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Overview of Predictive Methods
in Engineering

There are four key steps:

Uncertainty Quantification (UQ)

Uncertainty Propagation (UP)

Model Verification & Validation (V & V)

Prediction

Tools are available for each of these steps (although
the majority of them are on UP). In this talk we will
focus mainly on UQ in linear dynamical systems.
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Structural dynamics

The equation of motion:

Mẍ(t) + Cẋ(t) + Kx(t) = p(t)

Due to the presence of uncertainty M, C and K
become random matrices.

The main objectives in the ‘forward problem’
are:

to quantify uncertainties in the system
matrices
to predict the variability in the response
vector x
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Current Methods

Two different approaches are currently available

Low frequency : Stochastic Finite Element
Method (SFEM) - assumes that stochastic
fields describing parametric uncertainties are
known in details

High frequency : Statistical Energy Analysis
(SEA) - do not consider parametric
uncertainties in details
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Random Matrix Method (RMM)

The objective : To have an unified method
which will work across the frequency range.

The methodology :

Derive the matrix variate probability density
functions of M, C and K

Propagate the uncertainty (using Monte
Carlo simulation or analytical methods) to
obtain the response statistics (or pdf)
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Outline of the presentation

In what follows next, I will discuss:

Introduction to Matrix variate distributions

Maximum entropy distribution

Optimal Wishart distribution

Some examples

Open problems & discussions
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(1)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1

2
np Γn

(

1

2
p

)

|Σ|
1

2
p

}

−1

|S|
1

2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(2)

This distribution is usually denoted as S ∼ Wn(p,Σ).
Note: If p = n + 1, then the matrix is non-negative definite.
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Matrix variate Gamma
distribution

A n× n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a

and Ψ ∈ R
+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1
|W|a−

1

2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

(3)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here
the multivariate gamma function:

Γn (a) = π
1

4
n(n−1)

n
∏

k=1

Γ

[

a −
1

2
(k − 1)

]

; forℜ(a) > (n−1)/2 (4)
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Distribution of the system
matrices

The distribution of the random system matrices M,
C and K should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of
the dynamic stiffness matrix
D(ω) = −ω2M + iωC + K should exist ∀ω
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Distribution of the system
matrices

The exact application of the last constraint
requires the derivation of the joint probability
density function of M, C and K, which is quite
difficult to obtain.

We consider a simpler problem where it is
required that the inverse moments of each of
the system matrices M, C and K must exist.

Provided the system is damped, this will
guarantee the existence of the moments of the
frequency response function matrix.
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are
given by M, C and K respectively. Using the
notation G (which stands for any one the system
matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the

following constrains to obtain pG (G):
∫

G>0

pG (G) dG = 1 (normalization) (5)

and
∫

G>0

G pG (G) dG = G (the mean matrix)

(6)
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Further constraints

Suppose the inverse moments (say up to order
ν) of the system matrix exist. This implies that
E

[∥

∥G−1
∥

∥

F

ν]
should be finite. Here the

Frobenius norm of matrix A is given by

‖A‖F =
(

Trace
(

AAT
))1/2

.

Taking the logarithm for convenience, the
condition for the existence of the inverse
moments can be expresses by

E
[

ln |G|−ν] < ∞
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MEnt Distribution - 1

The Lagrangian becomes:

L
(

pG
)

= −

∫

G>0

pG (G) ln
{

pG (G)
}

dG−

(λ0 − 1)

(
∫

G>0

pG (G) dG − 1

)

−ν

∫

G>0

ln |G| pG dG

+ Trace

(

Λ1

[
∫

G>0

G pG (G) dG − G

])

(7)

Note: ν cannot be obtained uniquely!
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MEnt Distribution - 2

Using the calculus of variation

∂L
(

pG
)

∂pG
= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G) − ln |G|ν

or pG (G) = exp {−λ0} |G|ν etr {−Λ1G}

Random Matrix Method – p. 16/63



LANL, August 1, 2006

MEnt Distribution - 3

Substituting pG (G) into the constraint equations it
can be shown that

pG (G) =
rnr

∣

∣G
∣

∣

−r

Γn(r)
|G|ν etr

{

−rG
−1

G
}

(8)

where r = ν + (n + 1)/2.
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MEnt Distribution - 4

Comparing it with the Wishart distribution we have:
Theorem 1. If ν-th order inverse-moment of a
system matrix G ≡ {M,C,K} exists and only the

mean of G is available, say G, then the
maximum-entropy pdf of G follows the Wishart
distribution with parameters p = (2ν + n + 1) and

Σ = G/(2ν + n + 1), that is

G ∼ Wn

(

2ν + n + 1,G/(2ν + n + 1)
)

.
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Response statistics - 1

The equation of motion is Dx = p, D is in
general n × n complex random matrix.

The response is given by

x = D−1p

Consider static problems so that all
matrices/vectors are real.
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Response statistics - 2

We may want statistics of few elements or some
linear combinations of the elements in x. So the
quantify of interest is

y = Rx = RD−1p (9)

Here R is in general r × n rectangular matrix.
For the special case when R = In, we have
y = x.

Eq. (10) arises in SFEM. There are many
papers on its solution. Mainly perturbation
methods are used.
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Response statistics - 3

Suppose D = D0 + ∆D, where D0 is the
deterministic part and ∆D is the (small) random
part. It can be shown that

D−1 = D0−D−1
0 ∆DD−1

0 +D−1
0 ∆DD−1

0 ∆DD−1
0 + · · ·

From, this

y = y0 − RD−1
0 ∆Dx0 + RD−1

0 ∆DD−1
0 ∆Dx0 + · · ·

(10)

where x0 = D−1
0 p and y0 = Rx0.

Random Matrix Method – p. 21/63



LANL, August 1, 2006

Response statistics - 4

The statistics of y can be calculated from Eq. (11).
However,

The calculation is difficult if ∆D is
non-Gaussian.

Even if ∆D is Gaussian, inclusion of
higher-order terms results very messy
calculations (I have not seen any published
work for more than second-order)

For these reasons, the response statistics will
be inaccurate for large randomness.
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Response statistics - 5

Response moments can be obtained exactly using
RMT. Suppose D ∼ Wn (m,Σ).

E [y] = E
[

RD−1p
]

= RE
[

D−1
]

p = RΣ−1p/θ (11)

The complete covariance matrix of y

E
[

(y − E [y])(y − E [y])T
]

= R E
[

D−1ppTD−1
]

RT − E [y] (E [y])T

=
Trace

(

Σ−1ppT
)

RΣ−1RT

θ(θ + 1)(θ − 2)
+

(θ + 2)RΣ−1ppTΣ−1RT

θ2(θ + 1)(θ − 2)
(12)
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Simulation Algorithm: Dynamical
Systems

Obtain θ =
1

δ2

G







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







− (n + 1)

If θ < 4, then select θ = 4.

Calculate α =
√

θ(n + 1 + θ)

Generate samples of G ∼ Wn

(

n + 1 + θ,G/α
)

(Matlabr command wishrnd can be used to generate
the samples)

Repeat the above steps for all system matrices and solve
for every samples
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Example 1: A cantilever Plate
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A Cantilever plate with a slot: Ē = 200 × 109N/m2, µ̄ = 0.3, ρ̄ = 7860kg/m3, t̄ = 7.5mm,

Lx = 1.2m, Ly = 0.8m.
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Plate Mode 4

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8
−0.6

−0.4

−0.2

0

0.2

0.4

X direction (length)

Mode 4, freq. = 48.745 Hz

Y direction (width)

Fourth Mode shape

Random Matrix Method – p. 26/63



LANL, August 1, 2006

Plate Mode 5
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Deterministic FRF
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Stochastic Properties

The Young’s modulus, Poissons ratio, mass density and
thickness are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (13)

µ(x) = µ̄ (1 + ǫµf2(x)) (14)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (15)

and t(x) = t̄ (1 + ǫtf4(x)) (16)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10

and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Comparison of cross-FRF
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 702,

δM = 0.1166 and δK = 0.2622.
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Comparison of cross-FRF: Low
Freq
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Comparison of cross-FRF: Mid
Freq
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Comparison of cross-FRF: High
Freq
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Comparison of driving-point-FRF
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Comparison of
driving-point-FRF: Low Freq
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of
driving-point-FRF: High Freq
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Comparison of cross-FRF
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Comparison of cross-FRF: Low
Freq
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Comparison of cross-FRF: Mid
Freq
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Comparison of cross-FRF: High
Freq
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Comparison of driving-point-FRF
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Comparison of
driving-point-FRF: Low Freq
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of
driving-point-FRF: High Freq
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Uncertainty in joints

W1

W2

K
nx n

Wishart matrices corresponding to joint DOFs.
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Random matrices for joints

Suppose the mean value of a system matrix (can
be mass, stiffness or damping) corresponding to the
jth joint is Wj ∈ R

nj×nj . The corresponding random
matrix Wj is

non-negative definite, and

symmetric

Note that Wj need not be invertible. We also
assumed that all joint matrices are statistically
independent.
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Random Matrices for Joints

Under these assumptions, using the Maximum
Entropy approach it can be shown that

pWj
(Wj) =

rj
njrj

Γnj
(rj)

∣

∣Wj

∣

∣

−rj
etr

{

−rW
−1
j Wj

}

(17)

where rj = 1
2(nj + 1). This implies that the matrix

Wj has a Wishart distribution with parameters
(nj + 1) and Wj/(nj + 1).
Conjecture 1. The nj × nj block-random matrix

corresponding to j-th joint is a Wishart matrix with

parameters (nj + 1) and Wj/(nj + 1).
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Experimental Study - 1

A fixed-fixed beam: Length: 1200 mm, Width: 40.06 mm, Thickness: 2.05 mm,

Density: 7800 kg/m3, Young’s Modulus: 200 GPa

Random Matrix Method – p. 49/63



LANL, August 1, 2006

Experimental Study - 1

12 randomly placed masses (magnets), each weighting 2 g (total variation: 3.2%): mass

locations are generated using uniform distribution
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FRF Variability: complete
spectrum

Variability in the amplitude of the driving-point-FRF.
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FRF Variability: Low Freq
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FRF Variability: Mid Freq
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FRF Variability: High Freq
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Other applications of RMT

Mid-frequency vibration problem

Modelling random unmodelled dynamics

Damping model uncertainty

Flow through porous media

Localized uncertainty modeling

Stochastic domain decomposition method
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Experimental Study: cantilever
plate

A cantilever plate: Length: 998 mm, Width: 530 mm, Thickness: 3 mm,

Density: 7860 kg/m3, Young’s Modulus: 200 GPa
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Unmodelled dynamics

10 randomly placed oscillator; oscillatory mass: 121.4 g, fixed mass: 2 g, spring stiffness vary

from 10 - 12 KN/m
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FRF Variability: Low Freq
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FRF Variability: Mid Freq
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FRF Variability: High Freq
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Summary & conclusions

Wishart matrices may be used as the model
for the random system matrices in structural
dynamics.

Only the mean matrix and normalized standard
deviation is required to model the system.

Numerical results show that SFEM and RMT
results match well in the mid and high
frequency region.

Wishart matrix model may be used to model
uncertainties in joints.
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Open issues & discussions - 1

Are we taking model uncertainties (‘unknown
unknowns’) into account? How can we verify it?

Possibility: Generate ensembles of ‘models’ by
student projects and see if RMT can predict the
variability.

Can RMT be extended to non-linear systems?
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Open issues & discussions - 2

How to incorporate a given covariance tensor of
G (e.g., obtained using the SFEM)?

Possibility: Use non-central Wishart distribution.

What is the consequence of the zeros in G are
not being preserved?

Possibility: Use SVD to preserve the ‘structure’ of the
random matrix realizations and check the results.

Random Matrix Method – p. 63/63
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