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Epistemic uncertainty

Uncertainties can be broadly divided into two categories:

The first type is due to the inherent variability in the
system parameters. This is often referred to as aleatoric
uncertainty or parametric uncertainty. If enough samples
are present, it is possible to characterize the variability
using well established statistical methods.

The second type of uncertainty is mainly due to the lack
of knowledge regarding a system, referred to as
epistemic uncertainty or non-parametric uncertainty. This
generally arise in the modelling of complex systems. Due
to its very nature, it is comparatively difficult to quantify.
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The origins of epistemic
uncertainty

In the modelling of complex systems, such as the marine
(e.g. ships and submarines) and aerospace systems
(e.g. helicopters, aircrafts and space shuttles), modeling
uncertainty arises naturally due to the lack of complete
knowledge of the system.

We assume that modeling uncertainty can be
represented by random subsystems attached to the
‘master system’.

For typical marine and aerospace structures, the cargo,
piping, fuel, control cables, electronics and avionic
systems, hydraulics and bulkheads constitute such
subsystems.
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The origins of epistemic
uncertainty

The ‘lack of knowledge’ may arise due to, but not restricted to:

the lack of knowledge regarding the presence of such
subsystems at the first place,

the lack of knowledge regarding their spatial locations
with respect to the primary structure,

imprecise and incomplete information about their
constitutive and geometric properties.

unknown coupling characteristics.
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Modeling of epistemic
uncertainty

For many complex dynamical systems, the main
structural parts (often known as the primary or master
structure) can often be modeled deterministically using
the conventional finite element method.

On the other hand, the substructures (often known as the
secondary systems) attached to the primary structure
may not be practically accessible for conventional finite
element modeling due to the lack of knowledge of such
subsystems.

Here we use random oscillators to model this lack of
knowledge arising in the context of linear dynamical
systems.
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Modeling of epistemic
uncertainty

Randomly distributed sprung-masses can be used to
simulate the effect of uncertain secondary systems
whose spatial attachment locations and dynamic
characteristics are not available a priori.

In contrast to the case of data uncertainty (traditionally
modeled in the framework of stochastic finite element
method), the model uncertainty arising from the
sprung-mass oscillators gives rise to new variety of
dynamical system for each sample. This can be
observed from the variation in the sparsity structure of
the mass, stiffness and damping matrices of the total
system from sample to sample.
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Variation in the sparsity pattern

In the frequency domain equation of motion can be
expressed as

A(ω)q̄(ω) = f̄(ω) (1)

where A(ω) = −ω2M + iωC + K is known as the
dynamic stiffness matrix

Suppose q̄m denotes the degrees-of-freedom of baseline
system and q̄u denotes the degrees-of-freedom of
secondary systems.
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Variation in the sparsity pattern

Eq. (1) can be partitioned as




Amm Amu

Aum Auu











q̄m

q̄u







=







f̄

0







. (2)

In reality, one only knows q̄m and Amm using the
conventional finite element method.

In most cases, no information regarding q̄u is available.
The uncertainty associated with these ‘unknown’ DOFs
include their dimension, nature and locations. As a result
Auu and the coupling matrix Aum are also unknown.
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Variation in the sparsity pattern

Eliminating q̄u from Eq. (2) by condensation, one has

[

Amm − AmuA
−1
uuAum

]

q̄m = f̄ (3)

or [Amm + ∆A] q̄m = f̄ (4)

where ∆A = −AmuA
−1
uuAum ∈ R

n×n.

This equation shows that whatever may be the nature of
uncertainty associated with the DOFs arising from the
secondary systems, they randomly perturb the
condensed ‘baseline’ matrix Amm by ∆A. Moreover, from
Eq. (4) it is clear that sparsity structures associated with
deterministic matrix Amm and Amm + ∆A are different.
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Modeling of epistemic
uncertainty

Change in the sample-wise sparsity pattern
cannot be modeled by data uncertainty alone.
In the case of data uncertainty, the actual
configuration of dynamical system remains
unchanged, just its local parameters change
from sample to sample.

Our conjecture: Episematic or non-parametric
uncertainty leads to the variation in the sparsity
structure of the system matrices.
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Modeling of epistemic
uncertainty

Question 1: What global probabilistic model can be used
which will result in the difference in the sparsity structure
of the system matrices?

Question 2: How much information regarding uncertainty
we need to model epistemic uncertainty?

We investigate the feasibility of using random matrix
theory to address these issues.
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Structural dynamics

The objective : To have a general method to model
epistemic uncertainty in discrete linear dynamical
systems.

The equation of motion:

Mẍ(t) + Cẋ(t) + Kx(t) = p(t)

Due to the presence of uncertainty M, C and K become
random matrices.
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Random Matrix Method (RMM)

The methodology :

Derive the matrix variate probability density
functions of M, C and K

Propagate the uncertainty (using Monte
Carlo simulation or analytical methods) to
obtain the response statistics (or pdf)
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(5)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1

2
np Γn

(

1

2
p

)

|Σ|
1

2
p

}−1

|S|
1

2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(6)

This distribution is usually denoted as S ∼ Wn(p,Σ).
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Matrix variate Gamma
distribution

A n× n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a

and Ψ ∈ R
+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1
|W|a−

1

2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

(7)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here
the multivariate gamma function:

Γn (a) = π
1

4
n(n−1)

n
∏

k=1

Γ

[

a −
1

2
(k − 1)

]

; forℜ(a) > (n−1)/2 (8)
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Distribution of the system
matrices

The distribution of the random system matrices M,
C and K should be such that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of
the dynamic stiffness matrix
D(ω) = −ω2M + iωC + K should exist ∀ω
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Matrix Factorization Approach
(MFA)

Suppose G denotes any one of the system matrices.
Because G is a symmetric and positive-definite random
matrix, it can be always factorized as

G = XXT (9)

where X ∈ R
n×p, p ≥ n is in general a rectangular matrix.

The simplest case is when the mean of X is
O ∈ R

n×p, p ≥ n and the covariance tensor of X is given
by Σ ⊗ Ip ∈ R

np×np where Σ ∈ R
+
n .

X is a Gaussian random matrix with mean
O ∈ R

n×p, p ≥ n and covariance Σ ⊗ Ip ∈ R
np×np.

Experimental UQ – p.21/44



IMAC XXV, Orlando, 19 February 2007

Wishart Pdf

After some algebra it can be shown that G is a Wn(p,Σ)

Wishart random matrix, whose pdf is given given by

pG (G) =

{

2
1

2
np Γn
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p

)

|Σ|
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2
p

}−1

|G|
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−
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Parameter Estimation of Wishart
Distribution

The distribution of G must be such that E [G] and

E
[

G−1
]

should be closest to G and G
−1

respectively.

Since G ∼ Wn (p,Σ), there are two unknown parameters
in this distribution, namely, p and Σ. This implies that
there are in total 1 + n(n + 1)/2 number of unknowns.

We define and subsequently minimize ‘normalized
errors’:
ε1 =

∥

∥G − E [G]
∥

∥

F
/
∥

∥G
∥

∥

F

ε2 =
∥

∥

∥
G

−1
− E

[

G−1
]

∥

∥

∥

F
/
∥

∥

∥
G

−1
∥

∥

∥

F
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MFA Distribution

Solving the optimization problem we have:
Theorem 1. If ν-th order inverse-moment of a
system matrix G ≡ {M,C,K} exists and only the

mean of G is available, say G, then the distribution
of G follows the Wishart distribution with parameters

p = (2ν + n + 1) and Σ = G/
√

2ν(2ν + n + 1), that
is

G ∼ Wn

(

2ν + n + 1,G/
√

2ν(2ν + n + 1)
)

.
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Simulation Algorithm: Dynamical
Systems

Obtain θ =
1

δ2

G







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







− (n + 1)

If θ < 4, then select θ = 4.

Calculate α =
√

θ(n + 1 + θ)

Generate samples of G ∼ Wn

(

n + 1 + θ,G/α
)

(Matlabr command wishrnd can be used to generate
the samples)

Repeat the above steps for all system matrices and solve
for every samples
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Example 1: A cantilever Plate
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The Finite Element (FE) model of a steel cantilever plate: 21 × 14 elements, 330 nodes, 945

degrees-of-freedom, Ē = 200 × 109N/m2, µ̄ = 0.3, ρ̄ = 7860kg/m3, t̄ = 3.0mm, Lx = 0.9m,

Ly = 0.6m, 2% modal damping for all modes. Ten randomly placed sprung-mass oscillators

having natural frequencies uniformly distributed between (1 − 2) KHz are considered.
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Comparison of Amplitude
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 945

and δK = 0.1699.
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Comparison of Amplitude: Low
Freq
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Comparison of Amplitude: Mid
Freq
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Comparison of the mean and standard deviation of the amplitude of the cross-FRF, n = 945

and δK = 0.1699.
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Comparison of Amplitude: High
Freq
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Comparison of Amplitude
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of Amplitude: Low
Freq
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Comparison of Amplitude: Mid
Freq
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Comparison of Amplitude: High
Freq
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Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Comparison of phase
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Comparison of the mean and standard deviation of the phase of the cross-FRF, n = 945 and

δK = 0.1699.
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Comparison of phase: Low Freq
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Comparison of the mean and standard deviation of the phase of the cross-FRF, n = 945 and

δK = 0.1699.
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Comparison of phase: Mid Freq
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Comparison of the mean and standard deviation of the phase of the cross-FRF, n = 945 and

δK = 0.1699.
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Comparison of phase: High Freq
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Comparison of the mean and standard deviation of the phase of the cross-FRF, n = 945 and

δK = 0.1699.
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Comparison of phase
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Comparison of the 5% and 95% probability points of the phase of the cross-FRF.
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Comparison of phase: Low Freq
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Comparison of the 5% and 95% probability points of the phase of the cross-FRF.
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Comparison of phase: Mid Freq
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Comparison of the 5% and 95% probability points of the phase of the cross-FRF.
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Comparison of phase: High Freq
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Comparison of the 5% and 95% probability points of the phase of the cross-FRF.
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Conclusions

We attempted to represent model uncertainty in linear
dynamical systems using Random Matrix Theory (RMT).
The study explored practical means to represent an
ensemble of dynamical systems derived from model
perturbation of a baseline system.

We have shown that episematic or non-parametric
uncertainty leads to the sample-wise variation in the
sparsity structure of the system matrices.

Using a Matrix Factorization Approach (MFA), it was
shown that Wishart matrices may be used as the model
for the random system matrices in structural dynamics.
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Conclusions

Only the mean matrix and the normalized standard
deviation is required to model the system.

As an illustration, we considered model uncertainty in a
vibrating plate due to disorderly attached sprung-mass
oscillators having random natural frequencies.

The encouraging agreements (in the mid and high
frequency region) between the results obtained the from
Wishart matrix model and direct Monte Carlo simulation
suggest that it may be a practical method to represent the
statistical dispersion observed in the response of
dynamical systems arising from model uncertainty.
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