the properties of the
piezoelectric material and we is the translational
displacement of the beam.
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Defining Shaped Sensors for Beam Structures-5

This displacement is also approximated by the shape functions as

we (ξ) =
[

Ne1 (ξ) Ne2 (ξ) Ne3 (ξ) Ne4 (ξ)
]



























we1

we2

we3

we4



























. (14)

Combining the preceding 3 equations gives the sensor output for the element as

ye =



























fe1

fe2

fe3

fe4



























⊤

Ce



























we1

we2

we3

we4



























(15)
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Defining Shaped Sensors for Beam Structures-6

Here the (i, j)th element of the matrix Ce is

Ceij = Ks

∫ ℓe

0

Nei (ξ) N ′′
ej (ξ) dξ (16)

or Ce = −
Ks

30ℓe











36 33ℓe −36 3ℓe

3ℓe 4ℓ2
e −3ℓe −ℓ2

e

−36 −3ℓe 36 −33ℓe

3ℓe −ℓ2
e −3ℓe 4ℓ2

e











. (17)

The sensor output, y, is the sum of the contributions of the
elements given by,

y =
∑

e

ye = f⊤Csq. (18)
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Defining Shaped Sensors for Beam Structures-7

Here the element matrices have been assembled into the
global matrix Cs, in the usual way. The element nodal
displacements, wei, have been incorporated into the global
displacement vector q, and the sensor nodal widths fei have
been assembled into a global vector f . However, the sensor
nodal widths at the clamped or pinned boundary conditions
are not set to zero, whereas the corresponding
displacements are set to zero. Thus in general Cs is a
rectangular matrix.

Comparing Equations (9) and (18), it is clear that

C = f⊤Cs. (19)

Question: how to find the sensor nodal width vector f?
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Modal Sensors for the Baseline System-1

Proportional damping will be assumed so that the mode
shapes are real, and equal to the mode shapes of the
undamped system. For light damping this approximation will
introduce small errors.

The mode shapes, Φ, are assumed to be normalized
arbitrarily so that the modal mass is

Φ⊤MΦ = Mm. (20)

Applying the transformation to modal co-ordinates, q = Φp:

p̈ + 2ZΩṗ + Ω2p = M−1
m Φ⊤Bu (21)

y = CΦp = Cpp (22)
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Modal Sensors for the Baseline System-2

Here Ω = diag [ω1, ω2, . . . , ωn] is a diagonal matrix of the
natural frequencies, and Z = diag [ζ1, ζ2, . . . , ζn] are the
modal damping ratios.

From Equation (19),

Cp = CΦ = f⊤CsΦ. (23)

The modal sensor design problem is then to determine the
sensor shape, defined by f , to give the required modal
output gain matrix, Cp. Usually the number of elements
describing the sensor shape is large and so this equation will
be underdetermined. In this case the pseudo inverse
solution will produce the minimum norm solution.
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Modal Sensors for the Baseline System-3

An alternative is to minimize transducer curvature, while
ensuring zero sensitivity to unwanted modes. The minimum
curvature ensures that the transducer may be manufactured
as easily as possible.

Thus, we wish to minimize

Jc(f) =
∑

e

∫ ℓe

0

f ′′
e (ξ)2 dξ =

∑

e



























fe1

fe2

fe3

fe4



























⊤

He



























fe1

fe2

fe3

fe4



























(24)

where

Heij =

∫ ℓe

0

N ′′
ei (ξ) N ′′

ej (ξ) dξ. (25)

He looks like the element stiffness matrix with a unit flexural rigidity.
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Modal Sensors for the Baseline System-4

Assembling the contributions from all of the elements gives

Jc(f) = f⊤Hf (26)

where H contains the element matrices He, and is
symmetric.

The sensor design problem then requires that Jc is
minimized, subject to the constraints given by Equation (23).

This problem may be solved using Lagrange multipliers as
the solution of





2H CsΦ

Φ⊤C⊤
s 0











f

λ







=







0

C⊤
p







(27)

where λ is the vector of Lagrange multipliers.
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Modal Sensors for Uncertain Systems-1

For uncertain systems, Equation (23) would be

Cp = f⊤CsΦ(θ). (28)

Note that the affect of system uncertainty is reflected by the
random nature of the modal matrix Φ(θ).

Cs is determined from the element shape functions and is
therefore fixed for a given mesh and will not change with the
system parameters.

Clearly the mode shapes of interest, Φ, will vary with the
uncertain parameters.

The vector f determines the shape of the sensor, and is
obtained from the system optimization.
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Modal Sensors for Uncertain Systems-2

Here we will assume this vector is deterministic, although of
course implementing a required sensor shape in practice will
be subject to manufacturing errors not considered in this
paper.

Thus for a given sensor the system uncertainty will produce
a stochastic modal output vector Cp.

Suppose the desired modal output vector is denoted Cpd.
Then to ensure the correct modal response we will enforce
the constraint

E [Cp] = Cpd = f⊤CsE [Φ(θ)] (29)

where E [ ] denotes the expected value.
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Modal Sensors for Uncertain Systems-3

Assuming that the mode shapes have mean Φ0, we have

Cpd = f⊤CsΦ0 (30)

To ensure robustness we will minimize the sum of the
variances of the modal outputs given by

Js = E
[

(Cp − Cpd) (Cp − Cpd)
⊤
]

. (31)

Recalling that the mode shapes have mean Φ0, the required
optimization is to minimize

Js = f⊤CsE
[

(Φ − Φ0) (Φ − Φ0)
⊤
]

C⊤
s f (32)
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Modal Sensors for Uncertain Systems-4

with the constraint
Cpd = f⊤CsΦ0. (33)

This optimization is equivalent to minimizing the sensor
curvature discussed before, with

H = CsE
[

(Φ − Φ0) (Φ − Φ0)
⊤
]

C⊤
s . (34)

The calculation of the above quantity requires the calculation
of second-order statistical properties of the mode shapes.

Here Monte Carlo simulation is used. But analytical results
for random eigenvalue problems can be used to obtain the
modal statistics.
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Illustrative Example

A clamped-clamped beam example is used to demonstrate
the design of modal sensors. The steel beam is 1.5 m long
with cross-section 20 × 5 mm, and bending in the more
flexible plane is modeled by using 15 finite elements.

Only the first nine modes are considered important and
damping is assumed to be 1% in all modes.

The material properties of the baseline beam are assumed
to be EI = 43.750 Nm2 and ρA = 0.785 kg/m.

The first 12 natural frequencies for the beam are 11.815,
32.569, 63.858, 105.60, 157.84, 220.70, 294.33, 378.97, 474.95,
582.69, 702.61, 834.86 Hz.
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Stochastic properties

It is assumed that the bending stiffness EI(x) and mass per
unit length ρA(x) are random fields of the form

EI(x) = EI (1 + ǫEIf1(x)) (35)

and ρA(x) = ρA (1 + ǫρAf2(x)) (36)

The strength parameters are assumed to be ǫEI = 0.05, and
ǫρA = 0.1.

The random fields fi(x), i = 1, · · · , 4 are assumed to be
delta-correlated homogenous Gaussian random fields. A
1000-sample Monte Carlo simulation is performed to obtain
the FRFs and modal statistics.
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Sensor design parameters

The force input is applied at node 7 for the sensor design.

The sensors are designed by considering only the first nine
modes of the beam.

The sensor gain constant is assumed to be unity, Ks = 1,
since it is most important to compute the sensor shape,
rather than the calibration constant.

Following two cases are considered:
Case 1: sensor to be designed to excite only the first
mode, with a peak in the receptance of 0.01 m/N.
Case 2: sensor to be designed to excite only the third
mode, with a peak in the receptance of 0.01 m/N.
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Design for the baseline system: Case 1
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Design for the stochastic system: Case 1
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Comparisons of FRFs: Case 1
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Design for the baseline system: Case 2
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Design for the stochastic system: Case 2
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The distributed sensor shape and receptance designed to excite the third mode
with system uncertainty.
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Comparisons of FRFs: Case 2
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Modal Output for Uncertain System − Probabilistic Design

Comparisons of the ensemble of FRFs resulting from two designs.
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Conclusions - 1

Uncertainties in the system need to be taken into account for
robust design of sensors and actuators for engineering
dynamical systems

This talk has considered the problem of designing modal
actuators and sensors using a discrete approximation to the
equations of motion for linear stochastic systems.

Transducer shapes are represented by ‘recycling’ the
underlying finite element shape functions. This allows the
actuators and sensors to be designed by using the discrete
approximation and the shape recovered by using the shape
functions.
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Conclusions - 2

Optimal shape design has been coupled with the stochastic
finite element method to consider parametric uncertainty.

It was shown that eigenvector statistic are needed to obtain
the optimal shape.

The shape of the sensors of the deterministic system differs
significantly from the random system.
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Future directions

Extension of the proposed approach to more complex 2D
and 3D uncertain dynamical systems:

Alternative design criteria: for example, based on complete
covariance tensor of the modal matrix combined with the
minimum curvature of the transducers

Efficient computational methods based on analytical
approaches involving random eigenvalue problems

Health monitoring of uncertain systems using distributed
transducers:
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