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Stochastic structural dynamics

The equation of motion:

Mẍ(t) + Cẋ(t) + Kx(t) = p(t)

Due to the presence of uncertainty M, C and K
become random matrices.

The main objectives are:
to quantify uncertainties in the system
matrices
to predict the variability in the response
vector x
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Current Methods

Two different approaches are currently available

Low frequency : Stochastic Finite Element
Method (SFEM) - considers parametric
uncertainties in details

High frequency : Statistical Energy Analysis
(SEA) - do not consider parametric
uncertainties in details

Work needs to be done : Medium frequency
vibration problems - some kind of ‘combination’ of
the above two
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Random Matrix Method (RMM)

The objective : To have an unified method
which will work across the frequency range.

The methodology :

Derive the matrix variate probability density
functions of M, C and K

Propagate the uncertainty (using Monte
Carlo simulation or analytical methods) to
obtain the response statistics (or pdf)
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Outline of the presentation

In what follows next, I will discuss:

Introduction to Matrix variate distributions

Maximum entropy distribution

Optimal Wishart distribution

Numerical examples

Open problems & discussions
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(1)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

|S| 12 (p−n−1)etr

{

−1

2
Σ−1S

}

(2)

This distribution is usually denoted as S ∼ Wn(p,Σ).
Note: If p = n + 1, then the matrix is non-negative definite.
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Matrix variate Gamma
distribution

A n× n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a

and Ψ ∈ R
+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1 |W|a−
1
2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

(3)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here
the multivariate gamma function:

Γn (a) = π
1
4
n(n−1)

n
∏

k=1

Γ

[

a − 1

2
(k − 1)

]

; forℜ(a) > (n−1)/2 (4)
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Inverted Wishart matrix

A n × n symmetric positive definite matrix random V is said to
have an inverted Wishart distribution with parameters m and
Ψ ∈ R

+
n , if its pdf is given by

pV (V) =
2−

1
2
(m−n−1)n|Ψ|

1
2 (m−n−1)

Γn

(

1
2
(m − n − 1)

)

|V|m/2
etr

{

−V−1Ψ
}

; m > 2n, Ψ > 0.

(5)

This distribution is usually denoted as V ∼ IWn(m,Ψ).
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Distribution of the system
matrices

The distribution of the random system matrices M,
C and K should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of
the dynamic stiffness matrix
D(ω) = −ω2M + iωC + K should exist ∀ω
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Distribution of the system
matrices

The exact application of the last constraint
requires the derivation of the joint probability
density function of M, C and K, which is quite
difficult to obtain.

We consider a simpler problem where it is
required that the inverse moments of each of
the system matrices M, C and K must exist.

Provided the system is damped, this will
guarantee the existence of the moments of the
frequency response function matrix.
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Maximum Entropy Distribution

Suppose that the mean values of M, C and K are
given by M, C and K respectively. Using the
notation G (which stands for any one the system
matrices) the matrix variate density function of
G ∈ R

+
n is given by pG (G) : R

+
n → R. We have the

following constrains to obtain pG (G):
∫

G>0

pG (G) dG = 1 (normalization) (6)

and
∫

G>0

G pG (G) dG = G (the mean matrix)

(7)
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Further constraints

Suppose the inverse moments (say up to order
ν) of the system matrix exist. This implies that
E

[∥

∥G−1
∥

∥

F

ν]
should be finite. Here the

Frobenius norm of matrix A is given by

‖A‖F =
(

Trace
(

AAT
))1/2

.

Taking the logarithm for convenience, the
condition for the existence of the inverse
moments can be expresses by

E
[

ln |G|−ν] < ∞
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MEnt Distribution - 1

The Lagrangian becomes:

L
(

pG
)

= −
∫

G>0

pG (G) ln
{

pG (G)
}

dG−

(λ0 − 1)

(
∫

G>0

pG (G) dG − 1

)

−ν

∫

G>0

ln |G| pG dG

+ Trace

(

Λ1

[
∫

G>0

G pG (G) dG − G

])

(8)

Note: ν cannot be obtained uniquely!
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MEnt Distribution - 2

Using the calculus of variation

∂L
(

pG
)

∂pG
= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G) − ln |G|ν

or pG (G) = exp {−λ0} |G|ν etr {−Λ1G}
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MEnt Distribution - 3

Using the matrix variate Laplace transform
(T ∈ Rn,n,S ∈ Cn,n, a > (n + 1)/2)

∫

T>0

etr {−ST} |T|a−(n+1)/2 dT = Γn(a) |S|−a

and substituting pG (G) into the constraint
equations it can be shown that

pG (G) =
rnr

∣

∣G
∣

∣

−r

Γn(r)
|G|ν etr

{

−rG
−1

G
}

(9)

where r = ν + (n + 1)/2.
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MEnt Distribution - 4

Comparing it with the Wishart distribution we have:
Theorem 1. If ν-th order inverse-moment of a
system matrix G ≡ {M,C,K} exists and only the

mean of G is available, say G, then the
maximum-entropy pdf of G follows the Wishart
distribution with parameters p = (2ν + n + 1) and

Σ = G/(2ν + n + 1), that is

G ∼ Wn

(

2ν + n + 1,G/(2ν + n + 1)
)

.
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Properties of the Distribution

Covariance tensor of G:

cov (Gij, Gkl) =
1

2ν + n + 1

(

GikGjl + GilGjk

)

Normalized standard deviation matrix

δ2

G =
E

[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

=
1

2ν + n + 1







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







δ2

G
≤ 1 + n

2ν + n + 1
and ν ↑ ⇒ δ2

G
↓.
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Distribution of the inverse - 1

If G is Wn(p,Σ) then V = G−1 has the inverted
Wishart distribution:

PV(V) =
2m−n−1n/2 |Ψ|m−n−1 /2

Γn[(m − n − 1)/2] |V|m/2
etr

{

−1

2
V−1Ψ

}

where m = n + p + 1 and Ψ = Σ−1 (recall that
p = 2ν + n + 1 and Σ = G/p)

Random Matrix Method – p. 20/73



Carleton University, June 24, 2006

Distribution of the inverse - 2

Mean: E
[

G−1
]

=
pG

−1

p − n − 1

cov
(

G−1
ij , G−1

kl

)

=
(

2ν + n + 1)(ν−1G
−1
ij G

−1
kl + G

−1
ik G

−1
jl + G

−1
ilG

−1
kj

)

2ν(2ν + 1)(2ν − 2)
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Distribution of the inverse - 3

Suppose n = 101 & ν = 2. So p = 2ν + n + 1 = 106 and
p − n − 1 = 4. Therefore, E [G] = G and

E
[

G−1
]

=
106

4
G

−1
= 26.5G

−1
!!!!!!!!!!

From a practical point of view we do not expect them to
be so far apart!

One way to reduce the gap is to increase p. But this
implies the reduction of variance.

This discrepancy between the ‘mean of the inverse’ and
the ‘inverse of the mean’ of the random matrices appears
to be a fundamental limitation.
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Optimal Wishart Distribution - 1

My argument: The distribution of G must be

such that E [G] and E
[

G−1
]

should be closest

to G and G
−1

respectively.

Suppose G ∼ Wn

(

n + 1 + θ,G/α
)

. We need to
find α such that the above condition is satisfied.

Therefore, define (and subsequently minimize)
‘normalized errors’:
ε1 =

∥

∥G − E [G]
∥

∥

F
/
∥

∥G
∥

∥

F

ε2 =
∥

∥

∥
G

−1 − E
[

G−1
]

∥

∥

∥

F
/
∥

∥

∥
G

−1
∥

∥

∥

F
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Optimal Wishart Distribution - 2

Because G ∼ Wn

(

n + 1 + θ,G/α
)

we have

E [G] =
n + 1 + θ

α
G

and E
[

G−1
]

=
α

θ
G

−1

We define the objective function to be minimized as
χ2 = ε1

2 + ε2
2 =

(

1 − n+1+θ
α

)2
+

(

1 − α
θ

)2

Random Matrix Method – p. 24/73



Carleton University, June 24, 2006

Optimal Wishart Distribution - 3

The optimal value of α can be obtained as by
setting ∂χ2

∂α = 0 or
α4 − α3θ − θ4 + (−2 n + α − 2) θ3 +
(

(n + 1) α − n2 − 2 n − 1
)

θ2 = 0.

The only feasible value of α is

α =
√

θ(n + 1 + θ)
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Optimal Wishart Distribution - 4

From this discussion we have the following:
Theorem 2. If ν-th order inverse-moment of a
system matrix G ≡ {M,C,K} exists and only the

mean of G is available, say G, then the unbiased
distribution of G follows the Wishart distribution
with parameters p = (2ν + n + 1) and

Σ = G/
√

2ν(2ν + n + 1), that is

G ∼ Wn

(

2ν + n + 1,G/
√

2ν(2ν + n + 1)
)

.
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Optimal Wishart Distribution - 5

Again consider n = 100 and ν = 2, so that θ = 2ν = 4.

In the previous approach α = 2ν + n + 1 = 105. For the
optimal distribution, α =

√

θ(θ + n + 1) = 2
√

105 = 20.49.

We have E [G] = 105
2
√

105
G = 5.12G and

E
[

G−1
]

= 2
√

105
4

G
−1

= 5.12G
−1

.

The overall normalized difference for the previous case is
χ2 = 0 + (1 − 105/4)2 = 637.56. The same for the optimal
distribution is χ2 = 2(1 −

√
105/2)2 = 34.01, which is

considerable smaller compared to the non-optimal
distribution.
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Response statistics - 1

The equation of motion is Dx = p, D is in
general n × n complex random matrix.

The response is given by

x = D−1p

Consider static problems so that all
matrices/vectors are real.
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Response statistics - 2

We may want statistics of few elements or some
linear combinations of the elements in x. So the
quantify of interest is

y = Rx = RD−1p (10)

Here R is in general r × n rectangular matrix.
For the special case when R = In, we have
y = x.

Eq. (10) arises in SFEM. There are many
papers on its solution. Mainly perturbation
methods are used.
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Response statistics - 3

Suppose D = D0 + ∆D, where D0 is the
deterministic part and ∆D is the (small) random
part. It can be shown that

D−1 = D0−D−1
0 ∆DD−1

0 +D−1
0 ∆DD−1

0 ∆DD−1
0 + · · ·

From, this

y = y0 − RD−1
0 ∆Dx0 + RD−1

0 ∆DD−1
0 ∆Dx0 + · · ·

(11)

where x0 = D−1
0 p and y0 = Rx0.
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Response statistics - 4

The statistics of y can be calculated from Eq. (11).
However,

The calculation is difficult if ∆D is
non-Gaussian.

Even if ∆D is Gaussian, inclusion of
higher-order terms results very messy
calculations (I have not seen any published
work for more than second-order)

For these reasons, the response statistics will
be inaccurate for large randomness.
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Response statistics - 5

I will propose an exact method using RMT. Suppose
D ∼ Wn (m,Σ).

E [y] = E
[

RD−1p
]

= RE
[

D−1
]

p = RΣ−1p/θ (12)

The complete covariance matrix of y

E
[

(y − E [y])(y − E [y])T
]

= R E
[

D−1ppTD−1
]

RT − E [y] (E [y])T

=
Trace

(

Σ−1ppT
)

RΣ−1RT

θ(θ + 1)(θ − 2)
+

(θ + 2)RΣ−1ppTΣ−1RT

θ2(θ + 1)(θ − 2)
(13)
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Simulation Algorithm: Dynamical
Systems

Obtain θ =
1

δ2

G







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







− (n + 1)

If θ < 4, then select θ = 4.

Calculate α =
√

θ(n + 1 + θ)

Generate samples of G ∼ Wn

(

n + 1 + θ,G/α
)

(Matlabr command wishrnd can be used to generate
the samples)

Repeat the above steps for all system matrices and solve
for every samples
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Example: A cantilever Plate
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A Cantilever plate with a slot: Ē = 200 × 109N/m2, µ̄ = 0.3, ρ̄ = 7860kg/m3, t̄ = 7.5mm,

Lx = 1.2m, Ly = 0.8m.
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Plate Mode 4
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Plate Mode 5
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Deterministic FRF
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Stochastic Properties

The Young’s modulus, Poissons ratio, mass density and
thickness are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (14)

µ(x) = µ̄ (1 + ǫµf2(x)) (15)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (16)

and t(x) = t̄ (1 + ǫtf4(x)) (17)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10

and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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SFEM cross-FRF

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.
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SFEM cross-FRF: Low Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.
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SFEM cross-FRF: Mid Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.
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SFEM cross-FRF: High Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF.
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SFEM driving-point-FRF

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the

driving-point-FRF.
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SFEM driving-point-FRF: Low
Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the

driving-point-FRF.
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SFEM driving-point-FRF: Mid
Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the

driving-point-FRF.
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SFEM driving-point-FRF: High
Freq

Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the

driving-point-FRF.
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RMT cross-FRF

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

n = 702, δM = 0.1166 and δK = 0.2622
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RMT cross-FRF: Low Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

n = 702, δM = 0.1166 and δK = 0.2622
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RMT cross-FRF: Mid Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

n = 702, δM = 0.1166 and δK = 0.2622
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RMT cross-FRF: High Freq

Amplitude of the cross-FRF of the plate using optimal Wishart mass and stiffness matrices,

n = 702, δM = 0.1166 and δK = 0.2622
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RMT driving-point-FRF

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness

matrices, n = 702, δM = 0.1166 and δK = 0.2622
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RMT driving-point-FRF: Low
Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness

matrices, n = 702, δM = 0.1166 and δK = 0.2622
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RMT driving-point-FRF: Mid Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness

matrices, n = 702, δM = 0.1166 and δK = 0.2622
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RMT driving-point-FRF: High
Freq

Amplitude of the driving-point-FRF of the plate using optimal Wishart mass and stiffness

matrices, n = 702, δM = 0.1166 and δK = 0.2622
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Comparison of cross-FRF
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Comparison of cross-FRF: Low
Freq
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Comparison of cross-FRF: Mid
Freq
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Comparison of cross-FRF: High
Freq
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Comparison of driving-point-FRF
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: High Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF.
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Comparison of cross-FRF
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of cross-FRF: Low
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of cross-FRF: Mid
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of cross-FRF: High
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of driving-point-FRF

0 1000 2000 3000 4000 5000 6000 7000 8000
−220

−200

−180

−160

−140

−120

−100

−80

−60

Frequency ω (Hz)

Lo
g 

am
pli

tu
de

 (d
B)

 o
f H (1

09
,1

09
) (ω

)

5% points: SFEM
5% points: RMT
95% points: SFEM
95% points: RMT

Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: Low Freq
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: Mid Freq
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.
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Comparison of
driving-point-FRF: High Freq
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Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF.
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Summary & conclusions

Wishart matrices may be used as the model
for the system matrices in structural dynamics.

The parameters of the distribution were
obtained in closed-form by solving an
optimisation problem.

Only the mean matrix and normalized standard
deviation is required to model the system.

Numerical results show that SFEM and RMT
results match well in the mid and high
frequency region.
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Next steps

Eigenvalue and eigenvector statistics

Steady-state and transient dynamic response
statistics

Distribution of the dynamic stiffness matrix
(complex Wishart matrix?) and its inverse (FRF
matrix)

Cumulative distribution function of the response
(reliability problem)
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Open issues & discussions

G is just one ‘observation’ - not an ensemble
mean.

Are we taking account of model uncertainties
(‘unknown unknowns’)?

How to incorporate a given covariance tensor of
G (e.g., obtained using the Stochastic Finite
element Method)?

What is the consequence of the zeros in G are
not being preserved?

Random Matrix Method – p. 73/73
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