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Introduction

There are two ways to understand the dynamics of
complex structures:

The first is the experimental approach. A
carefully conducted experiment can provide
crucial information regarding the system
dynamics. However, the experimental process
is time consuming, expensive and it may be not
be possible to dynamically test a complex
structure under desired loading conditions.

The alternative is to ‘replace’ the actual
structure by a mathematical model and perform
numerical experiments in a computer.
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Quality of a model

The quality of a model depends on:

Fidelity to (experimental) data: The results obtained
from a numerical or mathematical model undergoing a
given excitation force should be close to the results
obtained from the vibration testing of the same structure
undergoing the same excitation.

Robustness with respect to (random) errors: Errors in
estimating the system parameters, boundary conditions
and dynamic loads are unavoidable in practice. The
output of the model should not be very sensitive to such
errors.
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Quality of a model

Predictive capability In general it is not
possible to experimentally validate a model over
the entire domain of its scope of application.
The model should predict the response well
beyond its validation domain.
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Viscously damped systems

Equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Proportional damping (Rayleigh 1877)

C = α1M + α2K

Classical normal modes
Simplifies analysis methods
Identification of damping becomes easier
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Models of damping

Non-proportional viscous damping

Non-viscous damping models: fractional
derivative model, GHM model, convolution
integral model

Non-linear damping models

In general, the use of these damping models will re-

sult in complex modes
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Non-proportional damping

Modes becomes complex if damping is
non-proportional

Approximate natural frequencies and modes:

λj ≈ ±ωj + iC ′
jj/2, zj ≈ xj + i

N∑

k=1

k 6=j

ωjC
′
kj

(ω2
j − ω2

k)
xk.

ωj: undamped natural frequencies;
xk: undamped modes;
C′ = XTCX: modal damping matrix.
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Non-viscous damping models

Fractional derivative model:
Fd =

∑l
j=1 gjD

νj [q(t)], where

Dνj [q(t)] =
dνjq(t)

dtνj
=

1

Γ(1 − νj)

d

dt

∫ t

0

q(t)

(t − τ)νj
dτ

Special case: νj = 1 : ⇛ viscous damping

Convolution integral model:

Fd =
∫ t

0 G(t − τ)q̇(τ)dτ

G(t) is a matrix of the damping kernel functions.
Special case: G(t − τ) = Cδ(t − τ) : ⇛ viscous
damping
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Non-viscously damped systems

Equation of motion:

Mÿ(t) +

∫ t

−∞
G(t − τ) ẏ(τ) dτ + Ky(t) = 0 (2)

Approximate natural frequencies and modes:

λj ≈ ±ωj+iG′
jj(±ωj)/2, zj ≈ xj+i

N∑

k=1

k 6=j

ωjG
′
kj(ωj)

(ω2
j − ω2

k)
xk.

G(ω): Fourier transform of G(t); G′(ωj) = XTG(ωj)X
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Damping functions in the
Laplace domain

Damping functions Author, Year

G(s) =

Pn
k=1

aks

s + bk

Biot (1955, 1958)

G(s) =
E1sα

− E0bsβ

1 + bsβ
Bagley and Torvik (1983)

0 < α < 1, 0 < β < 1

sG(s) = G∞

"

1 +

P
k αk

s2 + 2ξkωks

s2 + 2ξkωks + ω2

k

#
Golla and Hughes (1985)

and McTavish and Hughes (1993)

G(s) = 1 +

Pn
k=1

∆ks

s + βk

Lesieutre and Mingori (1990)

G(s) = c
1 − e−st0

st0
Adhikari (1998)

G(s) = c
1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari (1998)
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Basic questions of interest

From experimentally determined complex
modes can one identify the underlying damping
mechanism? Is it viscous or non-viscous? Can
the correct model parameters be found
experimentally?

Is it possible to establish experimentally the
spatial distribution of damping?
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Basic questions of interest

Is it possible that more than one damping
model with corresponding correct sets of
parameters may represent the system response
equally well, so that the identified model
becomes non-unique?

Does the selection of damping model matter
from an engineering point of view? Which
aspects of behaviour are wrongly predicted by
an incorrect damping model?
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Viscous damping identification

If natural frequencies (Ω ∈ R
n×n), damping ratios

(ζ ∈ R
n×n) and complex modes (Z ∈ R

m×n) are
known from measurments, then the damping matrix
can be identified a:

U = ℜ (Z) , V = ℑ (Z)

B = U+V

C′ =
[
Ω2B − BΩ2

]
Ω−1 + 2ζΩ

C = U+T

C′U+

aAdhikari and Woodhouse, J.of Sound & Vibration, 243[1] (2001) 43-61
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Non-viscous damping
identification

Damping model used for fitting: G(t) = µe−µt C

µ =
ω1v

T
1 Mv1

vT
1 Mu1

X = U − 1

µ
[VΩ]

B = X+V

C′ =
[
Ω2B − BΩ2

]
Ω−1 + 2ζΩ

C = X+T

C′U+
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Simulation example

m

. . .

uk uk um
uk um uk um uk

g(t) g(t) N− th

u

Linear array of N spring-mass oscillators, N = 30,
mu = 1 Kg, ku = 4 ××103N/m.

The kernel functions have the form

G(t) = C g(t) (3)

Here g(t) is some damping function and C is a posi-

tive definite constant matrix.
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Models of non-viscous damping

Model 1 (exponential): g(1)(t) = µ1e
−µ1t

Model 2 (Gaussian): g(2)(t) = 2

√
µ2

π
e−µ2t

2

The damping models are normalized such that the
damping functions have unit area when integrated
to infinity, i.e.,

∫ ∞

0

g(j)(t) dt = 1.
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Characteristic time constant

For each damping function the characteristic time
constant is defined via the first moment of g(t) as

θ =

∫ ∞

0

t g(t) dt.

Express θ as: θ = γ Tmin.
γ is the non-dimensional characteristic time
constant and Tmin is the minimum time period. We
expect:

γ ≪ 1 : near viscous

γ → O(1) : strongly non-viscous
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Viscous damping identification
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Fitted viscous damping matrix: γ = 0.02, damping model 2
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Viscous damping identification
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Non-viscous Damping
Identification
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Fitted coefficient matrix: γ = 0.5, damping model 1; γfit = 0.49
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Non-viscous damping
identification
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Experimental setup

Damped free-free beam, L = 1m,

width = 39.0 mm, thickness = 5.93 mm

Clamped damping

mechanism

Instrumented

hammer for impulse

input
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Measured transfer functions
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Viscous damping fitting
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Non-viscous damping fitting
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Summary so far

A method is proposed to identify a
non-proportional non-viscous damping model in
vibrating systems from complex modes and
natural frequencies.

If the fitted damping model is wrong, the
procedure yields a non-physical result by fitting
a non-symmetric coefficient matrix. That is, the
procedure gives an indication that a wrong
model is selected for fitting.
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Difficulties with complex modes

the expected ‘shapes’ of complex modes are
not clear

(complex) scaling of complex modes can
change their geometric appearances

the imaginary parts of the complex modes are
usually very small compared to the real parts –
makes it difficult to reliably extract complex
modes
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Difficulties with complex modes

the phases of complex modes are highly
sensitive to experimental errors, ambient
conditions and measurement noise and often
not repeatable in a satisfactory manner
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Difficulties with complex modes
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Proportional damping

Avoids most of the problems associated with
complex modes

Can accurately reproduce transfer functions for
systems with light damping
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Transfer function
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Some observations

It is possible that more than one damping
model with corresponding correct sets of
parameters may represent the system response
equally well.

Different damping models can be fitted with the
identified poles and residues of the transfer
functions so that they are approximated
accurately by all models.

As a consequence proportional viscous
damping can be used as a valid model.
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Limitations of proportional
damping

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj

)

Not all forms of variation can be captured
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Damping factors
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Conditions for proportional
damping

Theorem 1 A viscously damped linear system can
possess classical normal modes if and only if at
least one of the following conditions is satisfied:
(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c)
MC−1K = KC−1M.

This can be easily proved by following Caughey and
O’Kelly’s (1965) approach and interchanging M, K
and C successively.
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Caughey series

Caughey series:

C = M

N−1∑

j=0

αj

(
M−1K

)j

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj + α3ω

3
j + · · ·

)

More general than Rayleigh’s version of
proportional damping
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Generalized proportional
damping

Premultiply condition (a) of the theorem by M−1:
(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)

Since M−1K and M−1C are commutative
matrices

M−1C = f1(M
−1K)

Therefore, we can express the damping matrix
as

C = Mf1(M
−1K)

Identification of Damping – p.38/51



June 2005, University of Catania

Generalized proportional
damping

Premultiply condition (b) of the theorem by K−1:
(
K−1M

) (
K−1C

)
=

(
K−1C

) (
K−1M

)

Since K−1M and K−1C are commutative
matrices

K−1C = f2(K
−1M)

Therefore, we can express the damping matrix
as

C = Kf1(K
−1M)
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Generalized proportional
damping

Combining the previous two cases

C = M β1

(
M−1K

)
+ K β2

(
K−1M

)

Similarly, postmultiplying condition (a) of
Theorem 1 by M−1 and (b) by K−1 we have

C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

Special case: βi(•) = αiI → Rayleigh damping.
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Generalized proportional
damping

Theorem 2 A viscously damped positive definite
linear system possesses classical normal modes if
and only if C can be represented by
(a) C = M β1

(
M−1K

)
+ K β2

(
K−1M

)
, or

(b) C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

for any βi(•), i = 1, · · · , 4.
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Example 1

Equation of motion:

Mq̈+

[
Me

−

�

M
−1

K

�2

/2
sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K

π

]
q̇ + Kq = 0

It can be shown that the system has real modes and

2ξjωj = e−ω4

j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1

√
ωj

tan−1 ωj

π
.
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Damping identification method

To simplify the identification procedure, express the
damping matrix by

C = Mf
(
M−1K

)

Using this simplified expression, the modal damping
factors can be obtained as

2ζjωj = f
(
ω2

j

)

or ζj =
1

2ωj
f

(
ω2

j

)
= f̂(ωj) (say)
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Damping identification method

The function f̂(•) can be obtained by fitting a
continuous function representing the variation
of the measured modal damping factors with
respect to the frequency

With the fitted function f̂(•), the damping matrix
can be identified as

2ζjωj = 2ωj f̂(ωj)

or Ĉ = 2M
√

M−1K f̂
(√

M−1K
)
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Example 2

Consider a 3DOF system with mass and stiffness
matrices

M =




1.0 1.0 1.0

1.0 2.0 2.0

1.0 2.0 3.0



 , K =




2 −1 0.5

−1 1.2 0.4

0.5 0.4 1.8
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Example 2
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Example 2

Here this (continuous) curve was simulated using
the equation

f̂(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

)

From the above equation, the modal damping
factors in terms of the discrete natural frequencies,
can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
.
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Example 2

To obtain the damping matrix, consider the
preceding equation as a function of ω2

j and replace
ω2

j by M−1K and any constant terms by that
constant times I. Therefore:

C =M
2

15

√
M−1K

[
e−2.0

√
M

−1

K − e−3.5

√
M

−1

K
]

×
[
I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

]
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Steps to follow

1. Measure a suitable transfer function Hij(ω)

2. Obtain the undamped natural frequencies ωj

and modal damping factors ζj

3. Fit a function ζ = f̂(ω) which represents the
variation of ζj with respect to ωj for the range of
frequency considered in the study

4. Calculate the matrix T =
√

M−1K

5. Obtain the damping matrix using
Ĉ = 2 M T f̂ (T)
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Summary(1)

Rayleigh s proportional damping is generalized

The generalized proportional damping
expresses the damping matrix in terms of any
non-linear function involving specially arranged
mass and stiffness matrices so that the system
still posses classical normal modes

This enables one to model practically any type
of variations in the modal damping factors with
respect to the frequency
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Summary(2)

Once a scalar function is fitted to model such
variations, the damping matrix can be identified
very easily using the proposed method

The method is very simple and requires the
measurement of damping factors and natural
frequencies only (that is, the measurements of
the mode shapes are not necessary)

The proposed method is applicable to any
linear structures as long as one have validated
mass and stiffness matrix models which can
predict the natural frequencies accurately and
modes are not significantly complex
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