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Introduction

Equation of motion of viscously damped
systems:

Mÿ(t) + Cẏ(t) + Ky(t) = f(t)

Proportional damping (Rayleigh 1877)

C = α1M + α2K

Classical normal modes
Simplifies analysis methods
Identification of damping becomes easier
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Limitations of proportional
damping

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj

)

Not all forms of variation can be captured
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Damped Beam Example

Damped free-free beam:
L = 1m, width = 39.0 mm
thickness = 5.93 mm
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Damping factors
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Our Objective

Can we improve the Classical Damping
proposed by Lord Rayleigh in 1877 so that we
can take account of the frequency variation of
the damping factors?
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Conditions for proportional
damping

Theorem 1 A viscously damped linear system can
possess classical normal modes if and only if at
least one of the following conditions is satisfied:
(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c)
MC−1K = KC−1M.

This can be easily proved by following Caughey and
O’Kelly’s (1965) approach and interchanging M, K
and C successively.
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Caughey series

Caughey series:

C = M

N−1∑

j=0

αj

(
M−1K

)j

The modal damping factors:

ζj =
1

2

(
α1

ωj
+ α2ωj + α3ω

3
j + · · ·

)

More general than Rayleigh’s version of
proportional damping
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Generalized proportional
damping

Premultiply condition (a) of the theorem by M−1:
(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)

Since M−1K and M−1C are commutative
matrices

M−1C = f1(M
−1K)

Therefore, we can express the damping matrix
as

C = Mf1(M
−1K)
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Generalized proportional
damping

Premultiply condition (b) of the theorem by K−1:
(
K−1M

) (
K−1C

)
=

(
K−1C

) (
K−1M

)

Since K−1M and K−1C are commutative
matrices

K−1C = f2(K
−1M)

Therefore, we can express the damping matrix
as

C = Kf1(K
−1M)
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Generalized proportional
damping

Combining the previous two cases

C = M β1

(
M−1K

)
+ K β2

(
K−1M

)

Similarly, postmultiplying condition (a) of
Theorem 1 by M−1 and (b) by K−1 we have

C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

Special case: βi(•) = αiI → Rayleigh damping.
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Generalized proportional
damping

Theorem 2 A viscously damped positive definite
linear system possesses classical normal modes if
and only if C can be represented by
(a) C = M β1

(
M−1K

)
+ K β2

(
K−1M

)
, or

(b) C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

for any βi(•), i = 1, · · · , 4.
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Example 1

Equation of motion:

Mq̈+

[
Me

−

�

M
−1

K

�2

/2
sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K

π

]
q̇ + Kq = 0

It can be shown that the system has real modes and

2ξjωj = e−ω4

j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1

√
ωj

tan−1 ωj

π
.
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Damping identification method

To simplify the identification procedure, express the
damping matrix by

C = Mf
(
M−1K

)

Using this simplified expression, the modal damping
factors can be obtained as

2ζjωj = f
(
ω2

j

)

or ζj =
1

2ωj
f

(
ω2

j

)
= f̂(ωj) (say)
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Damping identification method

The function f̂(•) can be obtained by fitting a
continuous function representing the variation
of the measured modal damping factors with
respect to the frequency

With the fitted function f̂(•), the damping matrix
can be identified as

2ζjωj = 2ωj f̂(ωj)

or Ĉ = 2M
√

M−1K f̂
(√

M−1K
)
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Example 2

Consider a 3DOF system with mass and stiffness
matrices

M =




1.0 1.0 1.0

1.0 2.0 2.0

1.0 2.0 3.0



 , K =




2 −1 0.5

−1 1.2 0.4

0.5 0.4 1.8
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Example 2
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Example 2

Here this (continuous) curve was simulated using
the equation

f̂(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

)

From the above equation, the modal damping
factors in terms of the discrete natural frequencies,
can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
.
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Example 2

To obtain the damping matrix, consider the
preceding equation as a function of ω2

j and replace
ω2

j by M−1K and any constant terms by that
constant times I. Therefore:

C =M
2

15

√
M−1K

[
e−2.0

√
M

−1

K − e−3.5

√
M

−1

K
]

×

[
I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

]
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Experimental Example 1

Natural frequencies, Hz Damping factors Natural frequencies, Hz
(experimental) (in % of critical damping) (from FE)

33.00 0.6250 30.81 (-6.64 %)

85.00 0.2000 85.24 (0.29 %)

166.00 0.0833 167.61 (0.97 %)

276.00 0.0313 277.73 (0.63 %)

409.00 0.0625 415.67 (1.63 %)

569.00 0.1250 581.42 (2.18 %)

758.00 0.1163 774.94 (2.24 %)

976.00 0.1786 996.20 (2.07 %)

1217.00 0.8621 1245.15 (2.31 %)

1498.00 0.7143 1521.77 (1.59 %)

1750.00 0.3571 1826.06 (4.35 %)

Measured data for the beam examplebCd = 2MT

�
p1I + p2T + p3T

2

�
= 2p2K + 2(p1M + p3K)

√

M
−1

K.
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Experimental Example 1
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Summary

1. Measure a suitable transfer function Hij(ω)

2. Obtain the undamped natural frequencies ωj

and modal damping factors ζj

3. Fit a function ζ = f̂(ω) which represents the
variation of ζj with respect to ωj for the range of
frequency considered in the study

4. Calculate the matrix T =
√

M−1K

5. Obtain the damping matrix using
Ĉ = 2 M T f̂ (T)
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Conclusions(1)

Rayleigh s proportional damping is generalized.

The generalized proportional damping
expresses the damping matrix in terms of any
non-linear function involving specially arranged
mass and stiffness matrices so that the system
still posses classical normal modes.

This enables one to model practically any type
of variations in the modal damping factors with
respect to the frequency.
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Conclusions(2)

Once a scalar function is fitted to model such
variations, the damping matrix can be identified
very easily using the proposed method.

The method is very simple and requires the
measurement of damping factors and natural
frequencies only (that is, the measurements of
the mode shapes are not necessary).

The proposed method is applicable to any
linear structures as long as one have validated
mass and stiffness matrix models which can
predict the natural frequencies accurately and
modes are not significantly complex.
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