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Complex aerospace system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant uncertainty in its numerical (Finite Element) model
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Structural dynamics

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of (parametric/nonparametric or both)
uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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Current UQ approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications
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Current UQ approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA) and Wishart random matrix theory:

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications
extensive works over the past decade → general
purpose commercial software is now available
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UQ approaches: challenges

The main difficulties are due to:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and

as the state-of-the art methodology stands now (such as the
Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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Main objectives

Our work is aimed at developing methodologies [the 10-10-10
challenge] with the ambition that they should:

not take more than 10 times the computational time required
for the corresponding deterministic approach;

result a predictive accuracy within 10% of direct Monte Carlo
Simulation (MCS);

use no more than 10 times of input data needed for the
corresponding deterministic approach; and

enable ‘normal’ engineering graduates to perform
probabilistic structural dynamic analyses with a reasonable
amount of training.
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Wishart random matrix approach

The probability density function of the mass (M), damping
(C) and stiffness (K) matrices should be such that they are
symmetric and non-negative matrices.

Wishart random matrix (a non-Gaussian matrix) is the
simplest mathematical model which can satisfy these two
criteria: [M,C,K] ≡ G ∼ Wn(p,Σ).

Suppose we ‘know’ (e.g, by measurement or stochastic
modeling) the mean (G0) and the (normalized) standard
deviation (σG) of the system matrices:

σ2

G
=

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2

F

. (2)
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Wishart parameter selection - 1

The parameters p and Σ can be obtained based on what criteria
we select. We investigate four possible choices.

1. Criteria 1: E [G] = G0 and σG = σ̃G which results

p = n + 1 + θ and Σ = G0/p (3)

where θ = (1 + β)/σ̃2
G − (n + 1) and

β = {Trace (G0)}
2 /Trace

(
G0

2
)
.

2. Criteria 2: ‖G0 − E [G]‖F and
∥∥G0

−1 − E
[
G−1

]∥∥
F

are
minimum and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/α (4)

where α =
√

θ(n + 1 + θ).
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Wishart parameter selection - 2

1. Criteria 3: E
[
G−1

]
= G0

−1 and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/θ (5)

2. Criteria 4: The mean of the eigenvalues of the distribution is
same as the ‘measured’ eigenvalues of the mean matrix and
the (normalized) standard deviation is same as the
measured standard deviation:

E
[
M−1

]
= M0

−1, E [K] = K0, σM = σ̃M and σK = σ̃K .

(6)
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A cantilever plate: front view

The test rig for the cantilever plate; front view.
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Mean of cross-FRF
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Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.1326 and σK = 0.3335.
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Error in the mean of cross-FRF
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Standard deviation of driving-point-FRF
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.1326 and σK = 0.3335.

RAeS, London, 15 May 2008 UQ of complex systems – p.18/58



Error in the standard deviation of driving-point-FRF
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Main observations

Error in the low frequency region is higher than that in the
higher frequencies

In the high frequency region all methods are similar

Overall, parameter selection 3 performs best; especially in
the low frequency region.
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Standard deviation: low frequency
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate in the low frequency region, n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the standard deviation: low frequency
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Dynamic response: analytical approach

The dynamic response of the system can be expressed in
the frequency domain as

q(ω) = D−1(ω)f(ω) (7)

where the dynamic stiffness matrix is defined as

D(ω) = −ω2M + iωC + K. (8)

This is a complex symmetric random matrix.

The calculation of the response statistics requires the
calculation of statistical moments of the inverse of this
matrix.
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Main assumptions

1. Damping matrix is ‘small’ compared to the mass and
stiffness matrices.

2. The damping matrix is deterministic.

3. The mass and stiffness matrices are statistically
independent Wishart matrices.

4. The input force is deterministic.

(no assumptions related to proportional damping, small random-

ness or Gaussianity).
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Response moments - 1

The first-order moment of the absolute of the response:

q̄ = E [|q|] = E
[
|D|−1]

f̄ (9)

where f̄ = |f|.

The second-order moment of the absolute of the response:

cov|q| = E
[
(|q| − E [|q|])(|q| − E [|q|])T

]
= E

[
|q| |q|T

]
− q̄q̄T

= E
[
|D|−1

f̄ f̄
T
|D|−1

]
− q̄q̄T .

(10)
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Response moments - 2

The dynamic response statistics is obtained in two steps:

A Wishart distribution is fitted to
|D(ω)| =

{
[−ω2M + K]2 + ω2C2

}1/2
, which is symmetric and

non-negative definite random matrix. Note that D(ω) cannot
be a Wishart matrix unless the system is undamped.

Once the parameters of the Wishart distribution
corresponding to |D| is identified, the inverse moments are
obtained exactly in closed-from using the inverted Wishart
distribution.
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Response moments - 3

After some algebra we have the mean

q̄ =
pD(ω)

θD(ω)
q0(ω) (11)

Here q0(ω) is the absolute value of the response for the baseline or ‘mean’ system

q0(ω) = |D0(ω)|−1 |f(ω)| (12)

with |D0(ω)| =
∣∣−ω2M0 + iωC + K0

∣∣
θD(ω) = pD(ω) − n − 1, pD(ω) = Trace (AB) /Trace

(
A2

)

where
A = ω4pM

(
M0

2 + M0Trace (M0)
)
/θM + pK

(
K0

2 + K0Trace (K0)
)
/θK

B = |D0(ω)|2 + |DD0|Trace (|D0(ω)|).

The covariance of the absolute of the response can be obtained as

cov|q| (ω) =
(θD(ω) + n + 1)Trace

(
q0(ω)f̄(ω)T

)
Σ

−1

D
(ω) + (θD(ω) + 2)q0(ω)qT

0
(ω)

(θD(ω) + 1)(θD(ω) − 2)
. (13)
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Finite element & Wishart matrix model
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Comparison of driving-point-FRF
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Comparison of driving-point-FRF: Low Freq

0 100 200 300 400 500 600 700 800 900 1000
−40

−30

−20

−10

0

10

20

30

40

50

60

Frequency (Hz)

Re
lat

ive
 st

d 
of

 H (1
,1

) (ω
)

Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711.

RAeS, London, 15 May 2008 UQ of complex systems – p.30/58



Comparison of driving-point-FRF: Mid Freq
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Comparison of driving-point-FRF: High Freq
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Comparison of cross-FRF
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Comparison of cross-FRF: Low Freq
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Comparison of cross-FRF: Mid Freq
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Comparison of cross-FRF: High Freq
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Random matrix approach: Future works

Refine random matrix inversion approach:
relax some of the simplifying approximations employed
in the current work
explore different random matrix parameter fitting options

Random eigenvalue based computational method:
utilize eigensolution density function of Wishart matrices
in response calculation
simple analytical expressions

Non-central Wishart matrices:
better approximation of the covariance of the system
matrices
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Parametric uncertainty

Complex engineering dynamical systems with parametric
uncertainty are often investigated running computer codes
(e.g, with Monte Carlo Simulation), also known as simulators
(O’Hagan, 2006).

A simulator is a function η(·) that, given an input x, it
produces an output y.

Sophisticated simulators can have a high cost of execution,
measured in terms of:

CPU time employed

Floating point operations performed
Computer capability required
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Emulator - 1

A possible solution is to build an emulator of the expensive
simulator.

An emulator is a statistical approximation to the simulator,
i.e., it provides a probability distribution for η(·).

Emulators have already been implemented in a number of
fields, which include:

Environmental science (Challenor et al., 2006)

Climate modeling (Rougier, 2007)
Medical science (Haylock and O’Hagan, 1996)
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Emulator - 2

An emulator is built by first choosing n design points in the
input domain of the simulator and obtaining the training set
{η(x1), . . . , η(xn)}.

After that initial choice is made, an emulator should:

Reproduce the known output at any design point.

At any untried input, provide a distribution whose mean
value constitutes a plausible interpolation of the training
data. The probability distribution around this mean value
should also express the uncertainty about how the
emulator might interpolate.
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Emulator: simple example - 1

To illustrate what do the above criteria mean, an emulator
was constructed to approximate the simple simulator
y = cos(x).

In the following figures, the solid line is the true output of the
simulator. The circles represent the training runs, and the
dots are the mean of the distribution provided by the
emulator, which is the approximation.

Note how the approximation improves when more design
points are chosen.
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Emulator: simple example - 2
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Emulator: simple example - 3
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Emulator: simple example - 4

In the same way, the following figures show upper and lower
probability bounds of two standard deviations for the mean
of the emulator. The solid line is the true output of the
simulator. The circles represent the training runs, and the
dots are the bounds.

Note how the uncertainty about the approximation is reduces
as more design points are chosen.
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Emulator: simple example - 5
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Emulator: simple example - 6
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Emulator: theory - 1

From the perspective of Bayesian Statistics, η(·) is a random
variable in the sense that it is unknown until the simulator is
run.

Assume that η(·) deviates from the mean of its distribution in
the following way

η(x) =
n∑

j=1

βjhj(x) + Z(x) (14)

where for all j, hj(x) is a known function and βj is an
unknown coefficient.
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Emulator: theory - 2

The function Z(·) in Eq.(14) is assumed to be a Gaussian
stochastic process (GP) with mean zero and covariance
given by

Cov(η(x), η(x
′

)) = σ2e−(x−x
′
)T B(x−x

′
) (15)

where B is a positive definite diagonal matrix that contains
smoothness parameters.

If the mean of η(·) is of the form m(·) = h(·)T β then η(·) has
a GP distribution with mean m(·) and covariance given by
Eq.(2).
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Application: experimentally measured FRF of a plate
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Stochastic Finite Element (SFE) problems

A random field H(x, θ) can be discretized using the
Karhunen-Loeve expansion (KLE) as

H(x, θ) = µ(x) +
M∑

i=1

√
λiξi(θ)φi(x) (16)

Using this, the system equation can be represented as

[K0 +
M∑

i=0

Kiξ(θ)]u = f (17)

where each Ki is a deterministic matrix.
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Simulation of random field - 1
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Simulation of random field - 2
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lying on the lower plane.
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Simulation of random field - 3
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Computational effort

No. Nodes Time (secs.) Direct Time (secs.) Emulator

121 9.56 0.07

256 19.92 0.24

441 34.43 0.75

961 76.23 6.05

1681 131.29 17.76

2601 273.18 59.66

Number of nodes vs. CPU time employed for a typical sample of the random field
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Emulator: Future works

Parametric eigenvalue problem:
Express the eigenvalues of interest by emulator
(probabilistic response surface)
Exploit explicit parametric sensitivity expressions

Representation of stochastic response field:
Monte Carlo simulation using emulator
polynomial chaos representation by emulator

Domain decomposition and substructure problem (Guyan
reduction type approach)
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Conclusions - 1

When uncertainties in the system parameters (parametric
uncertainty) and modelling (nonparametric uncertainty) are
considered, the discretized equation of motion of linear
dynamical systems is characterized by random mass,
stiffness and damping matrices.

Two different approaches are discussed:

Wishart random matrix method: → non-parametric
uncertainty problem

Gaussian emulator method: → parametric uncertainty
problem
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Conclusions - 2

Approximate closed-form expressions of the mean and
covariance of the amplitude of the dynamic response in the
frequency domain is derived. These expressions are simple
post-processing of the results corresponding to the baseline
system. Selected experimental and numerical results were
shown.

Samples of random field has been emulated using Gaussian
emulators.
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Future direction

Model calibration/updating: taking model and measurement
uncertainties into account

Model validation: development of physically appealing and
mathematically correct generalized norms

Predictive capability assessment: how good are our model
when no data is available to validate?

Hybrid parametric-nonparametric uncertainty quantification:
data assimilation and uncertainty propagation
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