Probabilistic Structural Analysis Using Matrix Variate Distributions

S Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk
URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

Stochastic structural dynamics

- The equation of motion:

$$
\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{C} \dot{\mathbf{x}}(t)+\mathbf{K} \mathbf{x}(t)=\mathbf{p}(t)
$$

■ Due to the presence of uncertainty M, C and K become random matrices.

- The objective is to quantify uncertainties in the response vector x .

Current Methods

Three different approaches are currently available

- Low frequency: Stochastic Finite Element Method (SFEM) - considers parametric uncertainties in details
- High frequency: Statistical Energy Analysis (SEA) - do not consider parametric uncertainties in details
- Mid-frequency: Hybrid method - 'combination’ of the above two

Random Matrix Method (RMM)

- The objective: To have a simple unified method which will work across the frequency range.
- The methodology:
- Derive the matrix variate probability density functions of M, C and K
- Propagate the uncertainty (using Monte Carlo simulation or analytical methods) to obtain the response statistics (or pdf)

Outline of the presentation

In what follows next, I will discuss:

- Introduction to Matrix variate distributions
- 'Maximal uncertain' distribution
- Distributions under inverse moment constraints

■ Optimal Wishart distribution
■ Response statistics using Wishart distribution
■ Numerical examples
■ Open problems \& discussions

Matrix variate distributions

- The probability density function of a random matrix can be defined in a manner similar to that of a random variable.
\square If \mathbf{A} is an $n \times m$ real random matrix, the matrix variate probability density function of $\mathbf{A} \in \mathbb{R}_{n, m}$, denoted as $p_{\mathbf{A}}(\mathbf{A})$, is a mapping from the space of $n \times m$ real matrices to the real line, i.e., $p_{\mathbf{A}}(\mathbf{A}): \mathbb{R}_{n, m} \rightarrow \mathbb{R}$.

Gaussian random matrix

The random matrix $\mathbf{X} \in \mathbb{R}_{n, p}$ is said to have a matrix variate Gaussian distribution with mean matrix $\mathbf{M} \in \mathbb{R}_{n, p}$ and covariance matrix $\Sigma \otimes \Psi$, where $\Sigma \in \mathbb{R}_{n}^{+}$and $\Psi \in \mathbb{R}_{p}^{+}$provided the pdf of \mathbf{X} is given by

$$
\begin{align*}
& p_{\mathbf{X}}(\mathbf{X})=(2 \pi)^{-n p / 2}|\boldsymbol{\Sigma}|^{-p / 2}|\boldsymbol{\Psi}|^{-n / 2} \\
& \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\mathbf{M}) \boldsymbol{\Psi}^{-1}(\mathbf{X}-\mathbf{M})^{T}\right\} \tag{1}
\end{align*}
$$

This distribution is usually denoted as $\mathbf{X} \sim N_{n, p}(\mathbf{M}, \boldsymbol{\Sigma} \otimes \mathbf{\Psi})$.

Gaussian orthogonal ensembles

A random matrix $\mathbf{H} \in \mathbb{R}_{n, n}$ belongs to the Gaussian orthogonal ensemble (GOE) provided its pdf of is given by

$$
p_{\mathbf{H}}(\mathbf{H})=\exp \left(-\theta_{2} \operatorname{Trace}\left(\mathbf{H}^{2}\right)+\theta_{1} \operatorname{Trace}(\mathbf{H})+\theta_{0}\right)
$$

where θ_{2} is real and positive and θ_{1} and θ_{0} are real. This is a good model for high-frequency vibration problems.

Wishart matrix

An $n \times n$ random symmetric positive definite matrix \mathbf{S} is said to have a Wishart distribution with parameters $p \geq n$ and $\Sigma \in \mathbb{R}_{n}^{+}$，if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{S}}(\mathbf{S})=\left\{2^{2^{\frac{1}{2} p p}} \Gamma_{n}\left(\frac{1}{2} p\right)|\boldsymbol{\Sigma}|^{\frac{1}{2} p}\right\}^{-1}|\mathbf{S}|^{\frac{1}{2}(p-n-1)} \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1} \mathbf{S}\right\} \tag{2}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{S} \sim W_{n}(p, \boldsymbol{\Sigma})$ ．
Note：If $p=n+1$ ，then the matrix is non－negative definite．

Matrix variate Gamma distribution

An $n \times n$ random symmetric positive definite matrix \mathbf{W} is said to have a matrix variate gamma distribution with parameters a and $\Psi \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{align*}
p_{\mathbf{W}}(\mathbf{W})= & \left\{\Gamma_{n}(a)|\Psi|^{-a}\right\}^{-1} \\
& |\mathbf{W}|^{a-\frac{1}{2}(n+1)} \operatorname{etr}\{-\mathbf{\Psi} \mathbf{W}\} ; \quad \Re(a)>(n-1) / 2 \tag{3}
\end{align*}
$$

This distribution is usually denoted as $\mathbf{W} \sim G_{n}(a, \boldsymbol{\Psi})$. Here the multivariate gamma function:

$$
\begin{equation*}
\Gamma_{n}(a)=\pi^{\frac{1}{4} n(n-1)} \prod_{k=1}^{n} \Gamma\left[a-\frac{1}{2}(k-1)\right] ; \text { for } \Re(a)>(n-1) / 2 \tag{4}
\end{equation*}
$$

Distribution of the system matrices

The distribution of the random system matrices M, C and K should be such that they are

- symmetric
- positive-definite, and
\square the moments (at least first two) of the inverse of the dynamic stiffness matrix $\mathbf{D}(\omega)=-\omega^{2} \mathbf{M}+i \omega \mathbf{C}+\mathbf{K}$ should exist $\forall \omega$

Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by $\overline{\mathbf{M}}, \overline{\mathbf{C}}$ and $\overline{\mathbf{K}}$ respectively. Using the notation G (which stands for any one the system matrices) the matrix variate density function of $\mathbf{G} \in \mathbb{R}_{n}^{+}$is given by $p_{\mathbf{G}}(\mathbf{G}): \mathbb{R}_{n}^{+} \rightarrow \mathbb{R}$. We have the following constrains to obtain $p_{\mathbf{G}}(\mathbf{G})$:

$$
\begin{equation*}
\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}=1 \quad \text { (normalization) } \tag{5}
\end{equation*}
$$

and $\int_{\mathbf{G}>0} \mathbf{G}^{p_{\mathbf{G}}}(\mathbf{G}) d \mathbf{G}=\overline{\mathbf{G}} \quad$ (the mean matrix)

MEnt Distribution-1

The Lagrangian to be maximised:

$$
\begin{gather*}
\mathcal{L}\left(p_{\mathbf{G}}\right)=-\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) \ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\} d \mathbf{G}+ \\
\left(\lambda_{0}-1\right)\left(\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-1\right) \\
+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1}\left[\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-\overline{\mathbf{G}}\right]\right) \tag{7}
\end{gather*}
$$

$\lambda_{0} \in \mathbb{R}$ and $\Lambda_{1} \in \mathbb{R}_{n, n}$ are the unknown Lagrange multiplies to be determined.

MEnt Distribution-2

Using the calculus of variation

$$
\begin{array}{ll}
& \frac{\partial \mathcal{L}\left(p_{\mathbf{G}}\right)}{\partial p_{\mathbf{G}}}=0 \\
\text { or } & \left(\lambda_{0}-1\right)+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1} \mathbf{G}\right)-\left(1+\ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\}\right)=0 \\
\text { or } & -\ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\}=\lambda_{0}+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1} \mathbf{G}\right) \\
\text { or } & p_{\mathbf{G}}(\mathbf{G})=\exp \left\{-\lambda_{0}\right\} \operatorname{etr}\left\{-\boldsymbol{\Lambda}_{1} \mathbf{G}\right\} \tag{8}
\end{array}
$$

MEnt Distribution - 3

Substituting into the constraint equations results

$$
\begin{equation*}
p_{\mathbf{G}}(\mathbf{G})=r^{n r}\left\{\Gamma_{n}(r)\right\}^{-1}|\overline{\mathbf{G}}|^{-r} \operatorname{etr}\left\{-r \overline{\mathbf{G}}^{-1} \mathbf{G}\right\} \tag{9}
\end{equation*}
$$

where $r=\frac{1}{2}(n+1)$. Comparing, it can be observed that G has the Wishart distribution with parameters $p=n+1$ and $\boldsymbol{\Sigma}=\overline{\mathbf{G}} /(n+1)$.
Theorem 1. If only the mean of a system matrix
$\mathbf{G} \equiv\{\mathbf{M}, \mathbf{C}, \mathbf{K}\}$ is available, say $\overline{\mathbf{G}}$, then the matrix has a Wishart distribution with parameters $(n+1)$ and $\overline{\mathbf{G}} /(n+1)$, that is $\mathbf{G} \sim W_{n}(n+1, \overline{\mathbf{G}} /(n+1))$.

Further constraints

- Suppose the inverse moments (say up to order ν) of the system matrix exist. This implies that $\mathrm{E}\left[\left\|\mathrm{G}^{-1}\right\|_{\mathrm{F}}^{\nu}\right]$ should be finite. Here the Frobenius norm of matrix \mathbf{A} is given by

$$
\|\mathbf{A}\|_{\mathrm{F}}=\left(\operatorname{Trace}\left(\mathbf{A} \mathbf{A}^{T}\right)\right)^{1 / 2}
$$

- Taking the logarithm for convenience, the condition for the existence of the inverse moments can be expresses by

$$
\mathrm{E}\left[\ln |\mathbf{G}|^{-\nu}\right]<\infty
$$

MEnt Distribution - Again!

The new Lagrangian becomes:

$$
\begin{align*}
& \mathcal{L}\left(p_{\mathbf{G}}\right)=-\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) \ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\} d \mathbf{G}+ \\
& \left(\lambda_{0}-1\right)\left(\int_{\mathbf{G}_{>0}} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-1\right)-\nu \int_{\mathbf{G}>0} \ln |\mathbf{G}| p_{\mathbf{G}} d \mathbf{G} \\
& \quad+\text { Trace }\left(\boldsymbol{\Lambda}_{1}\left[\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-\overline{\mathbf{G}}\right]\right) \tag{10}
\end{align*}
$$

Note: ν cannot be obtained uniquely!

MEnt Distribution - 2A

Using the calculus of variation

$$
\begin{aligned}
& \quad \frac{\partial \mathcal{L}\left(p_{\mathbf{G}}\right)}{\partial p_{\mathbf{G}}}=0 \\
& \text { or }-\ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\}=\lambda_{0}+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1} \mathbf{G}\right)-\ln |\mathbf{G}|^{\nu} \\
& \operatorname{or}_{\mathbf{G}}(\mathbf{G})=\exp \left\{-\lambda_{0}\right\}|\mathbf{G}|^{\nu} \operatorname{etr}\left\{-\boldsymbol{\Lambda}_{1} \mathbf{G}\right\}
\end{aligned}
$$

We use the matrix variate Laplace transform:

$$
\int_{\boldsymbol{\Lambda}>0} \operatorname{etr}\{-\boldsymbol{\Lambda} \mathbf{Z}\}|\boldsymbol{\Lambda}|^{a-(p+1) / 2} d \boldsymbol{\Lambda}=\Gamma_{p}(a)|\mathbf{Z}|^{-a}
$$

MEnt Distribution - 3A

Substituting into the constraint equations we have:
Theorem 2. If ν-th order inverse moment of a system matrix \mathbf{G} exists and only the mean is available, say $\overline{\mathbf{G}}$, then the matrix has a Wishart distribution with parameters $(2 \nu+n+1)$ and $\overline{\mathbf{G}} /(2 \nu+n+1)$, that is
$\mathbf{G} \sim W_{n}(2 \nu+n+1, \overline{\mathbf{G}} /(2 \nu+n+1))$.
Note that $\nu=0$ gives us the 'maximal uncertain distribution' derived before.

Properties of the Distribution

- Covariance tensor of G :

$$
\begin{equation*}
\operatorname{cov}\left(G_{i j}, G_{k l}\right)=\frac{1}{2 \nu+n+1}\left(\bar{G}_{i k} \bar{G}_{j l}+\bar{G}_{i l} \bar{G}_{j k}\right) \tag{11}
\end{equation*}
$$

- Normalized standard deviation matrix
$\mathrm{E}\left[(\mathbf{G}-\overline{\mathbf{G}})^{2}\right] \overline{\mathbf{G}}^{-2}$:

$$
\begin{equation*}
\sigma_{\mathbf{G}}^{2}=\frac{1}{2 \nu+n+1}\left[\mathbf{I}_{n}+\overline{\mathbf{G}}^{-1} \operatorname{Trace}(\overline{\mathbf{G}})\right] \tag{12}
\end{equation*}
$$

$\square \nu \uparrow \Rightarrow \sigma_{\mathbf{G}}^{2} \downarrow$.

Distribution of the inverse - 1

- If \mathbf{G} is $W_{n}(p, \boldsymbol{\Sigma})$ then $\mathbf{V}=\mathbf{G}^{-1}$ has the inverted Wishart distribution:

$$
P_{\mathbf{V}}(\mathbf{V})=\frac{2^{m-n-1} n / 2|\Psi|^{m-n-1} / 2}{\Gamma_{n}[(m-n-1) / 2]|\mathbf{V}|^{m / 2}} \operatorname{etr}\left\{-\frac{1}{2} \mathbf{V}^{-1} \mathbf{\Psi}\right\}
$$

where $m=n+p+1$ and $\Psi=\boldsymbol{\Sigma}^{-1}$ (recall that $p=2 \nu+n+1$ and $\boldsymbol{\Sigma}=\overline{\mathbf{G}} / p)$

Distribution of the inverse - 2

- Mean: $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{p \overline{\mathbf{G}}^{-1}}{p-n-1}$
- Normalized standard deviation matrix

$$
\mathrm{E}\left[\left(\mathbf{G}^{-1}-\overline{\mathbf{G}}^{-1}\right)^{2}\right] \overline{\mathbf{G}}^{2}:
$$

$$
\begin{equation*}
\sigma_{\mathbf{G}^{-1}}^{2}=\frac{(p-n-1)}{(p-n)(p-n-3)}\left[\mathbf{I}_{n}+\overline{\mathbf{G}} \text { Trace }\left(\overline{\mathbf{G}}^{-1}\right)\right] \tag{13}
\end{equation*}
$$

Distribution of the inverse - 3

$■$ Suppose $n=101 \& \nu=2$. So $p=2 \nu+n+1=106$ and $p-n-1=4$. Therefore, $\mathrm{E}[\mathbf{G}]=\overline{\mathbf{G}}$ and $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{106}{4} \overline{\mathbf{G}}^{-1}=26.5 \overline{\mathbf{G}}^{-1}$!!!!!!!!!!
$■$ Of course there is no reason why $E\left[\mathbf{G}^{-1}\right]=\overline{\mathbf{G}}^{-1}$. But from a practical point of view do we expect them to be so far apart?

■ One way to reduce the gap is to increase p. But this implies reduction of variance.

Some questions

- What do we really need: $\mathrm{E}[\mathbf{G}]=\overline{\mathrm{G}}$ or $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\overline{\mathbf{G}}^{-1}$ or any other powers.
$■ \overline{\mathrm{G}}$ is just one 'observation' - not an ensemble mean.
- What happens if we know the covariance tensor of G (e.g., using Stochastic Finite element Method)?
■ What if the zeros in G are not preserved?

Optimal Wishart Distribution-1

■ Suppose $\mathbf{G} \sim W_{n}(m, \boldsymbol{\Sigma})$ and $\mathbf{A} \in \mathbb{R}_{n}^{+}$is the deterministic value of a system matrix.

- My argument: The distribution of G must be such that $\mathrm{E}[\mathbf{G}]$ and $\mathrm{E}\left[\mathrm{G}^{-1}\right]$ should be closest to \mathbf{A} and A^{-1} respectively.
- Therefore, define (and subsequently minimize) 'normalized errors':
$\varepsilon_{1}=[\mathbf{A}-\mathrm{E}[\mathbf{G}]] \mathbf{A}^{-1} \in \mathbb{R}_{n}$
$\varepsilon_{2}=\left[\mathbf{A}^{-1}-\mathrm{E}\left[\mathbf{G}^{-1}\right]\right] \mathbf{A} \in \mathbb{R}_{n}$

Optimal Wishart Distribution - 2

- Obtain m and Σ such that
$\chi^{2}=\left\|\varepsilon_{1}\right\|_{\mathrm{F}}^{2}+\left\|\varepsilon_{2}\right\|_{\mathrm{F}}^{2}=\operatorname{Trace}\left(\varepsilon_{1} \varepsilon_{1}^{T}\right)+\operatorname{Trace}\left(\varepsilon_{2} \varepsilon_{2}^{T}\right)$ is minimized.

■ Suppose $m=n+1+\theta$ and $\boldsymbol{\Sigma}=\mathbf{A X}$. Using these we have $\varepsilon_{1}=\left[\mathbf{I}_{n}-(n+1+\theta) \mathbf{X}\right]$ and $\varepsilon_{2}=\left[\mathbf{I}_{n}-\{\theta \mathbf{X}\}^{-1}\right]$

- Since $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T}$ and $\mathbf{A}=\mathbf{A}^{T}$, we have $\mathbf{A X}=\mathbf{X}^{T} \mathbf{A}$ or $\mathbf{X}^{T}=\mathbf{A X A}^{-1}$
\square Set $\frac{\partial \chi^{2}}{\partial \theta}=0$ and $\frac{\partial \chi^{2}}{\partial \mathbf{X}}=\mathbf{O}$. Total $n^{2}+1$ unknowns and $n^{2}+1$ equations - can be solved.

Optimal Wishart Distribution - 3

We obtain

$$
\begin{align*}
& \theta^{4} \text { Trace (} \mathbf{X A X A} \mathbf{A}^{-1} \text {) } \\
& +\theta^{3}\left\{(n+1) \operatorname{Trace}\left(\mathbf{X A X A}^{-1}\right)-\operatorname{Trace}(\mathbf{X})\right\} \\
& +\theta \operatorname{Trace}\left(\mathbf{X}^{-1}\right)-\operatorname{Trace}\left(\mathbf{X}^{-1} \mathbf{A} \mathbf{X}^{-1} \mathbf{A}^{-1}\right)=0 \tag{14}\\
& \mathbf{A X A}^{-1}+\mathbf{A}^{-1} \mathbf{X} \mathbf{A}=\frac{2 \mathbf{I}_{n}}{n+1+\theta}-\boldsymbol{\xi}(\theta, \mathbf{X}) \tag{15}\\
& \boldsymbol{\xi}(\theta, \mathbf{X})=(n+1+\theta)^{-2}\left[2 \theta^{-1} \mathbf{X}^{-2}\right. \\
& \left.+\theta^{-2} \mathbf{X}^{-1}\left[\mathbf{A X}^{-1} \mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{X}^{-1} \mathbf{A}\right] \mathbf{X}^{-1}\right] \tag{16}
\end{align*}
$$

Optimal Wishart Distribution－ 4

Use iteration to solve the coupled nonlinear scalar－matrix equations

1．Start with $\theta=2, \mathbf{X}=\mathbf{I}_{n} /(n+1+\theta)$
2．Solve θ from the fourth order equation（14）
3．Obtain $\mathbf{X}_{\text {new }}$ from（by taking vec (\bullet) of Eq．（15））

$$
\left[\mathbf{A}^{-1} \otimes \mathbf{A}+\mathbf{A} \otimes \mathbf{A}^{-1}\right] \operatorname{vec}\left(\mathbf{X}_{\text {new }}\right)=\frac{2 \mathbf{I}_{n}}{n+1+\theta} \operatorname{vec}\left(\mathbf{I}_{n}\right)-\operatorname{vec}(\boldsymbol{\xi}(\theta, \mathbf{X}))
$$

4．If $\left\|\mathbf{X}_{\text {new }}-\mathbf{X}\right\|_{\mathrm{F}}<$＇small number＇then stop．Otherwise， set $\mathbf{X}=\mathbf{X}_{\text {new }}$ and go back to step 2.

Response statistics - 1

- The equation of motion is $\mathbf{D x}=\mathbf{p}, \mathrm{D}$ is in general $n \times n$ complex random matrix.
- The response is given by

$$
\mathbf{x}=\mathbf{D}^{-1} \mathbf{p}
$$

- Consider static problems so that all matrices/vectors are real.

Response statistics - 2

- We may want statistics of few elements or some linear combinations of the elements in x . So the quantify of interest is

$$
\begin{equation*}
\mathbf{y}=\mathbf{R x}=\mathbf{R D}^{-1} \mathbf{p} \tag{17}
\end{equation*}
$$

Here \mathbf{R} is in general $r \times n$ rectangular matrix. For the special case when $\mathbf{R}=\mathbf{I}_{n}$, we have $\mathrm{y}=\mathrm{x}$.

- Eq. (17) arises in SFEM. There are many papers on its solution. Mainly perturbation methods are used.

Response statistics - 3

Suppose $\mathrm{D}=\mathrm{D}_{0}+\Delta \mathrm{D}$, where D_{0} is the deterministic part and $\Delta \mathrm{D}$ is the (small) random part. It can be shown that

$$
\mathbf{D}^{-1}=\mathbf{D}_{0}-\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\cdots
$$

From, this

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}_{0}-\mathbf{R D}_{0}^{-1} \Delta \mathbf{D} \mathbf{x}_{0}+\mathbf{R D}_{0}^{-1} \Delta \mathbf{D D}_{0}^{-1} \Delta \mathbf{D x}_{0}+\cdots \tag{18}
\end{equation*}
$$

where $\mathbf{x}_{0}=\mathbf{D}_{0}^{-1} \mathbf{p}$ and $\mathbf{y}_{0}=\mathbf{R} \mathbf{x}_{0}$.

Response statistics - 4

The statistics of y can be calculated from Eq. (18). However,
\square The calculation is difficult if $\Delta \mathrm{D}$ is non-Gaussian.

- Even if $\Delta \mathrm{D}$ is Gaussian, inclusion of higher-order terms results very messy calculations (I have not seen any published work for more than second-order)
- For these reasons, the response statistics will be inaccurate for large randomness.

Response statistics - 5

I will propose an exact method using RMM.
Suppose D $\sim W_{n}(m, \boldsymbol{\Sigma})$.

$$
\mathrm{E}[\mathbf{y}]=\mathrm{E}\left[\mathbf{R D}^{-1} \mathbf{p}\right]=\mathbf{R E}\left[\mathbf{D}^{-1}\right] \mathbf{p}=\mathbf{R} \mathbf{\Sigma}^{-1} \mathbf{p} / \theta
$$

The complete covariance matrix of \mathbf{y}

$$
\mathrm{E}\left[(\mathbf{y}-\mathrm{E}[\mathbf{y}])(\mathbf{y}-\mathrm{E}[\mathbf{y}])^{T}\right]
$$

$$
=\mathbf{R} \mathrm{E}\left[\mathbf{D}^{-1} \mathbf{p} \mathbf{p}^{T} \mathbf{D}^{-1}\right] \mathbf{R}^{T}-\mathrm{E}[\mathbf{y}](\mathrm{E}[\mathbf{y}])^{T}
$$

$$
=\frac{\operatorname{Trace}\left(\boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T}\right) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta(\theta+1)(\theta-2)}+\frac{(\theta+2) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta^{2}(\theta+1)(\theta-2)}
$$

Example: A cantilever Plate

Cantilever plate with a slot: $\mu=0.3, \rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, t=5 \mathrm{~mm}$,

Plate Mode 4

Mode 4, freq. $=9.2119 \mathrm{~Hz}$

Plate Mode 5

Mode 5, freq. $=11.6696 \mathrm{~Hz}$

Fifth Mode shape

Deterministic FRF

Frequency Spacing

Natural frequency spacing distribution (without slot)

Frequency Spacing

Random FRF - 1

Driviing point FRF using optimal Wishart distribution

Random FRF - 2

A cross FRF using optimal Wishart distribution

Structure of the Matrices

Nonzero elements of the system matrices

Summary \& conclusions

- Wishart matrices can used as the distribution for the system matrices in structural dynamics.
- The parameters of the distribution can be obtained by solving an optimisation problem

Next steps

■ Numerical works (validation against??)

- Distribution of the dynamic stiffness matrix (complex Wishart matrix?)
■ Inversion of the dynamic stiffness matrix (FRFs)
- Distribution of $\mathbf{Y}(\omega)=\left[\mathbf{R D}(\omega)^{-1} \mathbf{P}\right]$ where $\mathbf{P} \in \mathbb{C}_{n, r}$ and $\mathbf{R} \in \mathbb{R}_{p, n}$
- Eigenvalues, eigenvector statistics and calculation of dynamic response.
- Cumulative distribution function of the response

Open problems \& discussions

- Structure preserving random matrices (low-mid frequency?)
■ Non-central Wishart matrices (preservation of covariance structure - parametric uncertainty models?)
■ Solution of SFEM using RMT (connection with polynomial chaos expansions)?
- Eigenvalue problem, Wigner surmise
- Analytical expression of the pdf of dynamic response
- Energy statistics - SEA

