# Uncertainty Quantification in Structural Dynamics: A Random Matrix Approach 

Sondipon Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk
URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

## Overview of Predictive Methods in Engineering

There are four key steps:

- Uncertainty Quantification (UQ)

■ Uncertainty Propagation (UP)

- Model Verification \& Validation (V \& V)
- Prediction

Tools are available for each of these steps (although the majority of them are on UP). In this talk we will focus mainly on UQ in linear dynamical systems.

## Structural dynamics

- The equation of motion:

$$
\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{C} \dot{\mathbf{x}}(t)+\mathbf{K} \mathbf{x}(t)=\mathbf{p}(t)
$$

- Due to the presence of uncertainty M, C and K become random matrices.
- The main objectives in the 'forward problem' are:
- to quantify uncertainties in the system matrices
- to predict the variability in the response vector x


## Current Methods

Two different approaches are currently available

- Low frequency: Stochastic Finite Element Method (SFEM) - assumes that stochastic fields describing parametric uncertainties are known in details
■ High frequency: Statistical Energy Analysis (SEA) - do not consider parametric uncertainties in details


## Random Matrix Method (RMM)

- The objective: To have an unified method which will work across the frequency range.
- The methodology:
- Derive the matrix variate probability density functions of M, C and K
- Propagate the uncertainty (using Monte Carlo simulation or analytical methods) to obtain the response statistics (or pdf)


## Outline of the presentation

In what follows next, I will discuss:

- Introduction to Matrix variate distributions
- Maximum entropy distribution
- Optimal Wishart distribution
- Some examples
- Open problems \& discussions


## Matrix variate distributions

- The probability density function of a random matrix can be defined in a manner similar to that of a random variable.
- If $\mathbf{A}$ is an $n \times m$ real random matrix, the matrix variate probability density function of $\mathbf{A} \in \mathbb{R}_{n, m}$, denoted as $p_{\mathbf{A}}(\mathbf{A})$, is a mapping from the space of $n \times m$ real matrices to the real line, i.e., $p_{\mathbf{A}}(\mathbf{A}): \mathbb{R}_{n, m} \rightarrow \mathbb{R}$.


## Gaussian random matrix

The random matrix $\mathbf{X} \in \mathbb{R}_{n, p}$ is said to have a matrix variate Gaussian distribution with mean matrix $\mathrm{M} \in \mathbb{R}_{n, p}$ and covariance matrix $\boldsymbol{\Sigma} \otimes \Psi$, where $\Sigma \in \mathbb{R}_{n}^{+}$and $\Psi \in \mathbb{R}_{p}^{+}$provided the pdf of X is given by

$$
\begin{align*}
& p_{\mathbf{X}}(\mathbf{X})=(2 \pi)^{-n p / 2}|\boldsymbol{\Sigma}|^{-p / 2}|\boldsymbol{\Psi}|^{-n / 2} \\
& \qquad \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\mathbf{M}) \boldsymbol{\Psi}^{-1}(\mathbf{X}-\mathbf{M})^{T}\right\} \tag{1}
\end{align*}
$$

This distribution is usually denoted as $\mathbf{X} \sim N_{n, p}(\mathbf{M}, \boldsymbol{\Sigma} \otimes \Psi)$.

## Wishart matrix

A $n \times n$ symmetric positive definite random matrix $\mathbf{S}$ is said to have a Wishart distribution with parameters $p \geq n$ and $\Sigma \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{S}}(\mathbf{S})=\left\{2^{\frac{1}{2} n p} \Gamma_{n}\left(\frac{1}{2} p\right)|\boldsymbol{\Sigma}|^{\frac{1}{2} p}\right\}^{-1}|\mathbf{S}|^{\frac{1}{2}(p-n-1)} \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1} \mathbf{S}\right\} \tag{2}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{S} \sim W_{n}(p, \boldsymbol{\Sigma})$.
Note: If $p=n+1$, then the matrix is non-negative definite.

## Matrix variate Gamma distribution

A $n \times n$ symmetric positive definite matrix random $\mathbf{W}$ is said to have a matrix variate gamma distribution with parameters $a$ and $\Psi \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{W}}(\mathbf{W})=\left\{\Gamma_{n}(a)|\boldsymbol{\Psi}|^{-a}\right\}^{-1}|\mathbf{W}|^{a-\frac{1}{2}(n+1)} \operatorname{etr}\{-\boldsymbol{\Psi} \mathbf{W}\} ; \quad \Re(a)>\frac{1}{2}(n- \tag{3}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{W} \sim G_{n}(a, \Psi)$. Here the multivariate gamma function:

$$
\begin{equation*}
\Gamma_{n}(a)=\pi^{\frac{1}{4} n(n-1)} \prod_{k=1}^{n} \Gamma\left[a-\frac{1}{2}(k-1)\right] ; \text { for } \Re(a)>(n-1) / 2 \tag{4}
\end{equation*}
$$

## Distribution of the system matrices

The distribution of the random system matrices M, C and K should be such that they are

- symmetric
- positive-definite, and
$\square$ the moments (at least first two) of the inverse of the dynamic stiffness matrix
$\mathbf{D}(\omega)=-\omega^{2} \mathbf{M}+i \omega \mathbf{C}+\mathbf{K}$ should exist $\forall \omega$


## Distribution of the system matrices

- The exact application of the last constraint requires the derivation of the joint probability density function of $\mathrm{M}, \mathrm{C}$ and K , which is quite difficult to obtain.
- We consider a simpler problem where it is required that the inverse moments of each of the system matrices M, C and K must exist.
- Provided the system is damped, this will guarantee the existence of the moments of the frequency response function matrix.


## Maximum Entropy Distribution

Suppose that the mean values of $\mathbf{M}, \mathbf{C}$ and K are given by $\overline{\mathbf{M}}, \overline{\mathbf{C}}$ and $\overline{\mathbf{K}}$ respectively. Using the notation G (which stands for any one the system matrices) the matrix variate density function of $\mathbf{G} \in \mathbb{R}_{n}^{+}$is given by $p_{\mathbf{G}}(\mathbf{G}): \mathbb{R}_{n}^{+} \rightarrow \mathbb{R}$. We have the following constrains to obtain $p_{\mathbf{G}}(\mathbf{G})$ :

$$
\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}=1 \quad \text { (normalization) }
$$

and $\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}=\overline{\mathbf{G}} \quad$ (the mean matrix)

## Further constraints

- Suppose the inverse moments (say up to order $\nu$ ) of the system matrix exist. This implies that $\mathrm{E}\left[\left\|\mathbf{G}^{-1}\right\|_{\mathrm{F}}{ }^{\nu}\right]$ should be finite. Here the Frobenius norm of matrix $\mathbf{A}$ is given by

$$
\|\mathbf{A}\|_{\mathrm{F}}=\left(\operatorname{Trace}\left(\mathbf{A} \mathbf{A}^{T}\right)\right)^{1 / 2}
$$

- Taking the logarithm for convenience, the condition for the existence of the inverse moments can be expresses by

$$
\mathrm{E}\left[\ln |\mathbf{G}|^{-\nu}\right]<\infty
$$

## MEnt Distribution - 1

The Lagrangian becomes:

$$
\begin{align*}
& \mathcal{L}\left(p_{\mathbf{G}}\right)=-\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) \ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\} d \mathbf{G}- \\
& \left(\lambda_{0}-1\right)\left(\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-1\right)-\nu \int_{\mathbf{G}>0} \ln |\mathbf{G}| p_{\mathbf{G}} d \mathbf{G} \\
& \quad+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1}\left[\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-\overline{\mathbf{G}}\right]\right) \tag{7}
\end{align*}
$$

Note: $\nu$ cannot be obtained uniquely!

## MEnt Distribution - 2

## Using the calculus of variation

$$
\begin{aligned}
& \quad \frac{\partial \mathcal{L}\left(p_{\mathbf{G}}\right)}{\partial p_{\mathbf{G}}}=0 \\
& \text { or }-\ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\}=\lambda_{0}+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1} \mathbf{G}\right)-\ln |\mathbf{G}|^{\nu} \\
& \text { or } p_{\mathbf{G}}(\mathbf{G})=\exp \left\{-\lambda_{0}\right\}|\mathbf{G}|^{\nu} \operatorname{etr}\left\{-\boldsymbol{\Lambda}_{1} \mathbf{G}\right\}
\end{aligned}
$$

## MEnt Distribution - 3

Substituting $p_{\mathbf{G}}(\mathbf{G})$ into the constraint equations it can be shown that

$$
\begin{equation*}
p_{\mathbf{G}}(\mathbf{G})=\frac{r^{n r}|\overline{\mathbf{G}}|^{-r}}{\Gamma_{n}(r)}|\mathbf{G}|^{\nu} \operatorname{etr}\left\{-r \overline{\mathbf{G}}^{-1} \mathbf{G}\right\} \tag{8}
\end{equation*}
$$

where $r=\nu+(n+1) / 2$.

## MEnt Distribution-4

## Comparing it with the Wishart distribution we have:

Theorem 1. If $\nu$-th order inverse-moment of a system matrix $\mathbf{G} \equiv\{\mathbf{M}, \mathbf{C}, \mathbf{K}\}$ exists and only the mean of $\mathbf{G}$ is available, say $\overline{\mathbf{G}}$, then the maximum-entropy pdf of $\mathbf{G}$ follows the Wishart distribution with parameters $p=(2 \nu+n+1)$ and $\boldsymbol{\Sigma}=\overline{\mathbf{G}} /(2 \nu+n+1)$, that is
$\mathbf{G} \sim W_{n}(2 \nu+n+1, \overline{\mathbf{G}} /(2 \nu+n+1))$.

## Response statistics - 1

- The equation of motion is $\mathbf{D x}=\mathrm{p}, \mathrm{D}$ is in general $n \times n$ complex random matrix.
- The response is given by

$$
\mathbf{x}=\mathbf{D}^{-1} \mathbf{p}
$$

- Consider static problems so that all matrices/vectors are real.


## Response statistics - 2

- We may want statistics of few elements or some linear combinations of the elements in x . So the quantify of interest is

$$
\begin{equation*}
\mathbf{y}=\mathbf{R} \mathbf{x}=\mathbf{R D}^{-1} \mathbf{p} \tag{9}
\end{equation*}
$$

Here $\mathbf{R}$ is in general $r \times n$ rectangular matrix. For the special case when $\mathbf{R}=\mathbf{I}_{n}$, we have $\mathrm{y}=\mathrm{x}$.

- Eq. (10) arises in SFEM. There are many papers on its solution. Mainly perturbation methods are used.


## Response statistics - 3

Suppose $\mathrm{D}=\mathrm{D}_{0}+\Delta \mathrm{D}$, where $\mathrm{D}_{0}$ is the deterministic part and $\Delta \mathrm{D}$ is the (small) random part. It can be shown that

$$
\mathbf{D}^{-1}=\mathbf{D}_{0}-\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\cdots
$$

From, this

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}_{0}-\mathbf{R D}_{0}^{-1} \Delta \mathbf{D} \mathbf{x}_{0}+\mathbf{R D}_{0}^{-1} \Delta \mathbf{D D}_{0}^{-1} \Delta \mathbf{D x}_{0}+\cdots \tag{10}
\end{equation*}
$$

where $\mathbf{x}_{0}=\mathbf{D}_{0}^{-1} \mathbf{p}$ and $\mathbf{y}_{0}=\mathbf{R} \mathbf{x}_{0}$.

## Response statistics - 4

The statistics of $y$ can be calculated from Eq. (11). However,

- The calculation is difficult if $\Delta \mathrm{D}$ is non-Gaussian.
- Even if $\Delta \mathrm{D}$ is Gaussian, inclusion of higher-order terms results very messy calculations (I have not seen any published work for more than second-order)
- For these reasons, the response statistics will be inaccurate for large randomness.


## Response statistics - 5

Response moments can be obtained exactly using RMT. Suppose D $\sim W_{n}(m, \boldsymbol{\Sigma})$.

$$
\begin{equation*}
\mathrm{E}[\mathbf{y}]=\mathrm{E}\left[\mathbf{R D}^{-1} \mathbf{p}\right]=\mathbf{R E}\left[\mathbf{D}^{-1}\right] \mathbf{p}=\mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{p} / \theta \tag{11}
\end{equation*}
$$

The complete covariance matrix of $\mathbf{y}$

$$
\begin{align*}
& \mathrm{E}\left[(\mathbf{y}-\mathrm{E}[\mathbf{y}])(\mathbf{y}-\mathrm{E}[\mathbf{y}])^{T}\right] \\
& =\mathbf{R} \mathrm{E}\left[\mathbf{D}^{-1} \mathbf{p} \mathbf{p}^{T} \mathbf{D}^{-1}\right] \mathbf{R}^{T}-\mathrm{E}[\mathbf{y}](\mathrm{E}[\mathbf{y}])^{T} \\
& =\frac{\operatorname{Trace}\left(\boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T}\right) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta(\theta+1)(\theta-2)}+\frac{(\theta+2) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta^{2}(\theta+1)(\theta-2)} \tag{12}
\end{align*}
$$

## Simulation Algorithm: Dynamical Systems

$\square$ Obtain $\theta=\frac{1}{\delta_{\mathbf{G}}^{2}}\left\{1+\frac{\{\operatorname{Trace}(\overline{\mathbf{G}})\}^{2}}{\operatorname{Trace}\left(\overline{\mathbf{G}}^{2}\right)}\right\}-(n+1)$

- If $\theta<4$, then select $\theta=4$.
- Calculate $\alpha=\sqrt{\theta(n+1+\theta)}$

■ Generate samples of $\mathbf{G} \sim W_{n}(n+1+\theta, \overline{\mathbf{G}} / \alpha)$ (MATLAB ${ }^{\circledR}$ command wishrnd can be used to generate the samples)
$\square$ Repeat the above steps for all system matrices and solve for every samples

## Example 1: A cantilever Plate



A Cantilever plate with a slot: $\bar{E}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \bar{\mu}=0.3, \bar{\rho}=7860 \mathrm{~kg} / \mathrm{m}^{3}, \bar{t}=7.5 \mathrm{~mm}$,

$$
L_{x}=1.2 \mathrm{~m}, L_{y}=0.8 \mathrm{~m}
$$

## Plate Mode 4

Mode 4, freq. $=48.745 \mathrm{~Hz}$


Fourth Mode shape

## Plate Mode 5

Mode 5, freq. $=64.3556 \mathrm{~Hz}$


Fifth Mode shape

## Deterministic FRF



## Stochastic Properties

The Young's modulus, Poissons ratio, mass density and thickness are random fields of the form

$$
\begin{align*}
E(\mathbf{x}) & =\bar{E}\left(1+\epsilon_{E} f_{1}(\mathbf{x})\right)  \tag{13}\\
\mu(\mathbf{x}) & =\bar{\mu}\left(1+\epsilon_{\mu} f_{2}(\mathbf{x})\right)  \tag{14}\\
\rho(\mathbf{x}) & =\bar{\rho}\left(1+\epsilon_{\rho} f_{3}(\mathbf{x})\right)  \tag{15}\\
\text { and } \quad t(\mathbf{x}) & =\bar{t}\left(1+\epsilon_{t} f_{4}(\mathbf{x})\right) \tag{16}
\end{align*}
$$

$\square$ The strength parameters: $\epsilon_{E}=0.15, \epsilon_{\mu}=0.15, \epsilon_{\rho}=0.10$ and $\epsilon_{t}=0.15$.
$■$ The random fields $f_{i}(\mathbf{x}), i=1, \cdots, 4$ are delta-correlated homogenous Gaussian random fields.

## Comparison of cross-FRF



Comparison of the mean and standard deviation of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: Low Freq



Comparison of the mean and standard deviation of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: Mid Freq



Comparison of the mean and standard deviation of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: High Freq



Comparison of the mean and standard deviation of the amplitude of the cross-FRF, $n=702$,
$\delta_{M}=0.1166$ and $\delta_{K}=0.2622$

## Comparison of driving-point-FRF



Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

## Comparison of driving-point-FRF: Low Freq



Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

## Comparison of driving-point-FRF: Mid Freq



Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

$$
n=702, \delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of driving-point-FRF: High Freq



Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF,

## Comparison of cross-FRF



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: Low Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: Mid Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of cross-FRF: High Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the cross-FRF, $n=702$,

$$
\delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

## Comparison of driving-point-FRF



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the driving-point-FRF,
$n=702, \delta_{M}=0.1166$ and $\delta_{K}=0.2622$

## Comparison of driving-point-FRF: Low Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the driving-point-FRF,

## Comparison of driving-point-FRF: Mid Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the driving-point-FRF,

## Comparison of driving-point-FRF: High Freq



Comparison of the $5 \%$ and $95 \%$ probability points of the amplitude of the driving-point-FRF,

## Uncertainty in joints



Wishart matrices corresponding to joint DOFs．

## Random matrices for joints

Suppose the mean value of a system matrix (can be mass, stiffness or damping) corresponding to the $j$ th joint is $\overline{\mathbf{W}}_{j} \in \mathbb{R}^{n_{j} \times n_{j}}$. The corresponding random matrix $\mathbf{W}_{j}$ is

- non-negative definite, and
- symmetric

Note that $\mathbf{W}_{j}$ need not be invertible. We also assumed that all joint matrices are statistically independent.

## Random Matrices for Joints

Under these assumptions, using the Maximum Entropy approach it can be shown that

$$
\begin{equation*}
p_{\mathbf{W}_{j}}\left(\mathbf{W}_{j}\right)=\frac{r_{j}^{n_{j} r_{j}}}{\Gamma_{n_{j}}\left(r_{j}\right)}\left|\overline{\mathbf{W}}_{j}\right|^{-r_{j}} \operatorname{etr}\left\{-r \overline{\mathbf{W}}_{j}^{-1} \mathbf{W}_{j}\right\} \tag{17}
\end{equation*}
$$

where $r_{j}=\frac{1}{2}\left(n_{j}+1\right)$. This implies that the matrix $\mathbf{W}_{j}$ has a Wishart distribution with parameters $\left(n_{j}+1\right)$ and $\overline{\mathbf{W}}_{j} /\left(n_{j}+1\right)$.
Conjecture 1. The $n_{j} \times n_{j}$ block-random matrix corresponding to $j$-th joint is a Wishart matrix with parameters $\left(n_{j}+1\right)$ and $\overline{\mathbf{W}}_{j} /\left(n_{j}+1\right)$.

## Experimental Study - 1



A fixed-fixed beam: Length: 1200 mm , Width: 40.06 mm , Thickness: 2.05 mm , Density: 7800 kg/m3, Young's Modulus: 200 GPa

## Experimental Study - 1



12 randomly placed masses (magnets), each weighting 2 g (total variation: $3.2 \%$ ): mass

## FRF Variability: complete spectrum



Variability in the amplitude of the driving-point-FRF.

## FRF Variability: Low Freq



Variability in the amplitude of the driving-point-FRF.

## FRF Variability: Mid Freq



Variability in the amplitude of the driving-point-FRF.

## FRF Variability: High Freq



Variability in the amplitude of the driving-point-FRF.

## Other applications of RMT

■ Mid-frequency vibration problem
■ Modelling random unmodelled dynamics

- Damping model uncertainty
- Flow through porous media
- Localized uncertainty modeling

■ Stochastic domain decomposition method

## Experimental Study: cantilever plate



A cantilever plate: Length: 998 mm , Width: 530 mm , Thickness: 3 mm , Density: 7860 kg/m3, Young's Modulus: 200 GPa

## Unmodelled dynamics



10 randomly placed oscillator; oscillatory mass: 121.4 g , fixed mass: 2 g , spring stiffness vary
from $10-12 \mathrm{KN} / \mathrm{m}$

## FRF Variability: Low Freq



## FRF Variability: Mid Freq



Variability in the amplitude of the FRF.

## FRF Variability: High Freq



Variability in the amplitude of the FRF.

## Summary \& conclusions

- Wishart matrices may be used as the model for the random system matrices in structural dynamics.
- Only the mean matrix and normalized standard deviation is required to model the system.
- Numerical results show that SFEM and RMT results match well in the mid and high frequency region.
- Wishart matrix model may be used to model uncertainties in joints.


## Open issues \& discussions - 1

- Are we taking model uncertainties ('unknown unknowns') into account? How can we verify it?
■ Possibility: Generate ensembles of 'models' by student projects and see if RMT can predict the variability.
■ Can RMT be extended to non-linear systems?


## Open issues \& discussions - 2

- How to incorporate a given covariance tensor of G (e.g., obtained using the SFEM)?
- Possibility: Use non-central Wishart distribution.
- What is the consequence of the zeros in G are not being preserved?
- Possibility: Use SVD to preserve the 'structure' of the random matrix realizations and check the results.

