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Stochastic structural dynamics

The equation of motion:

Mẍ(t) + Cẋ(t) + Kx(t) = p(t)

Due to the presence of uncertainty M, C and K
become random matrices.

The objective is to quantify uncertainties in the
response vector x.
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Current Methods

Three different approaches are currently available

Low frequency : Stochastic Finite Element
Method (SFEM) - considers parametric
uncertainties in details

High frequency : Statistical Energy Analysis
(SEA) - do not consider parametric
uncertainties in details

Mid-frequency : Hybrid method - ‘combination’
of the above two
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Random Matrix Method (RMM)

The objective : To have a simple unified
method which will work across the frequency
range.

The methodology :

Derive the matrix variate probability density
functions of M, C and K

Propagate the uncertainty (using Monte
Carlo simulation or analytical methods) to
obtain the response statistics (or pdf)
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Outline of the presentation

In what follows next, I will discuss:

Introduction to Matrix variate distributions

‘Maximal uncertain’ distribution

Distributions under inverse moment constraints

Optimal Wishart distribution

Response statistics using Wishart distribution

Numerical examples

Open problems & discussions
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(1)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Gaussian orthogonal ensembles

A random matrix H ∈ Rn,n belongs to the Gaussian
orthogonal ensemble (GOE) provided its pdf of is
given by

pH(H) = exp
(

−θ2Trace
(

H2
)

+ θ1Trace (H) + θ0

)

where θ2 is real and positive and θ1 and θ0 are real.

This is a good model for high-frequency vibration

problems.
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Wishart matrix

An n× n random symmetric positive definite matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1

2
np Γn

(

1

2
p

)

|Σ|
1

2
p

}

−1

|S|
1

2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(2)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Matrix variate Gamma
distribution

An n × n random symmetric positive definite matrix W is said
to have a matrix variate gamma distribution with parameters a

and Ψ ∈ R
+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1

|W|a−
1

2
(n+1) etr {−ΨW} ; ℜ(a) > (n − 1)/2 (3)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here
the multivariate gamma function:

Γn (a) = π
1

4
n(n−1)

n
∏

k=1

Γ

[

a −
1

2
(k − 1)

]

; forℜ(a) > (n−1)/2 (4)
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Distribution of the system
matrices

The distribution of the random system matrices M,
C and K should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of
the dynamic stiffness matrix
D(ω) = −ω2M + iωC + K should exist ∀ω
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are
given by M, C and K respectively. Using the
notation G (which stands for any one the system
matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the

following constrains to obtain pG (G):
∫

G>0

pG (G) dG = 1 (normalization) (5)

and
∫

G>0

G pG (G) dG = G (the mean matrix)

(6)
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MEnt Distribution - 1

The Lagrangian to be maximised:

L
(

pG
)

= −

∫

G>0

pG (G) ln
{

pG (G)
}

dG+

(λ0 − 1)

(
∫

G>0

pG (G) dG − 1

)

+ Trace

(

Λ1

[
∫

G>0

G pG (G) dG − G

])

(7)

λ0 ∈ R and Λ1 ∈ Rn,n are the unknown Lagrange

multiplies to be determined.
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MEnt Distribution - 2

Using the calculus of variation

∂L
(

pG
)

∂pG
= 0

or (λ0 − 1) + Trace (Λ1G) −
(

1 + ln
{

pG (G)
})

= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G)

or pG (G) = exp {−λ0} etr {−Λ1G}

(8)
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MEnt Distribution - 3

Substituting into the constraint equations results

pG (G) = rnr {Γn(r)}
−1

∣

∣G
∣

∣

−r
etr

{

−rG
−1

G
}

(9)

where r = 1
2(n + 1). Comparing, it can be observed

that G has the Wishart distribution with parameters
p = n + 1 and Σ = G/(n + 1).
Theorem 1. If only the mean of a system matrix

G ≡ {M,C,K} is available, say G, then the matrix

has a Wishart distribution with parameters (n + 1)

and G/(n + 1), that is G ∼ Wn

(

n + 1,G/(n + 1)
)

.
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Further constraints

Suppose the inverse moments (say up to order
ν) of the system matrix exist. This implies that
E

[∥

∥G−1
∥

∥

F

ν]
should be finite. Here the

Frobenius norm of matrix A is given by

‖A‖F =
(

Trace
(

AAT
))1/2

.

Taking the logarithm for convenience, the
condition for the existence of the inverse
moments can be expresses by

E
[

ln |G|−ν] < ∞
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MEnt Distribution - Again!

The new Lagrangian becomes:

L
(

pG
)

= −

∫

G>0

pG (G) ln
{

pG (G)
}

dG+

(λ0 − 1)

(
∫

G>0

pG (G) dG − 1

)

−ν

∫

G>0

ln |G| pG dG

+ Trace

(

Λ1

[
∫

G>0

G pG (G) dG − G

])

(10)

Note: ν cannot be obtained uniquely!
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MEnt Distribution - 2A

Using the calculus of variation

∂L
(

pG
)

∂pG
= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G) − ln |G|ν

or pG (G) = exp {−λ0} |G|ν etr {−Λ1G}

We use the matrix variate Laplace transform:
∫

Λ>0

etr {−ΛZ} |Λ|a−(p+1)/2 dΛ = Γp(a) |Z|−a
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MEnt Distribution - 3A

Substituting into the constraint equations we have:
Theorem 2. If ν-th order inverse moment of a
system matrix G exists and only the mean is

available, say G, then the matrix has a Wishart
distribution with parameters (2ν + n + 1) and

G/(2ν + n + 1), that is

G ∼ Wn

(

2ν + n + 1,G/(2ν + n + 1)
)

.

Note that ν = 0 gives us the ‘maximal uncertain dis-

tribution’ derived before.
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Properties of the Distribution

Covariance tensor of G:

cov (Gij, Gkl) =
1

2ν + n + 1

(

GikGjl + GilGjk

)

(11)

Normalized standard deviation matrix
E

[

(G − G)2
]

G
−2

:

σ2
G =

1

2ν + n + 1

[

In + G
−1

Trace
(

G
)

]

(12)

ν ↑ ⇒ σ2
G

↓.
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Distribution of the inverse - 1

If G is Wn(p,Σ) then V = G−1 has the inverted
Wishart distribution:

PV(V) =
2m−n−1n/2 |Ψ|m−n−1 /2

Γn[(m − n − 1)/2] |V|m/2
etr

{

−
1

2
V−1Ψ

}

where m = n + p + 1 and Ψ = Σ−1 (recall that
p = 2ν + n + 1 and Σ = G/p)
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Distribution of the inverse - 2

Mean: E
[

G−1
]

=
pG

−1

p − n − 1

Normalized standard deviation matrix

E

[

(

G−1 − G
−1

)2
]

G
2
:

σ2

G
−1 =

(p − n − 1)

(p − n)(p − n − 3)

[

In + GTrace
(

G
−1

)]

(13)
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Distribution of the inverse - 3

Suppose n = 101 & ν = 2. So p = 2ν + n + 1 = 106 and
p − n − 1 = 4. Therefore, E [G] = G and

E
[

G−1
]

=
106

4
G

−1
= 26.5G

−1
!!!!!!!!!!

Of course there is no reason why E
[

G−1
]

= G
−1

. But
from a practical point of view do we expect them to be so
far apart?

One way to reduce the gap is to increase p. But this
implies reduction of variance.
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Some questions

What do we really need: E [G] = G or

E
[

G−1
]

= G
−1

or any other powers.

G is just one ‘observation’ - not an ensemble
mean.

What happens if we know the covariance tensor
of G (e.g., using Stochastic Finite element
Method)?

What if the zeros in G are not preserved?
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Optimal Wishart Distribution - 1

Suppose G ∼ Wn (m,Σ) and A ∈ R
+
n is the

deterministic value of a system matrix.

My argument: The distribution of G must be

such that E [G] and E
[

G−1
]

should be closest
to A and A−1 respectively.

Therefore, define (and subsequently minimize)
‘normalized errors’:
ε1 = [A − E [G]]A−1 ∈ Rn

ε2 =
[

A−1 − E
[

G−1
]]

A ∈ Rn
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Optimal Wishart Distribution - 2

Obtain m and Σ such that
χ2 = ‖ε1‖

2
F+‖ε2‖

2
F = Trace

(

ε1ε
T
1

)

+Trace
(

ε2ε
T
2

)

is minimized.

Suppose m = n + 1 + θ and Σ = AX. Using
these we have ε1 = [In − (n + 1 + θ)X] and

ε2 =
[

In − {θX}−1
]

Since Σ = ΣT and A = AT , we have
AX = XTA or XT = AXA−1

Set ∂χ2

∂θ = 0 and ∂χ2

∂X
= O. Total n2 + 1 unknowns

and n2 + 1 equations - can be solved.

Matrix Variate Distributions – p.26/45



Cambridge, March 17, 2006

Optimal Wishart Distribution - 3

We obtain

θ4Trace
(

XAXA−1
)

+ θ3
{

(n + 1)Trace
(

XAXA−1
)

− Trace (X)
}

+ θTrace
(

X−1
)

− Trace
(

X−1AX−1A−1
)

= 0 (14)

AXA−1 + A−1XA =
2In

n + 1 + θ
− ξ(θ,X) (15)

ξ(θ,X) = (n + 1 + θ)−2[2θ−1X−2

+ θ−2X−1[AX−1A−1 + A−1X−1A]X−1] (16)
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Optimal Wishart Distribution - 4

Use iteration to solve the coupled nonlinear scalar-matrix
equations

1. Start with θ = 2, X = In/(n + 1 + θ)

2. Solve θ from the fourth order equation (14)

3. Obtain Xnew from (by taking vec (•) of Eq. (15))

[A−1⊗A+A⊗A−1]vec (Xnew) =
2In

n + 1 + θ
vec (In)−vec (ξ(θ,X))

4. If ‖Xnew − X‖F < ‘small number’ then stop. Otherwise,
set X = Xnew and go back to step 2.
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Response statistics - 1

The equation of motion is Dx = p, D is in
general n × n complex random matrix.

The response is given by

x = D−1p

Consider static problems so that all
matrices/vectors are real.
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Response statistics - 2

We may want statistics of few elements or some
linear combinations of the elements in x. So the
quantify of interest is

y = Rx = RD−1p (17)

Here R is in general r × n rectangular matrix.
For the special case when R = In, we have
y = x.

Eq. (17) arises in SFEM. There are many
papers on its solution. Mainly perturbation
methods are used.

Matrix Variate Distributions – p.30/45



Cambridge, March 17, 2006

Response statistics - 3

Suppose D = D0 + ∆D, where D0 is the
deterministic part and ∆D is the (small) random
part. It can be shown that

D−1 = D0−D−1
0 ∆DD−1

0 +D−1
0 ∆DD−1

0 ∆DD−1
0 + · · ·

From, this

y = y0 − RD−1
0 ∆Dx0 + RD−1

0 ∆DD−1
0 ∆Dx0 + · · ·

(18)

where x0 = D−1
0 p and y0 = Rx0.
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Response statistics - 4

The statistics of y can be calculated from Eq. (18).
However,

The calculation is difficult if ∆D is
non-Gaussian.

Even if ∆D is Gaussian, inclusion of
higher-order terms results very messy
calculations (I have not seen any published
work for more than second-order)

For these reasons, the response statistics will
be inaccurate for large randomness.
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Response statistics - 5

I will propose an exact method using RMM.
Suppose D ∼ Wn (m,Σ).

E [y] = E
[

RD−1p
]

= RE
[

D−1
]

p = RΣ−1p/θ (19)

The complete covariance matrix of y

E
[

(y − E [y])(y − E [y])T
]

= R E
[

D−1ppTD−1
]

RT − E [y] (E [y])T

=
Trace

(

Σ−1ppT
)

RΣ−1RT

θ(θ + 1)(θ − 2)
+

(θ + 2)RΣ−1ppTΣ−1RT

θ2(θ + 1)(θ − 2)
(20)
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Example: A cantilever Plate
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Cantilever plate with a slot: µ = 0.3, ρ = 8000 kg/m3, t = 5mm,

Lx = 2.27m, Ly = 1.47m
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Plate Mode 4
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Plate Mode 5
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Deterministic FRF
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Frequency Spacing
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Frequency Spacing
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Random FRF - 1

Driviing point FRF using optimal Wishart distribution
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Random FRF - 2

A cross FRF using optimal Wishart distribution
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Structure of the Matrices
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Summary & conclusions

Wishart matrices can used as the distribution
for the system matrices in structural dynamics.

The parameters of the distribution can be
obtained by solving an optimisation problem
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Next steps

Numerical works (validation against??)

Distribution of the dynamic stiffness matrix
(complex Wishart matrix?)

Inversion of the dynamic stiffness matrix (FRFs)

Distribution of Y(ω) =
[

RD(ω)−1P
]

where
P ∈ Cn,r and R ∈ Rp,n

Eigenvalues, eigenvector statistics and
calculation of dynamic response.

Cumulative distribution function of the response
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Open problems & discussions

Structure preserving random matrices (low-mid
frequency?)

Non-central Wishart matrices (preservation of
covariance structure - parametric uncertainty
models?)

Solution of SFEM using RMT (connection with
polynomial chaos expansions)?

Eigenvalue problem, Wigner surmise

Analytical expression of the pdf of dynamic
response

Energy statistics - SEA
Matrix Variate Distributions – p.45/45
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