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Overview of predictive
approaches

There are five key steps:

Physics (mechanics) model building

Uncertainty Quantification (UQ)

Uncertainty Propagation (UP)

Model Verification & Validation (V & V)

Prediction

Tools are available for each of these steps. My
focus in this talk is on UQ in linear dynamical
systems.
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Complex aerospace models

Subsystem 2
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Subsystem 1

Subsystem 3

Possible uncertain subsystems of an aircraft
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Why uncertainty?

Different sources of uncertainties in the modeling and
parameters of dynamic systems may be attributed, but not
limited, to the following factors:

Mathematical models: equations (linear, non-linear),
geometry, damping model (viscous, non-viscous,
fractional derivative), boundary conditions/initial
conditions, input forces;

Model parameters: Young’s modulus, mass density,
Poisson’s ratio, damping model parameters (damping
coefficient, relaxation modulus, fractional derivative
order)
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Why uncertainty?

Numerical algorithms: weak formulations, discretisation
of displacement fields (in finite element method),
discretisation of stochastic fields (in stochastic finite
element method), approximate solution algorithms,
truncation and roundoff errors, tolerances in the
optimization and iterative methods, artificial intelligent
(AI) method (choice of neural networks)

Measurements: noise, resolution (number of sensors and
actuators), experimental hardware, excitation method
(nature of shakers and hammers), excitation and
measurement point, data processing (amplification,
number of data points, FFT), calibration
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Structural dynamics

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K
become random matrices.

The main objectives in the ‘forward problem’
are:

to quantify uncertainties in the system
matrices
to predict the variability in the response
vector x
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Waikiki, Hawaii, 26 April 2007

Current UQ approaches

Two different approaches are currently available

Parametric approaches : Such as the
Stochastic Finite Element Method (SFEM):

aim to characterize aleatoric uncertainty
assumes that stochastic fields describing
parametric uncertainties are known in details
suitable for low-frequency dynamic
applications
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Current UQ approaches

Nonparametric approaches : Such as the
Statistical Energy Analysis (SEA) and Wishart
random matrix theory:

aim to characterize episematic uncertainty
does not consider parametric uncertainties
in details
suitable for high-frequency dynamic
applications
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Limitations of current UQ
approaches

Although we have mentioned and made differences
between the two different types of uncertainties, in
practical problems it is in general very difficult, if not
impossible, to distinguish them.

Recently reported experimental studies by our group on
one hundred nominally identical beams and plates
emphasize this fact.

For credible numerical models of complex dynamical
systems, we need to quantify and model both types of
uncertainties simultaneously.

A hybrid approach is required.
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Overview of proposed approach

Schematic representation of the proposed parametric-nonparametric uncertainly modeling in

structural dynamics.
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Proposed unified approach

The objective : To develop a hybrid approach which
takes both parametric and nonparametric uncertainties
into account.

The rationale : No matter what the nature of uncertainty
is (parametric/nonparametric or both), at the end it will
result in random M, C and K matrices.

The methodology : Derive the matrix variate probability
density functions of M, C and K based on parametric
information (e.g. mean and covariance of the elements)
and overall physically realistic mathematical constraints
(such as the symmetry and positive definiteness).
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{
−

1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Central Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{
2

1
2
np Γn

(
1

2
p

)
|Σ|

1
2
p

}−1

|S|
1
2
(p−n−1)etr

{
−

1

2
Σ−1S

}

(3)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: This distribution is used in current nonparametric UQ

methods.
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Noncentral Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a noncentral Wishart distribution with parameters p ≥ n,
Σ ∈ R

+
n and Θ ∈ R

+
n , if its pdf is given by

pS (S) =

{
2

1
2
np Γn

(
1

2
p

)
|Σ|

1
2
p

}−1

etr

{
−

1

2
Θ

}
etr

{
−

1

2
Σ−1S

}

|S|
1
2
(p−n−1)

0F1(p/2,ΘΣ−1S/4). (4)

where 0F1 the hypergeometric function (Bessel function) of a

matrix argument. This distribution is usually denoted as S ∼

Wn(p,Σ,Θ). Note that if the noncentrality parameter Θ is a

null matrix, then it reduces to the central Wishart distribution.
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Distribution of the system
matrices

The distribution of the random system matrices M,
C and K should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of
the dynamic stiffness matrix
D(ω) = −ω2M + iωC + K should exist ∀ω
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Current nonparametric approach

Suppose G ≡ {M,C,K}

G ∼ Wn (p,Σ) where p = n + 1 + θ, Σ = G/
√

θ(n + 1 + θ)

and θ = 1
δ2
G

{
1 + {Trace

(
G

)
}2/Trace

(
G

2
)}

− (n + 1)

δ2
G =

E
h

‖G−E[G] ‖
2

F

i

‖E[G] ‖
2

F

=
Trace(cov(vec(G)))

Trace

„

G
2

« (normalized std) .

The main limitation: cov (Gij, Gkl) = 1
θ

(
GikGjl + GilGjk

)

Only one parameter controls the uncertainty
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Current nonparametric approach

The covariance matrix of G can have n(n + 1)×

(n(n + 1) + 2)/8 number of independent parameters.

Current nonparametric approach, only offers a single
parameter to quantify uncertainty which can potentially
be expressed by n(n + 1)(n(n + 1) + 2)/8 number of
independent parameters - a gross oversimplification.

To account for parametric uncertainties, we need a matrix
variate distribution which not only satisfy the
mathematical constrains, but also must offer more
parameters to fit the ‘known’ covariance tensor of G.
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Matrix factorization approach

Because G is a symmetric and positive-definite random
matrix, it can be always factorized as

G = XXT (5)

where X ∈ R
n×p, p ≥ n is in general a rectangular matrix.

Extending the standard maximum entropy argument to
the matrix case we can say that the pdf of X is given by
the matrix variate Gaussian distribution, that is,
X ∼ Nn,p (M,Σ ⊗ Ip).

This shows that G has non central Wishart distribution.
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The main result

Theorem 1. The unified parametric-nonparametric probability

density function a random system matrix G ≡ {M,C,K}

follows the noncentral Wishart distribution, that is

G ∼ Wn(p,Σ,Θ) where p > n is a real scalar, Σ and Θ are

symmetric positive-definite n × n real matrices.
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Noncentral distribution

If the noncentrality parameter Θ is a null matrix, the
unified distribution reduces to the nonparametric
distribution (central Wishart distribution).

The unified distribution derived here is therefore further
generalization of the nonparametric distribution.

The additional n(n + 1)/2 parameters provided by the
matrix Θ ∈ R

+
n allow to model parametric uncertainty

which is not available within the scope of the
nonparametric distribution.
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Parameter estimation

We match the mean and covariance of the distribution of
G with ’measured/known’ quantities.

E [G] = pΣ + Ω,

cov (vec (G)) = (In2 + Knn) (pΣ ⊗ Σ + Ω ⊗ Σ + Σ ⊗ Ω) .

Mean is satisfied exactly while the covariance is satisfied
in least-square sense.

Suppose G ∈ R
+
n , the mean matrix and

CG = cov (vec (G)) ∈ R
+
n2 , the covariance matrix, are

known.
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Parameter estimation

Obtain the normalized standard deviation δG of G:

δ2
G =

E
h

‖G−E[G] ‖
2

F

i

‖E[G] ‖
2

F

=
Trace(CG)

Trace

„

G
2

«

p = 1
δ2
G

Trace

„

G
2

«

+



Trace

„

G
«ff2

Trace

„

G
2

«

Form the matrix A = G ⊗ G − pCG/2 ∈ R
n2×n2

and
obtain Ω ∈ R

n×n by least-square minimization of the
Frobenius norm ‖A − Ω ⊗ Ω‖F.

Calculate Σ =
(
G − Ω

)
/p and Θ = Σ−1Ω.
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Numerical recipe

Obtain the distribution parameters p ∈ R, Σ ∈ R
+
n and

Ω ∈ R
+
n from G and CG

Perform the Cholesky factorizations of the positive
definite matrices Σ ∈ R

+
n and Ω ∈ R

+
n as Σ = DDT ,

D ∈ R
n×n and Ω = M̂M̂

T
, M̂ ∈ R

n×n.

Calculate the n × n square matrix M̃ = D−1
M̂

Construct the n × p rectangular mean matrix
M = [M̃,On,n−p] ∈ R

n×p.
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Numerical recipe

Obtain the matrix Y ∈ R
n×p containing uncorrelated

Gaussian random numbers with mean M and unit
standard deviation.

Generate the samples of a system matrix as
G = DYYTDT ∈ R

+
n .

In Matlabr, the following four lines of code will generate
the samples of the system matrices:

D=[chol(Sigma)]’; Mhat=[chol(Omega)]’;

Mtilde=D\Mhat;

Y=[Mtilde zeros(n,p-n)] + randn(n,p);

G=D*Y*Y’*D’;
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Example 1: A cantilever plate
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A steel cantilever plate: 8×6 elements, 168 degrees-of-freedom; Ē = 200×109N/m2, µ̄ = 0.3,

ρ̄ = 7860kg/m3, t̄ = 3.0mm, Lx = 0.6m, Ly = 0.5m, 2% modal damping factor.
Unified UQ for dynamical systems – p.27/49



Waikiki, Hawaii, 26 April 2007

Stochastic properties

The Young’s modulus, Poissons ratio, mass density and
thickness are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (6)

µ(x) = µ̄ (1 + ǫµf2(x)) (7)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (8)

and t(x) = t̄ (1 + ǫtf4(x)) (9)

The strength parameters: ǫE = 0.15, ǫµ = 0.10, ǫρ = 0.15

and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Comparison of cross-FRF
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 168,

δM = 0.1166 and δK = 0.2711.
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Comparison of cross-FRF: Low
Freq
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 168,
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Comparison of cross-FRF: Mid
Freq
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 168,

δM = 0.1166 and δK = 0.2711.
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Comparison of cross-FRF: High
Freq
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 168,
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Comparison of driving-point-FRF
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Comparison of
driving-point-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,
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Comparison of
driving-point-FRF: High Freq

1400 1500 1600 1700 1800 1900 2000
−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

Frequency (Hz)

Am
pli

tu
de

 (d
B)

 o
f H

(9
1,

91
) (ω

)

 

 

Ensemble mean: Direct Simulation
Ensemble mean: noncentral Wishart
Standard deviation: Direct Simulation
Standard deviation: noncentral Wishart

Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Comparison of cross-FRF
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF, n = 168,

δM = 0.1166 and δK = 0.2711.
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Comparison of cross-FRF: Low
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF, n = 168,

δM = 0.1166 and δK = 0.2711.
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Comparison of cross-FRF: Mid
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF, n = 168,
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Comparison of cross-FRF: High
Freq

1400 1500 1600 1700 1800 1900 2000
−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

Frequency (Hz)

Am
pli

tu
de

 (d
B)

 o
f H

(1
27

,9
1) (ω

)

 

 

5% points: Direct Simulation
5% points: noncentral Wishart
95% points: Direct Simulation
95% points: noncentral Wishart

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF, n = 168,

δM = 0.1166 and δK = 0.2711.
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Comparison of driving-point-FRF
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Comparison of
driving-point-FRF: Low Freq
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of
driving-point-FRF: High Freq
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF,

n = 168, δM = 0.1166 and δK = 0.2711.
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Conclusions

When uncertainties in the system parameters (parametric
uncertainty) and modelling (nonparametric) are
considered, the discretized equation of motion of linear
dynamical systems is characterized by random mass,
stiffness and damping matrices.

A new unified parametric-nonparametric UQ method for
linear dynamical systems has been proposed.

The matrix variate probability density function of the
random system matrices can be represented by
noncentral Wishart distribution. Existing nonparametric
distribution is a special case of the proposed distribution.
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Summary of random matrix
models

Random Matrix Model Comments

Central Wishart/gamma random matrix
Wn(p,Σ), with Σ = G/p (Soize 2001)

p = 1
δ2

G



1 +
{Trace(G)}2

Trace(G
2
)

ff

and

δ2
G =

E
h

‖G−E[G] ‖2
F

i

‖E[G] ‖2
F

=
Trace(CG)

Trace(G
2
)

(a) The trace of the covariance matrix of the ele-
ments of a system matrix is required.
(b) The mean of the inverse and the inverse of
the mean of the system matrices can be signifi-
cantly different from each other for the choice of
the distribution parameters.

Central Wishart/gamma random matrix
Wn(p,Σ), with Σ = G/

p

p(p − n − 1)

and the rest is as defined above (Adhikari
2006).

Parameters are obtained using a least-square
error minimization approach. The mean of the
matrix and its inverse produce minimum devia-
tions from their respective deterministic values.

Noncentral Wishart random matrix
Wn(p,Σ,Θ), with
Σ =

`

G − Ω
´

/p, Θ = Σ
−1

Ω, p =

Trace(G
2
−Ω

2
)+{Trace(G)}2−{Trace(Ω)}2

δ2
G

Trace(G
2
)

,

Ω ⊗ Ω = G ⊗ G − pCG/2 and δG is as
defined above.

(a) Requires the same information as the previ-
ous two distributions
(b) If Ω = On,n then this distribution reduces
to the central distribution proposed before. The
matrix Ω ∈ R

+
n captures the parametric uncer-

tainty through a least-square error minimization
involving the covariance matrix CG.
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FAQs - 1

How parametric uncertainties are taken into account?

Since it is a least-square approach, how about the error
involved?

Because the covariance matrix is least-square
approximated, why not use SFEM as it does not
introduce this approximation?

How nonparametric uncertainties are taken into account?

Are you really accounting nonparametric uncertainties?
How do you know ‘unknown unknowns’?
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FAQs - 2

I know my uncertainties are localized (e.g., in the joints).
Your method introduces uncertainty everywhere in the
model. Do you have any recommendations?

How can I use your method if I have no clue about
uncertainties in my model?

How much additional computational expense is needed?

How it can be implemented with a commercial FE
software?
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FAQs - 3

I have never heard of random matrix theory. Is is difficult?
Where do I start?

How can I get more information about the unified
approach?
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