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Damping Identification 1

Unlike the inertia and stiffness forcers, in general
damping cannot be obtained using ‘first principle’.
Two briad approaches are:

damping identification from modal testing and
analysis

direct damping identification from the forced
response measurements in the frequency or
time domain
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Damping Identification 2

Some shortcomings of the modal analysis based
methodologies are:

Difficult to extend in the mid-frequency range:
Relies on the presence of FRF distinct peaks

Computationally expensive and time-consuming
for large systems

Non-proportional damping leading to complex
modes adds to the computational burden
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Mid-Frequency Range

Low-Frequency Range: A uniform low modal density

High-Frequency Rage: A uniform high modal density

Mid-Frequency Range: Intermediate band in which modal
density varies greatly
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Discrete Linear Systems

The equations describing the forced vibration of a
viscously damped linear discrete system with n dof:

Mnün (t) + Cnu̇n (t) + Knun (t) = fn (t)

Mn is the mass matrix, Cn is the damping matrix and Kn

is the stiffness matrix

un (t) is the displacement vector, and fn (t) is the forcing
vector at time t

In the frequency domain, one has

[
−ω2Mn + iωCn + Kn

]
Un(ω) = Fn(ω)
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Damping Matrix Identification

Applying Kronecker Algebra and taking the vec operator
to the frequency domain representation

(
Un(ωi)

T
⊗ iωiIn

)
vecCn = Fn(ωi)+ω2

i MnUn(ωi)−KnUn(ωi),

For many frequencies, we have26666664 Un(ω1)T ⊗ iω1In

Un(ω2)T ⊗ iω2In

...

Un(ωJ )T ⊗ iωJIn

37777775 vecCn =

8>>>>>><>>>>>>: Fn(ω1) + ω2

1
MnUn(ω1) − KnUn(ω1)

Fn(ω2) + ω2

2
MnUn(ω2) − KnUn(ω2)

...

Fn(ωJ ) + ω2

JMnUn(ωJ ) − KnUn(ωJ )

9>>>>>>=>>>>>>; .

The above equation can be written as

Ax = y
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Least-Square Approach

In case the system of equations being
overdetermined, x can be solved in the
least-square sense using the least-square
inverse of the matrix A, as follows

x̂ =
[
ATA

]−1
ATy.

x̂ is the least-square estimate of x and[
ATA

]−1
AT is the Moore-Penrose inverse of A
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Physics-Based Tikhonov
Regularisation

In order to satisfy symmetry, for instance, in the damping
matrix Cm, we need to have

Cn = CT
n

The symmetry condition in the mass matrix gives rise to
the constraint equation:

LCx = 0n2

0m2 is the zero vector of order m2 and the subscript in LC

indicates that the constraint is on the damping matrix
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Tikhonov Regularisation

Applying Tikhonov Regularisation to estimate x, we
obtain the following solution

x̂ =
(
ATA + λ2

CLT
CLC

)−1 (
ATy

)
.

The above solution depends on the values chosen for the
regularisation parameter λC

If λC is very large, the constraint enforcing the symmetry
condition predominates in the solution of x

On the other hand, if it is chosen to be small, the
symmetry constraint is less satisfied and the solution
depends more heavily on the observed data y
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The Need for Model Order
Reduction

In the proposed recursive least squares
method, we are required to obtain the inverse of
a square matrix of order n2

If we are trying to estimate the damping matrix
of a complex system with large n, this is not
feasible, even on high performance computers

There is a need to reduce the order of the
model prior to the system identification step
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Proper Orthogonal
Decomposition

Entails the extraction of the dominant eigenspace of the
response correlation matrix over a given frequency band

These dominant eigenvectors span the system response
optimally on the prescribed frequency range of interest

POD is essentially the following eigenvalue problem

Ruuϕ = λϕ

Ruu is the response correlation matrix given by

Ruu =
〈
un (t)un (t)T

〉
≃

1

T

T∑

t=1

un (t)uT
n (t)
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Spectral Decomposition of Ruu

Using the spectral decomposition of Ruu, one obtains

Ruu =
n∑

i=1

λiϕiϕ
T
i

The eigenvalues are arranged: λ1 ≥ λ2 ≥ . . . ≥ λn

The first few modes capture most of the systems energy,
i.e. Ruu can be approximated by Ruu ≈

∑m

i=1 λiϕiϕ
T
i

m is the number of dominant POD modes, generally
much smaller than n
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Model Reduction using POD

The output vector can be approximated by a linear
representation involving the first m POD modes using

un (t) =
m∑

i=1

ai (t) ϕi = Σa (t)

Σ is the matrix containing the first m dominant POD
eigenvectors:

Σ = [ϕ1, . . . ,ϕm] ∈ R
n×m
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Model Reduction using POD

Using Σ as a transformation matrix, our reduced order
model becomes

ΣTMnΣä (t) + ΣTCnΣȧ (t) + ΣTKnΣa (t) = ΣT fn (t)

The system of equations can now be rewritten in the
reduced-order dimension as

Mmüm (t) + Cmu̇m (t) + Kmum (t) = fm (t)
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Model Reduction using POD

The reduced order mass, damping, and stiffness
matrices as well as the reduced order displacement and
forcing vectors are

Mm = ΣTMnΣ ∈ R
m×m

Cm = ΣTCnΣ ∈ R
m×m

Km = ΣTKnΣ ∈ R
m×m

um (t) = ΣTun (t) = a (t)

fm (t) = ΣT ff (t)
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Reduced-Order Model
Identification

Once either the POD transformation is applied,
there will be m2 unknowns to be identified, as
opposed to n2 for our original model, where m is
much smaller than n

The aforementioned least square estimation
method can now be used to estimate the
reduced order damping matrix

Once the reduced order damping matrix is
estimated, we can carry out system simulations
at the lower order dimension m, and project the
displacement results back into the original
n-dimensional space
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Numerical Validation

A coupled linear array of mass-spring oscillators
is considered to be the original system

A lighter system is coupled with a heavier
system

The lighter system posses higher modal
densities compared to the heavier system
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System Description

The mass and stiffness matrices have the form

Mn =

24m1In/2 0n/2

0n/2 m2In/2

35 Kn = ku

266666666666664
2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

. . .
. . . −1

−1 2

377777777777775
n, m1, and m2 are chosen to be 100 DOFs, 0.1kg, and
1kg and ku = 4 × 105 N/m

The system is assumed to have Rayleigh damping by
Cn = α0Mn + α1Kn, where α0 = 0.5 and α1 = 3 × 10−5
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Typical System Response
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The frequency range considered for the construction of the POD is shown
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POD Eigenvalues
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POD-Reduced Model
A typical FRF of the POD reduced model is compared
with the original FRF below

The reduced order model FRF match reasonably well
with the original FRF in the frequency band of interest
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Noise-Free Identification
In the noise-free case, we obtain the identified POD
reduced order damping matrix

The identified matrix is used to obtain a typical FRF of
the system below
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Effect of Noise
The system response is contaminated with noise

The variance of the noise is ten times smaller than that of
the response

We obtain the identified FRF shown below
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Conclusion

The salient features that emerged from the current
investigation are:

POD can be successfully applied for
reduced-order modelling

Kronecker Algebra in conjunction with Tikhonov
Regularisation provide an elegant theoretical
formulation involving identification of the
damping matrix

Using a noise-sensitivity study, the identification
method is demonstrated to be robust in a noisy
environment
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