Random Matrix Method for Stochastic Structural Mechanics

S Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K.
Email: S.Adhikari@bristol.ac.uk

Stochastic structural dynamics

- The equation of motion:

$$
\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{C} \dot{\mathbf{x}}(t)+\mathbf{K} \mathbf{x}(t)=\mathbf{p}(t)
$$

■ Due to the presence of uncertainty M, C and K become random matrices.

- The main objectives are:
- to quantify uncertainties in the system matrices
- to predict the variability in the response vector x

Current Methods

Two different approaches are currently available

- Low frequency: Stochastic Finite Element Method (SFEM) - considers parametric uncertainties in details
- High frequency: Statistical Energy Analysis (SEA) - do not consider parametric uncertainties in details

Work needs to be done: Medium frequency vibration problems - some kind of 'combination' of the above two

Random Matrix Method (RMM)

- The objective: To have an unified method which will work across the frequency range.
- The methodology:
- Derive the matrix variate probability density functions of M, C and K
- Propagate the uncertainty (using Monte Carlo simulation or analytical methods) to obtain the response statistics (or pdf)

Outline of the presentation

In what follows next, I will discuss:

- Introduction to Matrix variate distributions
- Maximum entropy distribution
- Optimal Wishart distribution

■ Numerical examples

- Open problems \& discussions

Matrix variate distributions

- The probability density function of a random matrix can be defined in a manner similar to that of a random variable.
- If \mathbf{A} is an $n \times m$ real random matrix, the matrix variate probability density function of $\mathbf{A} \in \mathbb{R}_{n, m}$, denoted as $p_{\mathbf{A}}(\mathbf{A})$, is a mapping from the space of $n \times m$ real matrices to the real line, i.e., $p_{\mathbf{A}}(\mathbf{A}): \mathbb{R}_{n, m} \rightarrow \mathbb{R}$.

Gaussian random matrix

The random matrix $\mathbf{X} \in \mathbb{R}_{n, p}$ is said to have a matrix variate Gaussian distribution with mean matrix $\mathrm{M} \in \mathbb{R}_{n, p}$ and covariance matrix $\boldsymbol{\Sigma} \otimes \Psi$, where $\Sigma \in \mathbb{R}_{n}^{+}$and $\Psi \in \mathbb{R}_{p}^{+}$provided the pdf of X is given by

$$
\begin{align*}
& p_{\mathbf{X}}(\mathbf{X})=(2 \pi)^{-n p / 2}|\boldsymbol{\Sigma}|^{-p / 2}|\boldsymbol{\Psi}|^{-n / 2} \\
& \qquad \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\mathbf{M}) \boldsymbol{\Psi}^{-1}(\mathbf{X}-\mathbf{M})^{T}\right\} \tag{1}
\end{align*}
$$

This distribution is usually denoted as $\mathbf{X} \sim N_{n, p}(\mathbf{M}, \boldsymbol{\Sigma} \otimes \Psi)$.

Wishart matrix

A $n \times n$ symmetric positive definite random matrix \mathbf{S} is said to have a Wishart distribution with parameters $p \geq n$ and $\Sigma \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{S}}(\mathbf{S})=\left\{2^{\frac{1}{2} n p} \Gamma_{n}\left(\frac{1}{2} p\right)|\boldsymbol{\Sigma}|^{\frac{1}{2} p}\right\}^{-1}|\mathbf{S}|^{\frac{1}{2}(p-n-1)} \operatorname{etr}\left\{-\frac{1}{2} \boldsymbol{\Sigma}^{-1} \mathbf{S}\right\} \tag{2}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{S} \sim W_{n}(p, \boldsymbol{\Sigma})$.
Note: If $p=n+1$, then the matrix is non-negative definite.

Matrix variate Gamma distribution

A $n \times n$ symmetric positive definite matrix random \mathbf{W} is said to have a matrix variate gamma distribution with parameters a and $\Psi \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{W}}(\mathbf{W})=\left\{\Gamma_{n}(a)|\boldsymbol{\Psi}|^{-a}\right\}^{-1}|\mathbf{W}|^{a-\frac{1}{2}(n+1)} \operatorname{etr}\{-\boldsymbol{\Psi} \mathbf{W}\} ; \quad \Re(a)>\frac{1}{2}(n- \tag{3}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{W} \sim G_{n}(a, \Psi)$. Here the multivariate gamma function:

$$
\begin{equation*}
\Gamma_{n}(a)=\pi^{\frac{1}{4} n(n-1)} \prod_{k=1}^{n} \Gamma\left[a-\frac{1}{2}(k-1)\right] ; \text { for } \Re(a)>(n-1) / 2 \tag{4}
\end{equation*}
$$

Inverted Wishart matrix

A $n \times n$ symmetric positive definite matrix random \mathbf{V} is said to have an inverted Wishart distribution with parameters m and $\Psi \in \mathbb{R}_{n}^{+}$, if its pdf is given by

$$
\begin{equation*}
p_{\mathbf{V}}(\mathbf{V})=\frac{2^{-\frac{1}{2}(m-n-1) n}|\boldsymbol{\Psi}|^{\frac{1}{2}(m-n-1)}}{\Gamma_{n}\left(\frac{1}{2}(m-n-1)\right)|\mathbf{V}|^{m / 2}} \operatorname{etr}\left\{-\mathbf{V}^{-1} \boldsymbol{\Psi}\right\} ; \quad m>2 n, \boldsymbol{\Psi}>0 \tag{5}
\end{equation*}
$$

This distribution is usually denoted as $\mathbf{V} \sim I W_{n}(m, \Psi)$.

Distribution of the system matrices

The distribution of the random system matrices M, C and K should be such that they are

- symmetric
- positive-definite, and
\square the moments (at least first two) of the inverse of the dynamic stiffness matrix
$\mathbf{D}(\omega)=-\omega^{2} \mathbf{M}+i \omega \mathbf{C}+\mathbf{K}$ should exist $\forall \omega$

Distribution of the system matrices

- The exact application of the last constraint requires the derivation of the joint probability density function of M, C and K , which is quite difficult to obtain.
- We consider a simpler problem where it is required that the inverse moments of each of the system matrices M, C and K must exist.
- Provided the system is damped, this will guarantee the existence of the moments of the frequency response function matrix.

Maximum Entropy Distribution

Suppose that the mean values of \mathbf{M}, C and K are given by $\overline{\mathbf{M}}, \overline{\mathbf{C}}$ and $\overline{\mathbf{K}}$ respectively. Using the notation G (which stands for any one the system matrices) the matrix variate density function of $\mathbf{G} \in \mathbb{R}_{n}^{+}$is given by $p_{\mathbf{G}}(\mathbf{G}): \mathbb{R}_{n}^{+} \rightarrow \mathbb{R}$. We have the following constrains to obtain $p_{\mathbf{G}}(\mathbf{G})$:

$$
\begin{equation*}
\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}=1 \quad \text { (normalization) } \tag{6}
\end{equation*}
$$

and $\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}=\overline{\mathbf{G}} \quad$ (the mean matrix)

Further constraints

- Suppose the inverse moments (say up to order ν) of the system matrix exist. This implies that $\mathrm{E}\left[\left\|\mathbf{G}^{-1}\right\|_{\mathrm{F}}{ }^{\nu}\right]$ should be finite. Here the Frobenius norm of matrix \mathbf{A} is given by

$$
\|\mathbf{A}\|_{\mathrm{F}}=\left(\operatorname{Trace}\left(\mathbf{A} \mathbf{A}^{T}\right)\right)^{1 / 2}
$$

- Taking the logarithm for convenience, the condition for the existence of the inverse moments can be expresses by

$$
\mathrm{E}\left[\ln |\mathbf{G}|^{-\nu}\right]<\infty
$$

MEnt Distribution - 1

The Lagrangian becomes:

$$
\begin{align*}
& \mathcal{L}\left(p_{\mathbf{G}}\right)=-\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) \ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\} d \mathbf{G}- \\
& \left(\lambda_{0}-1\right)\left(\int_{\mathbf{G}>0} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-1\right)-\nu \int_{\mathbf{G}>0} \ln |\mathbf{G}| p_{\mathbf{G}} d \mathbf{G} \\
& \quad+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1}\left[\int_{\mathbf{G}>0} \mathbf{G} p_{\mathbf{G}}(\mathbf{G}) d \mathbf{G}-\overline{\mathbf{G}}\right]\right) \tag{8}
\end{align*}
$$

Note: ν cannot be obtained uniquely!

MEnt Distribution - 2

Using the calculus of variation

$$
\begin{aligned}
& \quad \frac{\partial \mathcal{L}\left(p_{\mathbf{G}}\right)}{\partial p_{\mathbf{G}}}=0 \\
& \text { or }-\ln \left\{p_{\mathbf{G}}(\mathbf{G})\right\}=\lambda_{0}+\operatorname{Trace}\left(\boldsymbol{\Lambda}_{1} \mathbf{G}\right)-\ln |\mathbf{G}|^{\nu} \\
& \text { or } p_{\mathbf{G}}(\mathbf{G})=\exp \left\{-\lambda_{0}\right\}|\mathbf{G}|^{\nu} \operatorname{etr}\left\{-\boldsymbol{\Lambda}_{1} \mathbf{G}\right\}
\end{aligned}
$$

MEnt Distribution - 3

Using the matrix variate Laplace transform $\left(\mathbf{T} \in \mathbb{R}_{n, n}, \mathbf{S} \in \mathbb{C}_{n, n}, a>(n+1) / 2\right)$

$$
\int_{\mathbf{T}_{>0}} \operatorname{etr}\{-\mathbf{S T}\}|\mathbf{T}|^{a-(n+1) / 2} d \mathbf{T}=\Gamma_{n}(a)|\mathbf{S}|^{-a}
$$

and substituting $p_{\mathbf{G}}(\mathbf{G})$ into the constraint equations it can be shown that

$$
\begin{equation*}
p_{\mathbf{G}}(\mathbf{G})=\frac{r^{n r}|\overline{\mathbf{G}}|^{-r}}{\Gamma_{n}(r)}|\mathbf{G}|^{\nu} \operatorname{etr}\left\{-r \overline{\mathbf{G}}^{-1} \mathbf{G}\right\} \tag{9}
\end{equation*}
$$

where $r=\nu+(n+1) / 2$.

MEnt Distribution-4

Comparing it with the Wishart distribution we have:

Theorem 1. If ν-th order inverse-moment of a system matrix $\mathbf{G} \equiv\{\mathbf{M}, \mathbf{C}, \mathbf{K}\}$ exists and only the mean of \mathbf{G} is available, say $\overline{\mathbf{G}}$, then the maximum-entropy pdf of \mathbf{G} follows the Wishart distribution with parameters $p=(2 \nu+n+1)$ and $\boldsymbol{\Sigma}=\overline{\mathbf{G}} /(2 \nu+n+1)$, that is
$\mathbf{G} \sim W_{n}(2 \nu+n+1, \overline{\mathbf{G}} /(2 \nu+n+1))$.

Properties of the Distribution

■ Covariance tensor of G:

$$
\operatorname{cov}\left(G_{i j}, G_{k l}\right)=\frac{1}{2 \nu+n+1}\left(\bar{G}_{i k} \bar{G}_{j l}+\bar{G}_{i l} \bar{G}_{j k}\right)
$$

■ Normalized standard deviation matrix

$$
\begin{aligned}
\delta_{\mathbf{G}}^{2} & =\frac{\mathrm{E}\left[\|\mathbf{G}-\mathrm{E}[\mathbf{G}]\|_{\mathrm{F}}^{2}\right]}{\|\mathrm{E}[\mathbf{G}]\|_{\mathrm{F}}^{2}}=\frac{1}{2 \nu+n+1}\left\{1+\frac{\{\operatorname{Trace}(\overline{\mathbf{G}})\}^{2}}{\operatorname{Trace}\left(\overline{\mathbf{G}}^{2}\right)}\right\} \\
\square & \delta_{\mathbf{G}}^{2} \leq \frac{1+n}{2 \nu+n+1} \text { and } \nu \uparrow \Rightarrow \delta_{\mathbf{G}}^{2} \downarrow .
\end{aligned}
$$

Distribution of the inverse - 1

- If \mathbf{G} is $W_{n}(p, \boldsymbol{\Sigma})$ then $\mathbf{V}=\mathbf{G}^{-1}$ has the inverted Wishart distribution:

$$
P_{\mathbf{V}}(\mathbf{V})=\frac{2^{m-n-1} n / 2|\mathbf{\Psi}|^{m-n-1} / 2}{\Gamma_{n}[(m-n-1) / 2]|\mathbf{V}|^{m / 2}} \operatorname{etr}\left\{-\frac{1}{2} \mathbf{V}^{-1} \mathbf{\Psi}\right\}
$$

where $m=n+p+1$ and $\boldsymbol{\Psi}=\boldsymbol{\Sigma}^{-1}$ (recall that $p=2 \nu+n+1$ and $\boldsymbol{\Sigma}=\overline{\mathbf{G}} / p)$

Distribution of the inverse - 2

- Mean: $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{p \overline{\mathbf{G}}^{-1}}{p-n-1}$

■ $\operatorname{cov}\left(G_{i j}^{-1}, G_{k l}^{-1}\right)=$

$$
\frac{(2 \nu+n+1)\left(\nu^{-1} \bar{G}_{i j}^{-1} \bar{G}_{k l}^{-1}+\bar{G}_{i k}^{-1} \bar{G}_{j l}^{-1}+\bar{G}^{-1} i l \bar{G}_{k j}^{-1}\right)}{2 \nu(2 \nu+1)(2 \nu-2)}
$$

Distribution of the inverse - 3

$■$ Suppose $n=101 \& \nu=2$. So $p=2 \nu+n+1=106$ and $p-n-1=4$. Therefore, $\mathrm{E}[\mathbf{G}]=\overline{\mathbf{G}}$ and $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{106}{4} \overline{\mathbf{G}}^{-1}=26.5 \overline{\mathbf{G}}^{-1}!!!!!!!!!!$

- From a practical point of view we do not expect them to be so far apart!

■ One way to reduce the gap is to increase p. But this implies the reduction of variance.

■ This discrepancy between the 'mean of the inverse' and the 'inverse of the mean' of the random matrices appears to be a fundamental limitation.

Optimal Wishart Distribution-1

- My argument: The distribution of G must be such that $E[\mathbf{G}]$ and $E\left[\mathbf{G}^{-1}\right]$ should be closest to $\overline{\mathrm{G}}$ and $\overline{\mathrm{G}}^{-1}$ respectively.
- Suppose $\mathbf{G} \sim W_{n}(n+1+\theta, \overline{\mathbf{G}} / \alpha)$. We need to find α such that the above condition is satisfied.
- Therefore, define (and subsequently minimize) 'normalized errors':

$$
\begin{aligned}
& \varepsilon_{1}=\|\overline{\mathbf{G}}-\mathrm{E}[\mathbf{G}]\|_{\mathrm{F}} /\|\overline{\mathbf{G}}\|_{\mathrm{F}} \\
& \boldsymbol{\varepsilon}_{2}=\left\|\overline{\mathbf{G}}^{-1}-\mathrm{E}\left[\mathbf{G}^{-1}\right]\right\|_{\mathrm{F}} /\left\|\overline{\mathbf{G}}^{-1}\right\|_{\mathrm{F}}
\end{aligned}
$$

Optimal Wishart Distribution - 2

Because $\mathbf{G} \sim W_{n}(n+1+\theta, \overline{\mathbf{G}} / \alpha)$ we have

$$
\begin{array}{ll}
& \mathrm{E}[\mathbf{G}]=\frac{n+1+\theta}{\alpha} \overline{\mathbf{G}} \\
\text { and } & \mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{\alpha}{\theta} \overline{\mathbf{G}}^{-1}
\end{array}
$$

We define the objective function to be minimized as
$\chi^{2}=\varepsilon_{1}{ }^{2}+\varepsilon_{2}^{2}=\left(1-\frac{n+1+\theta}{\alpha}\right)^{2}+\left(1-\frac{\alpha}{\theta}\right)^{2}$

Optimal Wishart Distribution - 3

The optimal value of α can be obtained as by setting $\frac{\partial \chi^{2}}{\partial \alpha}=0$ or
$\alpha^{4}-\alpha^{3} \theta-\theta^{4}+(-2 n+\alpha-2) \theta^{3}+$
$\left((n+1) \alpha-n^{2}-2 n-1\right) \theta^{2}=0$.
The only feasible value of α is

$$
\alpha=\sqrt{\theta(n+1+\theta)}
$$

Optimal Wishart Distribution - 4

From this discussion we have the following:
Theorem 2. If ν-th order inverse-moment of a system matrix $\mathbf{G} \equiv\{\mathbf{M}, \mathbf{C}, \mathbf{K}\}$ exists and only the mean of \mathbf{G} is available, say $\overline{\mathbf{G}}$, then the unbiased distribution of \mathbf{G} follows the Wishart distribution with parameters $p=(2 \nu+n+1)$ and
$\boldsymbol{\Sigma}=\overline{\mathbf{G}} / \sqrt{2 \nu(2 \nu+n+1)}$, that is
$\mathbf{G} \sim W_{n}(2 \nu+n+1, \overline{\mathbf{G}} / \sqrt{2 \nu(2 \nu+n+1)})$.

Optimal Wishart Distribution - 5

■ Again consider $n=100$ and $\nu=2$, so that $\theta=2 \nu=4$.
■ In the previous approach $\alpha=2 \nu+n+1=105$. For the optimal distribution, $\alpha=\sqrt{\theta(\theta+n+1)}=2 \sqrt{105}=20.49$.
■ We have $\mathrm{E}[\mathbf{G}]=\frac{105}{2 \sqrt{105}} \overline{\mathbf{G}}=5.12 \overline{\mathbf{G}}$ and $\mathrm{E}\left[\mathbf{G}^{-1}\right]=\frac{2 \sqrt{105}}{4} \overline{\mathbf{G}}^{-1}=5.12 \overline{\mathbf{G}}^{-1}$.

- The overall normalized difference for the previous case is $\chi^{2}=0+(1-105 / 4)^{2}=637.56$. The same for the optimal distribution is $\chi^{2}=2(1-\sqrt{105} / 2)^{2}=34.01$, which is considerable smaller compared to the non-optimal distribution.

Response statistics - 1

- The equation of motion is $\mathbf{D x}=\mathrm{p}, \mathrm{D}$ is in general $n \times n$ complex random matrix.
- The response is given by

$$
\mathbf{x}=\mathbf{D}^{-1} \mathbf{p}
$$

- Consider static problems so that all matrices/vectors are real.

Response statistics - 2

- We may want statistics of few elements or some linear combinations of the elements in x . So the quantify of interest is

$$
\begin{equation*}
\mathbf{y}=\mathbf{R} \mathbf{x}=\mathbf{R D}^{-1} \mathbf{p} \tag{10}
\end{equation*}
$$

Here \mathbf{R} is in general $r \times n$ rectangular matrix. For the special case when $\mathbf{R}=\mathbf{I}_{n}$, we have $\mathrm{y}=\mathrm{x}$.

- Eq. (10) arises in SFEM. There are many papers on its solution. Mainly perturbation methods are used.

Response statistics - 3

Suppose $\mathrm{D}=\mathrm{D}_{0}+\Delta \mathrm{D}$, where D_{0} is the deterministic part and $\Delta \mathrm{D}$ is the (small) random part. It can be shown that

$$
\mathbf{D}^{-1}=\mathbf{D}_{0}-\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\mathbf{D}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1} \Delta \mathrm{DD}_{0}^{-1}+\cdots
$$

From, this

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}_{0}-\mathbf{R D}_{0}^{-1} \Delta \mathbf{D} \mathbf{x}_{0}+\mathbf{R D}_{0}^{-1} \Delta \mathbf{D D}_{0}^{-1} \Delta \mathbf{D x}_{0}+\cdots \tag{11}
\end{equation*}
$$

where $\mathbf{x}_{0}=\mathbf{D}_{0}^{-1} \mathbf{p}$ and $\mathbf{y}_{0}=\mathbf{R} \mathbf{x}_{0}$.

Response statistics - 4

The statistics of y can be calculated from Eq. (11). However,

■ The calculation is difficult if $\Delta \mathrm{D}$ is non-Gaussian.

- Even if $\Delta \mathrm{D}$ is Gaussian, inclusion of higher-order terms results very messy calculations (I have not seen any published work for more than second-order)
- For these reasons, the response statistics will be inaccurate for large randomness.

Response statistics - 5

I will propose an exact method using RMT. Suppose $\mathbf{D} \sim W_{n}(m, \boldsymbol{\Sigma})$.

$$
\begin{equation*}
\mathrm{E}[\mathbf{y}]=\mathrm{E}\left[\mathbf{R D}^{-1} \mathbf{p}\right]=\mathbf{R E}\left[\mathbf{D}^{-1}\right] \mathbf{p}=\mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{p} / \theta \tag{12}
\end{equation*}
$$

The complete covariance matrix of y

$$
\begin{aligned}
& \mathrm{E}\left[(\mathbf{y}-\mathrm{E}[\mathbf{y}])(\mathbf{y}-\mathrm{E}[\mathbf{y}])^{T}\right] \\
& =\mathbf{R} \mathrm{E}\left[\mathbf{D}^{-1} \mathbf{p} \mathbf{p}^{T} \mathbf{D}^{-1}\right] \mathbf{R}^{T}-\mathrm{E}[\mathbf{y}](\mathrm{E}[\mathbf{y}])^{T} \\
& =\frac{\operatorname{Trace}\left(\boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T}\right) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta(\theta+1)(\theta-2)}+\frac{(\theta+2) \mathbf{R} \boldsymbol{\Sigma}^{-1} \mathbf{p} \mathbf{p}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{R}^{T}}{\theta^{2}(\theta+1)(\theta-2)}
\end{aligned}
$$

Simulation Algorithm: Dynamical Systems

\square Obtain $\theta=\frac{1}{\delta_{\mathbf{G}}^{2}}\left\{1+\frac{\{\operatorname{Trace}(\overline{\mathbf{G}})\}^{2}}{\operatorname{Trace}\left(\overline{\mathbf{G}}^{2}\right)}\right\}-(n+1)$

- If $\theta<4$, then select $\theta=4$.
- Calculate $\alpha=\sqrt{\theta(n+1+\theta)}$

■ Generate samples of $\mathbf{G} \sim W_{n}(n+1+\theta, \overline{\mathbf{G}} / \alpha)$ (MATLAB ${ }^{\circledR}$ command wishrnd can be used to generate the samples)
\square Repeat the above steps for all system matrices and solve for every samples

Example: A cantilever Plate

A Cantilever plate with a slot: $\bar{E}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \bar{\mu}=0.3, \bar{\rho}=7860 \mathrm{~kg} / \mathrm{m}^{3}, \bar{t}=7.5 \mathrm{~mm}$,

$$
L_{x}=1.2 \mathrm{~m}, L_{y}=0.8 \mathrm{~m}
$$

Plate Mode 4

Mode 4, freq. $=48.745 \mathrm{~Hz}$

Fourth Mode shape

Plate Mode 5

Mode 5, freq. $=64.3556 \mathrm{~Hz}$

Fifth Mode shape

Deterministic FRF

Stochastic Properties

The Young's modulus, Poissons ratio, mass density and thickness are random fields of the form

$$
\begin{align*}
E(\mathbf{x}) & =\bar{E}\left(1+\epsilon_{E} f_{1}(\mathbf{x})\right) \tag{14}\\
\mu(\mathbf{x}) & =\bar{\mu}\left(1+\epsilon_{\mu} f_{2}(\mathbf{x})\right) \tag{15}\\
\rho(\mathbf{x}) & =\bar{\rho}\left(1+\epsilon_{\rho} f_{3}(\mathbf{x})\right) \tag{16}\\
\text { and } \quad t(\mathbf{x}) & =\bar{t}\left(1+\epsilon_{t} f_{4}(\mathbf{x})\right) \tag{17}
\end{align*}
$$

■ The strength parameters: $\epsilon_{E}=0.15, \epsilon_{\mu}=0.15, \epsilon_{\rho}=0.10$ and $\epsilon_{t}=0.15$.
\square The random fields $f_{i}(\mathbf{x}), i=1, \cdots, 4$ are delta-correlated homogenous Gaussian random fields.

SFEM cross-FRF

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.

SFEM cross-FRF: Low Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.

SFEM cross-FRF: Mid Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.

SFEM cross-FRF: High Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.

SFEM driving-point-FRF

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the driving-point-FRF.

SFEM driving-point-FRF: Low Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the driving-point-FRF.

SFEM driving-point-FRF: Mid Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the driving-point-FRF.

SFEM driving-point-FRF: High Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the driving-point-FRF.

RMT cross-FRF

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

$$
n=702, \delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

RMT cross-FRF: Low Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

$$
n=702, \delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

RMT cross-FRF: Mid Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

$$
n=702, \delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

RMT cross-FRF: High Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

$$
n=702, \delta_{M}=0.1166 \text { and } \delta_{K}=0.2622
$$

RMT driving-point-FRF

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness matrices, $n=702, \delta_{M}=0.1166$ and $\delta_{K}=0.2622$

RMT driving-point-FRF: Low Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness matrices, $n=702, \delta_{M}=0.1166$ and $\delta_{K}=0.2622$

RMT driving-point-FRF: Mid Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness matrices, $n=702, \delta_{M}=0.1166$ and $\delta_{K}=0.2622$

RMT driving-point-FRF: High Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness matrices, $n=702, \delta_{M}=0.1166$ and $\delta_{K}=0.2622$

Comparison of cross-FRF

Comparison of the mean and standard deviation of the amplitude of the cross-FRF.

Comparison of cross-FRF: Low Freq

Comparison of the mean and standard deviation of the amplitude of the cross-FRF.

Comparison of cross-FRF: Mid Freq

Comparison of the mean and standard deviation of the amplitude of the cross-FRF.

Comparison of cross-FRF: High Freq

Comparison of the mean and standard deviation of the amplitude of the cross-FRF.

Comparison of driving-point-FRF

Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: Low Freq

Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: Mid Freq

Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: High Freq

Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.

Comparison of cross-FRF

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.

Comparison of cross-FRF: Low Freq

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.

Comparison of cross-FRF: Mid Freq

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.

Comparison of cross-FRF: High Freq

Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.

Comparison of driving-point-FRF

Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: Low Freq

Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: Mid Freq

Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.

Comparison of driving-point-FRF: High Freq

Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.

Summary \& conclusions

- Wishart matrices may be used as the model for the system matrices in structural dynamics.
- The parameters of the distribution were obtained in closed-form by solving an optimisation problem.
- Only the mean matrix and normalized standard deviation is required to model the system.
- Numerical results show that SFEM and RMT results match well in the mid and high frequency region.

Next steps

- Eigenvalue and eigenvector statistics

■ Steady-state and transient dynamic response statistics

- Distribution of the dynamic stiffness matrix (complex Wishart matrix?) and its inverse (FRF matrix)
- Cumulative distribution function of the response (reliability problem)

Open issues \& discussions

$■ \overline{\mathrm{G}}$ is just one 'observation' - not an ensemble mean.

- Are we taking account of model uncertainties ('unknown unknowns')?
- How to incorporate a given covariance tensor of G (e.g., obtained using the Stochastic Finite element Method)?
■ What is the consequence of the zeros in G are not being preserved?

