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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation



Outline of this talk

1 Introduction

2 Linear dynamic systems
Undamped systems

Proportionally damped systems

3 Random variables

4 Random fields

5 Stochastic single degrees of freedom system

6 Stochastic finite element formulation



Few general questions

How does system uncertainty impact the dynamic response? Does it
matter?

What is the underlying physics?

How can we model uncertainty in dynamic systems? Do we ‘know’ the

uncertainties?

How can we efficiently quantify uncertainty in the dynamic response for

large multi degrees of freedom systems?

What about using ‘black box’ type response surface methods?

Can we use modal analysis for stochastic systems? Does stochastic

systems has natural frequencies and mode shapes?



Mathematical models for dynamic systems

Mathematical Models of Dynamic Systems
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A general overview of computational mechanics
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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nom-

inally identical systems). On the other hand, some models are complex!



Complex structural dynamical systems

Complex aerospace system can have millions of degrees of freedom and

there can be ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite
Element) model



Model quality

The quality of a model of a dynamic system depends on the following three
factors:

Fidelity to (experimental) data:

The results obtained from a numerical or mathematical model undergoing
a given excitation force should be close to the results obtained from the

vibration testing of the same structure undergoing the same excitation.

Robustness with respect to (random) errors:

Errors in estimating the system parameters, boundary conditions and

dynamic loads are unavoidable in practice. The output of the model
should not be very sensitive to such errors.

Predictive capability
In general it is not possible to experimentally validate a model over the

entire domain of its scope of application. The model should predict the

response well beyond its validation domain.



Sources of uncertainty

Different sources of uncertainties in the modeling and simulation of dynamic

systems may be attributed, but not limited, to the following factors:

Mathematical models: equations (linear, non-linear), geometry, damping
model (viscous, non-viscous, fractional derivative), boundary

conditions/initial conditions, input forces;

Model parameters: Young’s modulus, mass density, Poisson’s ratio,

damping model parameters (damping coefficient, relaxation modulus,

fractional derivative order)

Numerical algorithms: weak formulations, discretisation of displacement

fields (in finite element method), discretisation of stochastic fields (in
stochastic finite element method), approximate solution algorithms,

truncation and roundoff errors, tolerances in the optimization and iterative

methods, artificial intelligent (AI) method (choice of neural networks)

Measurements: noise, resolution (number of sensors and actuators),

experimental hardware, excitation method (nature of shakers and
hammers), excitation and measurement point, data processing

(amplification, number of data points, FFT), calibration



Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deterministic) Known (deterministic) Unknown Analysis (forward problem) FEM/BEM/Finite differ-

ence

Known (deterministic) Incorrect (deterministic) Known (deterministic) Updating/calibration Modal updating

Known (deterministic) Unknown Known (deterministic) System identification Kalman filter

Assumed (deterministic) Unknown (deterministic) Prescribed Design Design optimisation

Unknown Partially Known Known Structural Health Monitor-
ing (SHM)

SHM methods

Known (deterministic) Known (deterministic) Prescribed Control Modal control

Known (random) Known (deterministic) Unknown Random vibration Random vibration meth-
ods



Problem-types in structural mechanics

Input System Output Problem name Main techniques

Known (deterministic) Known (random) Unknown
Stochastic analysis (for-

ward problem)

SFEM/SEA/RMT

Known (random) Incorrect (random) Known (random) Probabilistic updat-

ing/calibration

Bayesian calibration

Assumed (ran-

dom/deterministic)

Unknown (random) Prescribed (random) Probabilistic design RBOD

Known (ran-

dom/deterministic)

Partially known (random) Partially known (random) Joint state and parameter

estimation

Particle Kalman Fil-

ter/Ensemble Kalman

Filter

Known (ran-

dom/deterministic)

Known (random) Known from experiment

and model (random)

Model validation Validation methods

Known (ran-
dom/deterministic)

Known (random) Known from different
computations (random)

Model verification verification methods



Equation of motion

The equations of motion of an undamped non-gyroscopic system with N

degrees of freedom can be given by

Mq̈(t) + Kq(t) = f(t) (1)

where M ∈ R
n is the mass matrix, K ∈ R

n is the stiffness matrix,

q(t) ∈ R
N is the vector of generalized coordinates and f(t) ∈ R

N is the
forcing vector.

Equation (1) represents a set of coupled second-order
ordinary-differential equations. The solution of this equation also requires

the knowledge of the initial conditions in terms of displacements and

velocities of all the coordinates. The initial conditions can be specified as

q(0) = q0 ∈ R
N and q̇(0) = q̇0 ∈ R

N . (2)



Modal analysis

The natural frequencies (ωj ) and the mode shapes (xj ) are intrinsic

characteristic of a system and can be obtained by solving the associated

matrix eigenvalue problem

Kxj = ω2
j Mxj , ∀ j = 1, · · · ,N. (3)

The eigensolutions satisfy the orthogonality condition

xT
l Mxj = δlj (4)

and xT
l Kxj = ω2

j δlj , ∀ l, j = 1, · · · ,N (5)

Using the orthogonality relationships in (4) and (5), the equations of
motion in the modal coordinates may be obtained as

ÿ(t) +Ω
2y(t) = f̃(t)

or ÿj(t) + ω2
j yj(t) = f̃j(t) ∀ j = 1, · · · ,N

(6)

where f̃(t) = XT f(t) is the forcing function in modal coordinates.



Dynamic response

Taking the Laplace transform of (1) and considering the initial conditions

in (2) one has

s2Mq̄ − sMq0 − Mq̇0 + Kq̄ = f̄(s) (7)

or
[
s2M + K

]
q̄ = f̄(s) + Mq̇0 + sMq0 = p̄(s) (say). (8)

Using the mode orthogonality the response in the frequency domain

q̄(iω) =

N∑

j=1

xT
j f̄(iω) + xT

j Mq̇0 + iωxT
j Mq0

ω2
j − ω2

xj . (9)

This expression shows that the dynamic response of the system is a

linear combination of the mode shapes.



Equation of motion

The equations of motion can expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). (10)

Theorem

Viscously damped system (10) possesses classical normal modes if and
only if CM−1K = KM−1C.

With proportional damping assumption, the damping matrix C is

simultaneously diagonalizable with M and K. This implies that the
damping matrix in the modal coordinate

C
′ = XT CX (11)

is a diagonal matrix. The damping ratios ζj are defined from the diagonal
elements of the modal damping matrix as

C′
jj = 2ζjωj ∀j = 1, · · · ,N. (12)



Dynamic response

The equations of motion in the modal coordinate can be decoupled as

ÿj(t) + 2ζjωj ẏj(t) + ω2
j yj(t) = f̃j(t) ∀ j = 1, · · · ,N. (13)

Taking the Laplace transform of (10) and considering the initial conditions
in (2) one has

s2Mq̄ − sMq0 − Mq̇0 + sCq̄ − Cq0 + Kq̄ = f̄(s) (14)

or
[
s2M + sC + K

]
q̄ = f̄(s) + Mq̇0 + Cq0 + sMq0. (15)

The transfer function matrix or the receptance matrix can be obtained as

H(iω) = X
[
−ω2I + 2iωζΩ+Ω

2
]−1

XT =
N∑

j=1

xjx
T
j

−ω2 + 2iωζjωj + ω2
j

. (16)



Dynamic response

The dynamic response in the frequency domain can be conveniently

represented as

q̄(iω) =
N∑

j=1

xT
j f̄(iω) + xT

j Mq̇0 + xT
j Cq0 + iωxT

j Mq0

−ω2 + 2iωζjωj + ω2
j

xj . (17)

Therefore, like undamped systems, the dynamic response of

proportionally damped system can also be expressed as a linear
combination of the undamped mode shapes.



Dynamic response

In the time-domain, taking the inverse Laplace transform we have

q(t) = L−1 [q̄(s)] =

N∑

j=1

aj(t)xj (18)

where the time dependent constants are given by

aj(t) =

∫ t

0

1

ωdj

xT
j f(τ)e−ζjωj (t−τ ) sin

(
ωdj

(t − τ)
)

dτ+e−ζjωj t Bj cos
(
ωdj

t + θj

)

(19)

where

Bj =

√(
xT

j Mq0

)2

+
1

ω2
dj

(
ζjωjx

T
j Mq0 − xT

j Mq̇0 − xT
j Cq0

)2

(20)

and tan θj =
1

ωdj

(
ζjωj −

xT
j Mq̇0 + xT

j Cq0

xT
j Mq0

)
(21)



Definition of a random variable

A real random variable Y (θ), θ ∈ Θ is a set of function defined on Θ such
that for every real number y there exist a probability P(θ : Y (ω) ≤ y)

Probability Distribution Function: Consider the event Y ≤ y . We define

F (y) = P(Y ≤ y), y ∈ R

F (y) is called Probability Distribution Function of Y . F (y) is a

monotonically increasing function y with F (−∞) = 0 and F (∞) = 1.

Probability Density Function: The probability structure of a random

variable can be described by the derivative of the probability distribution
function p(y), called the Probability Density Function. Thus

p(y) =
∂F (y)

∂y

This is normalised such that
∫ ∞

−∞

p(y)dy = 1



Definition of a random field/process

A random field H(x , θ) is defined as a set function of two arguments

θ ∈ Θ and x ∈ X , where Θ is the sample space of the family of random
variables H(x , •) and X is the indexing set of parameter X .

Since a random field H(x , θ) reduces to a set of random variables at fixed

instances of x = x1, x2, · · · xn, · · · , its probability structure may be defined
by a hierarchy of joint probability density function

p(h1, x1), p(h1, x1; h2, x2), · · · , p(h1, x1; h2, x2; · · · , hn, xn; · · · ) (22)

Stationary random field: A random field is said to be stationary if its
probability structure is invariant under arbitrary translations of the

indexing parameter. Thus H(x , θ) is stationary if for all x1, x2, · · · , xn and
an arbitrary constant τ if for all n

p(h1, x1; h2, x2; · · · , hn, xn) = p(h1, x1 + τ ; h2, x2 + τ ; · · · , hn, xn + τ) (23)



Moments of a random field

The mean of a random field is given by

E [H(x , θ)] =

∫
H(x , θ)p(h1, x1)dh1

The autocorrelation is given by

CHH(x1, x2) =

∫
H(x , θ)p(h1, x1; h2, x2)dh1dh2



Stochastic SDOF systems

m

k

��

u(t)

f(t)

fd(t)

Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (24)

Here ωn =
√

k/m is the natural frequency and ξ = c/2
√

km is the damping
ratio.

We are interested in understanding the motion when the natural
frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.



Frequency variability
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Figure : We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where ωn0

is

deterministic frequency and r is a random variable with a given

probability distribution function.

Several probability distribution function can be used.

We use uniform, normal and lognormal distribution



Frequency samples
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Figure : 1000 sample realisations of the frequencies for the three distributions



Response in the time domain
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Figure : Response due to initial velocity v0 with 5% damping



Frequency response function
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Figure : Normalised frequency response function |u/ust |
2, where ust = f/k



Key observations

The mean response is more damped compared to deterministic
response.

The higher the randomness, the higher the “effective damping”.

The qualitative features are almost independent of the distribution the
random natural frequency.

We often use averaging to obtain more reliable experimental results - is it
always true?

Assuming uniform random variable, we aim to explain some of these

observations.



Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + ǫx), where

x has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m

[−ω2 + ω2
n0
(1 + ǫx)] + 2iξωωn0

√
1 + ǫx

(25)

Considering ωn0
=
√

k/m and frequency ratio r = ω/ωn0
we have

u

f/k
=

1

[(1 + ǫx)− r2] + 2iξr
√

1 + ǫx
(26)



Equivalent damping

The squared-amplitude of the normalised dynamic response at ω = ωn0

(that is r = 1) can be obtained as

Û =

( |u|
f/k

)2

=
1

ǫ2x2 + 4ξ2(1 + ǫx)
(27)

Since x is zero mean unit standard deviation uniform random variable, its

pdf is given by px (x) = 1/2
√

3,−
√

3 ≤ x ≤
√

3

The mean is therefore

E

[
Û
]
=

∫
1

ǫ2x2 + 4ξ2(1 + ǫx)
px (x)dx

=
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
− ξ√

1 − ξ2

)

+
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
+

ξ√
1 − ξ2

)
(28)



Equivalent damping

Note that

1

2

{
tan−1(a + δ) + tan−1(a − δ)

}
= tan−1(a) + O(δ2) (29)

Neglecting terms of the order O(ξ2) we have

E

[
Û
]
≈ 1

2
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2

)
=

tan−1(
√

3ǫ/2ξ)

2
√

3ǫξ
(30)



Equivalent damping

For small damping, the maximum deterministic amplitude at ω = ωn0
is

1/4ξ2
e where ξe is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given by

(2ξe)
2 =

2
√

3ǫξ

tan−1(
√

3ǫ/2ξ)
(31)

For small damping, taking the limit we can obtain

ξe ≈ 31/4
√
ǫ√

π

√
ξ (32)

The equivalent damping factor of the mean system is proportional to the
square root of the damping factor of the underlying baseline system



Equivalent frequency response function
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Figure : Normalised frequency response function with equivalent damping (ξe = 0.05

in the ensembles). For the two cases ξe = 0.0643 and ξe = 0.0819 respectively.



Can we extend the ideas based on stochastic SDOF systems to stochastic
MDOF systems?



Stochastic modal analysis

Stochastic modal analysis to obtain the dynamic response needs further

thoughts

Consider the following 3DOF example:

m1

m2

m3
k4 k5k1 k3

k2

k6

Figure : A 3DOF system with parametric uncertainty in mi and ki



Statistical overlap
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Figure : Scatter of the eigenvalues due to parametric uncertainties



Stochastic PDEs

We consider a stochastic partial differential equation (PDE)

ρ(r, θ)
∂2U(r, t , θ)

∂t2
+ Lα

∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (33)

The stochastic operator Lβ can be

Lβ ≡ ∂
∂x

AE(x , θ) ∂
∂x

axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams

Lα denotes the stochastic damping, which is mostly proportional in nature.
Here α, β : Rd ×Θ → R are stationary square integrable random fields, which

can be viewed as a set of random variables indexed by r ∈ R
d . Based on the

physical problem the random field a(r, θ) can be used to model different
physical quantities (e.g., AE(x , θ), EI(x , θ)).



Discretisation of random fields

The random process a(r, θ) can be expressed in a generalized Fourier
type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +

∞∑

i=1

√
νiξi(θ)ϕi (r) (34)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard

Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1, 2, · · · (35)



Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (36)

The underlying random process H(x , θ) can be expanded using the
Karhunen-Loève (KL) expansion in the interval −a ≤ x ≤ a as

H(x , θ) =

∞∑

j=1

ξj (θ)
√
λjϕj(x) (37)

Using the notation c = 1/b, the corresponding eigenvalues and
eigenfunctions for odd j and even j are given by

λj =
2c

ω2
j + c2

, ϕj(x) =
cos(ωjx)√

a +
sin(2ωja)

2ωj

, where tan(ωja) =
c

ωj

,

(38)

λj =
2c

ωj
2 + c2

, ϕj(x) =
sin(ωjx)√

a − sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c
.

(39)



KL expansion
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b=L/2,  N=10

b=L/3,  N=13

b=L/4,  N=16

b=L/5,  N=19

b=L/10,  N=34

The eigenvalues of the Karhunen-Loève expansion for different correlation

lengths, b, and the number of terms, N, required to capture 90% of the infinite
series. An exponential correlation function with unit domain (i.e., a = 1/2) is

assumed for the numerical calculations. The values of N are obtained such

that λN/λ1 = 0.1 for all correlation lengths. Only eigenvalues greater than λN

are plotted.



Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L with

random bending stiffness and mass distribution:

∂2

∂x2

[
EI(x , θ)

∂2Y (x , t)

∂x2

]
+ ρA(x , θ)

∂2Y (x , t)

∂t2
= p(x , t). (40)

Y (x , t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x): mass
per unit length, and p(x , t): applied forcing. Consider

EI(x , θ) = EI0 (1 + ǫ1F1(x , θ)) (41)

and ρA(x , θ) = ρA0 (1 + ǫ2F2(x , θ)) (42)

The subscript 0 indicates the mean values, 0 < ǫi << 1 (i=1,2) are

deterministic constants and the random fields Fi(x , θ) are taken to have zero
mean, unit standard deviation and covariance Rij(ξ).



Random beam element

1 3

2 4

EI(x),   m(x),    c    , c1 2

l

y

x

Random beam element in the local coordinate.



Realisations of the random field

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Length along the beam (m)

EI
 (N

m
2 )

 

 

baseline value

perturbed values

Some random realizations of the bending rigidity EI of the beam for

correlation length b = L/3 and strength parameter ǫ1 = 0.2 (mean 2.0 × 105).
Thirteen terms have been used in the KL expansion.



Example: A beam with random properties

We express the shape functions for the finite element analysis of

Euler-Bernoulli beams as

N(x) = Γ s(x) (43)

where

Γ =




1 0
−3

ℓe
2

2

ℓe
3

0 1
−2

ℓe
2

1

ℓe
2

0 0
3

ℓe
2

−2

ℓe
3

0 0
−1

ℓe
2

1

ℓe
2




and s(x) =
[
1, x , x2, x3

]T
. (44)

The element stiffness matrix:

Ke(θ) =

∫ ℓe

0

N
′′

(x)EI(x , θ)N
′′T

(x)dx =

∫ ℓe

0

EI0 (1 + ǫ1F1(x , θ))N
′′

(x)N
′′T

(x)dx .

(45)



Example: A beam with random properties

Expanding the random field F1(x , θ) in KL expansion

Ke(θ) = Ke0 +∆Ke(θ) (46)

where the deterministic and random parts are

Ke0 = EI0

∫ ℓe

0

N
′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKej . (47)

The constant NK is the number of terms retained in the Karhunen-Loève

expansion and ξKj(θ) are uncorrelated Gaussian random variables with zero
mean and unit standard deviation. The constant matrices Kej can be

expressed as

Kej = EI0

∫ ℓe

0

ϕKj(xe + x)N
′′

(x)N
′′T

(x) dx (48)



Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0
+∆Me(θ) (49)

The deterministic and random parts is given by

Me0
= ρA0

∫ ℓe

0

N(x)NT (x) dx and ∆Me(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√

λMjMej . (50)

The constant NM is the number of terms retained in Karhunen-Loève

expansion and the constant matrices Mej can be expressed as

Mej = ρA0

∫ ℓe

0

ϕMj(xe + x)N(x)NT (x) dx . (51)

Both Kej and Mej can be obtained in closed-form.



Example: A beam with random properties

These element matrices can be assembled to form the global random

stiffness and mass matrices of the form

K(θ) = K0 +∆K(θ) and M(θ) = M0 +∆M(θ). (52)

Here the deterministic parts K0 and M0 are the usual global stiffness and

mass matrices obtained form the conventional finite element method. The

random parts can be expressed as

∆K(θ) = ǫ1

NK∑

j=1

ξKj(θ)
√

λKjKj and ∆M(θ) = ǫ2

NM∑

j=1

ξMj(θ)
√

λMj Mj (53)

The element matrices Kej and Mej can be assembled into the global matrices

Kj and Mj . The total number of random variables depend on the number of

terms used for the truncation of the infinite series. This in turn depends on the
respective correlation lengths of the underlying random fields.



Stochastic equation of motion

The equation for motion for stochastic linear MDOF dynamic systems:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (54)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi )Ki ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing vector

The mass and stiffness matrices have been expressed in terms of their

deterministic components (M0 and K0) and the corresponding random
contributions (Mi and Ki). These can be obtained from discretising

stochastic fields with a finite number of random variables (µi(θi ) and

νi(θi)) and their corresponding spatial basis functions.

Proportional damping model is considered for which

C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.



Frequency domain representation

For the harmonic analysis of the structural system, taking the Fourier

transform [
−ω2M(θ) + iωC(θ) + K(θ)

]
ũ(ω, θ) = f̃(ω) (55)

where ũ(ω, θ) is the complex frequency domain system response

amplitude, f̃(ω) is the amplitude of the harmonic force.

For convenience we group the random variables associated with the

mass and stiffness matrices as

ξi(θ) = µi(θ) and ξj+p1
(θ) = νj(θ) for i = 1, 2, . . . , p1

and j = 1, 2, . . . , p2



Frequency domain representation

Using M = p1 + p2 which we have

(
A0(ω) +

M∑

i=1

ξi(θ)Ai(ω)

)
ũ(ω, θ) = f̃(ω) (56)

where A0 and Ai ∈ C
n×n represent the complex deterministic and

stochastic parts respectively of the mass, the stiffness and the damping

matrices ensemble.

For the case of proportional damping the matrices A0 and Ai can be

written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0, (57)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1, 2, . . . , p1 (58)

and Aj+p1
(ω) = [iωζ2 + 1]Kj for j = 1, 2, . . . , p2 .



Time domain representation

If the time steps are fixed to ∆t, then the equation of motion can be written as

M(θ)üt+∆t (θ) + C(θ)u̇t+∆t (θ) + K(θ)ut+∆t (θ) = pt+∆t . (59)

Following the Newmark method based on constant average acceleration
scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)]ut+∆t (θ) = p
eqv
t+∆t (θ) (60)

and, p
eqv
t+∆t (θ) = pt+∆t + f (ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (61)

where p
eqv
t+∆t (θ) is the equivalent force at time t +∆t which consists of

contributions of the system response at the previous time step.



Newmark’s method

The expressions for the velocities u̇t+∆t (θ) and accelerations üt+∆t (θ) at each
time step is a linear combination of the values of the system response at

previous time steps (Newmark method) as

üt+∆t (θ) = a0 [ut+∆t (θ)− ut(θ)] − a2u̇t (θ)− a3üt (θ) (62)

and, u̇t+∆t (θ) = u̇t(θ) + a6üt (θ) + a7üt+∆t (θ) (63)

where the integration constants ai , i = 1, 2, . . . , 7 are independent of system
properties and depends only on the chosen time step and some constants:

a0 =
1

α∆t2
; a1 =

δ

α∆t
; a2 =

1

α∆t
; a3 =

1

2α
− 1; (64)

a4 =
δ

α
− 1; a5 =

∆t

2

(
δ

α
− 2

)
; a6 = ∆t(1 − δ); a7 = δ∆t (65)



Newmark’s method

Following this development, the linear structural system in (60) can be
expressed as [

A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t (θ) = p
eqv
t+∆t (θ). (66)

where A0 and Ai represent the deterministic and stochastic parts of the

system matrices respectively. For the case of proportional damping, the

matrices A0 and Ai can be written similar to the case of frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (67)

and, Ai = [a0 + a1ζ1]Mi for i = 1, 2, . . . , p1 (68)

= [a1ζ2 + 1]Ki for i = p1 + 1, p1 + 2, . . . , p1 + p2 .



General mathematical representation

Whether time-domain or frequency domain methods were used, in

general the main equation which need to be solved can be expressed as

(
A0 +

M∑

i=1

ξi (θ)Ai

)
u(θ) = f(θ) (69)

where A0 and Ai represent the deterministic and stochastic parts of the
system matrices respectively. These can be real or complex matrices.

Generic response surface based methods have been used in literature -
for example the Polynomial Chaos Method
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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation
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Random number generator

Quasi-random number generators calculates a sequence of numbers that

appear to be random xi = g(xi−1, . . . , xi−k), and the sequence is
repeated after applying g a given number of times, called the period.

These random number generators are used to simulate uniformly

distributed random variables. The uniform univariate distribution U(0, 1)
has a probability density function given by

f (x) =

{
1 if 0 < x < 1

0 otherwise
(1)

and its mean and variance are respectively E[X ] = 1/2, Var[X ] = 1/12.

Generally, samples of random variables with pdfs different from the

uniform pdf are needed. A random variable X with continuous cumulative
density function PX can be related to a uniform random variable U(0, 1)
through the inverse CDF method

X = P−1
X (U) (2)



Random number generator

For the case of a Gaussian random variable N(0, 1), samples can be

obtained from samples of two independent uniform random variables U
and V

X = (−2 ln U)1/2 cos(2πV ), Y = (−2 ln U)1/2 sin(2πV ) (3)

so that X and Y are independent random variables with standard normal
distribution.

Once the samples of the random variables are obtained, they are
introduced in the PDE studied and the deterministic systems are solved.

If MCS with N samples is used to obtain an estimation of the pdf of a

random variable u (e.g. a term of the response vector u), estimations of
the mean and standard deviation are given by

E[u] =

∫
up(u)du ≈ 1

N

N∑

i=1

ui (4)

σ =

∫
(u − E[u])2p(u)du ≈

√√√√ 1

N

N∑

i=1

(ui − E[u])2 (5)



Perturbation based methods

One of the first methods used to study uncertainty propagation is the

perturbation method where terms are expanded with their Taylor series

expansion around the mean value of the random parameters αi ,
i = 1, . . . ,M

Taylor series expansions of stiffness K, response u and load vector f are
truncated after the second order terms and introduced into Ku = f:

K = K0 +

N∑

i=1

KI
iαi +

1

2

N∑

i=1

N∑

j=1

KII
ijαiαj + o(‖α‖2) (6)

u = u0 +
N∑

i=1

uI
iαi +

1

2

N∑

i=1

N∑

j=1

uII
ijαiαj + o(‖α‖2) (7)

f = f0 +

N∑

i=1

f
I
iαi +

1

2

N∑

i=1

N∑

j=1

f
II
ijαiαj + o(‖α‖2) (8)



Perturbation based methods

The coefficients multiplying polynomials of the same order can be

identified

u0 = K−1
0 f0 (9)

uI
i = K−1

0 (fI
i − KI

i u0) (10)

uII
ij = K−1

0 (fII
ij − KI

i u
I
j − KI

j u
I
i − KII

ij u0) (11)

where terms with subindexes 0, i and ij are respectively the matrix or

vector evaluated at α = 0, its first derivative (e.g. KI
i =

∂K
∂αi

∣∣∣
α=0

) and its

second derivative (e.g. KII
ij =

∂2K
∂αi∂αj

∣∣∣
α=0

)

The statistics of u are derived from the second order Taylor expansion of
u and the statistics of α

E[u] ≈ u0 +
1

2

M∑

i=1

M∑

j=1

uII
ijCov[αi , αj ] (12)

Cov[u,u] ≈
M∑

i=1

M∑

j=1

uI
i .(u

I
j )

TCov[αi , αj ] (13)



Polynomial Chaos expansion

If a function f (ζ) is a function of infinite number of variables {ζik} and

square integrable, it can be expanded in Homogeneous Chaos as

f (ζ) = ŷi0h0 +

∞∑

i1=1

ŷi1Γ1(ζi1)

+

∞∑

i1=1

i1∑

i2=1

ŷi1,i2Γ2(ζi1 , ζi2) +

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ŷi1 i2 i3Γ3(ζi1 , ζi2 , ζi3)

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ŷi1i2 i3 i4 Γ4(ζi1 , ζi2 , ζi3 , ζi4) + . . . ,

(14)

Here Γp(ζi1 , ζi2 , · · · ζim) is m-dimensional homogeneous chaos of order p.

The polynomials are orthogonal with respect to the probability measure

of the underlying random variables



Polynomial Chaos expansion

For Gaussian random variables, Hermite polynomials are used.

For Uniform random random variables, Legendre polynomials are used.

Truncating Eq. (14) up to finite number of terms, we can concisely write

f (ζ) =
P−1∑

j=0

yjΨj(ζ) (15)

where the constant yj and functions Ψj(•) are effectively constants ŷk and
functions Γk (•) for corresponding indices.

Equation (15) can be viewed as the projection in the basis functions Ψj(ζ)
with corresponding ‘coordinates’ yj . The number of terms P in Eq. (15)

depends on the number of variables m and maximum order of

polynomials p as

P =

p∑

j=0

(m + j − 1)!

j!(m − 1)!
=

(
m + p

p

)
(16)



Polynomial Chaos expansion

j p Construction of Ψj Ψj

0 p = 0 L0 1

1 p = 1 L1(ζ1) ζ1

2 L1(ζ2) ζ2

3 L2(ζ1) 3/2 ζ1
2 − 1/2

4 p = 2 L1(ζ1)L1(ζ2) ζ1ζ2

5 L2(ζ2) 3/2 ζ2
2 − 1/2

6 L3(ζ1) 5/2 ζ1
3 − 3/2 ζ1

7 p = 3 L2(ζ1)L1(ζ2)
(

3/2 ζ1
2 − 1/2

)
ζ2

8 L1(ζ1)L2(ζ2) ζ1

(
3/2 ζ2

2 − 1/2
)

9 L3(ζ2) 5/2 ζ2
3 − 3/2 ζ2

10 L4(ζ1)
35
8
ζ1

4 − 15
4
ζ1

2 + 3/8

11 L3(ζ1)L1(ζ2)
(

5/2 ζ1
3 − 3/2 ζ1

)
ζ2

12 p = 4 L2(ζ1)L2(ζ2)
(

3/2 ζ1
2 − 1/2

)(
3/2 ζ2

2 − 1/2
)

13 L1(ζ1)L3(ζ2) ζ1

(
5/2 ζ2

3 − 3/2 ζ2

)

14 L4(ζ2)
35
8
ζ2

4 − 15
4
ζ2

2 + 3/8



Polynomial Chaos expansion

A least-square error minimization approach can be used to obtain the

constants yj in Eq. (15). We define the inner product norm in [−1, 1]m as

< •, • >=
1

Vm

∫ 1

−1

∫ 1

−1

· · ·
∫ 1

−1︸ ︷︷ ︸
m−fold

(•)(•)dζ1dζ2 · · ·dζm (17)

Here the volume

Vm = 2m (18)

is used for normalization so that for two constants a and b we have

< a, b >= ab. The error corresponding to Eq. (15) can be expressed as

ε = f (ζ)−
P−1∑

j=0

yjΨj(ζ) (19)

Using the inner product norm in (17), the norm of the error can be

obtained as

χ2 = 〈ε, ε〉 (20)



Polynomial Chaos expansion

Differentiating this with respect to yk , it can be shown that (Galerkin
approach) the optimal values of yk can be obtained my making the basis

functions orthogonal to the error, that is,

ε⊥Ψk or 〈Ψk , ε〉 = 0 ∀ k = 0, 2, . . . ,P − 1 (21)

Substituting the expression of error from Eq. (19) into this equation we
obtain

P−1∑

j=0

yj

〈
Ψk (ζ),Ψj(ζ)

〉
= 〈Ψk(ζ), f (ζ)〉 (22)

Using the orthogonality property of the basis function we have〈
Ψk (ζ),Ψj(ζ)

〉
= ckδjk .

Therefore, the constants yk can be obtained as

yk =
〈Ψk(ζ), f (ζ)〉
〈Ψk (ζ),Ψk (ζ)〉

, ∀ k = 0, 2, . . . ,P − 1 (23)

The integration appearing in the numerator and denominator can be

obtained using any standard procedure for multidimensional integrals. In

particular, the denominator can be calculated explicitly. The values of〈
Ψj(ζ),Ψj(ζ)

〉
cab be obtained analytically.



Polynomial Chaos expansion

Table : Values of 〈Ψj(ζ),Ψj(ζ)〉 for two variables (m = 2) with polynomial order 4

(p = 4).

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14〈
Ψj(ζ),Ψj(ζ)

〉
1 1/3 1/3 1/5 1/9 1/5 1/7 1/15 1/15 1/7 1/9 1/21 1/25 1/21 1/9

Substituting the values of yk from (23) into the expansion (15) we have

f̂ (ζ) =

P−1∑

j=0

[ 〈
Ψj(ζ), f (ζ)

〉
〈
Ψj(ζ),Ψj(ζ)

〉
]
Ψj(ζ) (24)

Here f̂ (ζ) is an approximation to the original function f (ζ) for polynomial

order upto p. The accuracy of this approximation can improve indefinitely
by considering higher-order polynomials. If the evaluation of the original

function f (ζ) is expensive, the surrogate model f̂ (ζ) can be used instead
of the original function.



Polynomial Chaos expansion: Example 1

To illustrate the application of the Galerkin projection approach, we

consider two problems involving bounded variables. We consider the
function

f̂1 (x) =
89

40
−

√
2

1080
(x1 + x2 − 20)

3
+

33

140
(x1 − x2) ; 4 ≤ x1, x2 ≤ 16 (25)

As the first step, we transform the variables in [−1, 1]:

x1 = 6ζ1 + 10 and x2 = 6ζ2 + 10 (26)

Substituting these into Eq. (25) one obtains the function in the
transformed variables as

f1 (ζ) =
89

40
− 1

5

√
2 (ζ1 + ζ2)

3
+

99

70
ζ1 −

99

70
ζ2 (27)

Using Eq. (23) the nonzero values of yj can be obtained as

y1 =
89

40
, y2 = − 8

25

√
2 +

99

70
, y3 = − 8

25

√
2 − 99

70
, y7 = − 2

25

√
2,

y8 = −2/5
√

2, y9 = −2/5
√

2 and y10 =
2

25

√
2

(28)



Polynomial Chaos expansion
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(b) Fitted function using Legendre polynomials

Figure : The original function and the fitted function corresponding to Eq. (25).



Polynomial Chaos expansion: Example 2

Consider the ‘Camelback’ function

f1 (x) = (4−2.1x2
1+x4

1/3)x2
1+x1x2+(−4+4x2

2 )x
2
2 ;−3 ≤ x1 ≤ 3;−2 ≤ x2 ≤ 2

(29)

Transform the variables in [−1, 1]:

x1 = 3ζ1 and x2 = 2ζ2 (30)

Substituting these into Eq. (29) one obtains the function in the
transformed variables as

f1 (ζ) = 9

(
4 − 189

10
ζ1

2 + 27ζ1
4

)
ζ1

2 + 6ζ1ζ2 + 4
(
−4 + 16ζ2

2
)
ζ2

2 (31)

Using Eq. (23), carrying out the 2-dimensional integration analytically, the

nonzero values of yj can be obtained as

y1 =
21169

1050
, y4 =

1488

35
, y5 = 6, y6 =

544

21
, y11 =

70956

1925
, y15 =

512

35
(32)



Polynomial Chaos expansion
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Figure : The original function and the fitted function corresponding to Eq. (29).



Vector valued Polynomial Chaos

The main equation which need to be solved can be expressed as

(
A0 +

M∑

i=1

ξi (θ)Ai

)
u(ξ) = f (33)

where A0 and Ai represent the deterministic and stochastic parts of the

system matrices respectively. These can be real or complex matrices.

We project the solution vector u(ξ) ∈ R
n in the basis of orthogonal

polynomials as

u(ξ) =

P−1∑

j=0

ujΨj(ξ) (34)

The aim is to obtain the coefficient vectors uj ∈ R
n using a Galerkin type

of error minimisation approach.



Vector valued Polynomial Chaos

Substituting expansion of u(ξ) in the governing equation (33), the error

vector can be obtained as

ε =

(
M∑

i=0

Aiξi

)


P−1∑

j=1

ujΨj(ξ)


 − f ∈ R

n (35)

where ξ0 = 1 is used to simplify the first summation expression.

The expression (34) is viewed as a projection where Ψj(ξ) are the
orthogonal basis functions and uj are the unknown ‘coordinates’ to be

determined.

We wish to obtain the vectors uj using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε⊥Ψk(ξ) or < Ψk (ξ), ε >= 0 ∀ k = 0, 2, . . . ,P − 1 (36)

Imposing this condition and using the expression of ε from Eq. (35) one

has
〈
Ψk (ξ),

(
M∑

i=0

Aiξi

)


P−1∑

j=1

ujΨj(ξ)



 − f

〉
= 0 ∀ k = 0, 2, . . . ,P−1 (37)



Vector valued Polynomial Chaos

Interchanging the summation operations, this can be simplified to

P−1∑

j=1

M∑

i=0

Ai

〈
ξiΨj(ξ)Ψk (ξ)

〉
uj − 〈Ψk (ξ)f〉 = 0 ∀ k = 0, 2, . . . ,P − 1 (38)

Introducing the notations

cijk =
〈
ξiΨj(ξ)Ψk (ξ)

〉
∈ R (39)

and fk = 〈Ψk (ξ)f〉 ∈ R
n (40)

one can express Eq. (38) as

P−1∑

j=1

M∑

i=0

cijkAiuj = fk ∀ k = 0, 2, . . . ,P − 1 (41)

Since the forcing is assumed to be deterministic,

fk = 〈Ψk(ξ)f〉 = 〈Ψk(ξ)〉 f. Using the definition of the orthogonal functions

it can be easily shown that 〈Ψ1(ξ)〉 = 1 and 〈Ψk (ξ)〉 = 0 for any other
values of k .

The constants cijk can be obtained in closed-form by performing the

necessary integrals. In turns our that many of the cijk becomes 0.



Vector valued Polynomial Chaos

Table : Values of c1jk and c2jk defined in Eq. (39) for two dimensional Legendre

polynomial based homogeneous chaos basis up to 4th order

j k c1jk j k c2jk

0 1 1/3 0 2 1/3

1 0 1/3 1 4 1/9
1 3 2/15 2 0 1/3

2 4 1/9 2 5 2/15
3 1 2/15 3 7 1/15

3 6 3/35 4 1 1/9

4 2 1/9 4 8 2/45
4 7 2/45 5 2 2/15

5 8 1/15 5 9 3/35

6 3 3/35 6 11 1/21
6 10 4/63 7 3 1/15

7 4 2/45 7 12 2/75

7 11 1/35 8 4 2/45
8 5 1/15 8 13 1/35

8 12 2/75 9 5 3/35
9 13 1/21 9 14 4/63

10 6 4/63 11 6 1/21



Vector valued Polynomial Chaos

Once the values of cijk and fk are obtained, further defining

Ajk =

M∑

i=0

cijkAi ∈ R
n×n (42)

one can rewrite Eq. (41) as

P−1∑

j=1

Ajk uj = fk , ∀ k = 0, 2, . . . ,P − 1 (43)

For all values ok k , this equation can be expressed in a matrix form as



A0,0 A0,1 · · · A0,P−1

A1,0 A1,1 · · · A1,P−1

...
...

...

AP−1,0 AP−1,1 · · · AP−1,P−1








u0

u1

...

uP−1





=





f0

f1

...

fP−1





(44)

or in a compact notation

KU = F (45)

where K ∈ R
nP×nP , U ,F ∈ R

nP . Once all uj for j = 0, 2, . . . ,P − 1 are

obtained, the solution vector can be obtained from (34).



Vector valued Polynomial Chaos

The main computational challenge posed by the method proposed here
is the solution of the set of linear equations in (44), which of size nP. The

value of the number of terms P depends on the number of random

variables M and the order of the chaos expansion r as given by Eq. (16).
Some values of P are shown for different number of random variables

and order of chaos expansions.

M 2 3 5 10 20 50 100

1st order (r = 1) 3 4 6 11 21 51 101
2nd order (r = 2) 6 10 21 66 231 1326 5151

3rd order (r = 3) 10 20 56 286 1771 23426 176851

4th order (r = 4) 15 35 126 1001 10626 316251 4598126

It can be seen that P increase significantly with the increase in M and r .

The value of n depends on the finite element discretisation and can be
large for complex problems. Therefore for practical problems nP can be

very large.
The solution of Eq. (44) can be a formidable task. The computational

complexity of the matrix inversion problem scales in cubically with the

dimension of the matrix in the worse case. Therefore, the computational
time for solving Eq. (44) is in O(P3n3).



Some observations of the PC solution

The basis is a function of the pdf of the random variables only. For

example, Hermite polynomials for Gaussian pdf, Legender’s polynomials

for uniform pdf.

The physics of the underlying problem (static, dynamic, heat conduction,

transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the projection

can be more than n (depends on the number of random variables). This

implies that many of the vectors uk are linearly dependent.

The physical interpretation of the coefficient vectors uk is not immediately

obvious.

The functional form of the response is a pure polynomial in random

variables.



Possibilities of solution types

As an example, consider the frequency domain response vector of the
stochastic system u(ω, θ) governed by

[
−ω2M(ξ(θ)) + iωC(ξ(θ)) + K(ξ(θ))

]
u(ω, θ) = f(ω). (46)

Some possibilities are

u(ω, θ) =

P1∑

k=1

Hk (ξ(θ))uk (ω)

or =

P2∑

k=1

Γk (ω, ξ(θ))φk

or =

P3∑

k=1

ak (ω)Hk (ξ(θ))φk

or =

P4∑

k=1

ak (ω)Hk (ξ(θ))Uk (ξ(θ)) . . . etc.

(47)



Deterministic classical modal analysis?

For a deterministic system, the response vector u(ω) can be expressed

as

u(ω) =

P∑

k=1

Γk (ω)uk

where Γk (ω) =
φT

k f

−ω2 + 2iζkωkω + ω2
k

uk = φk and P ≤ n (number of dominantmodes)

(48)

Can we extend this idea to stochastic systems?



Projection in the modal space

There exist a finite set of complex frequency dependent functions Γk (ω, ξ(θ))
and a complete basis φk ∈ R

n for k = 1, 2, . . . , n such that the solution of the

discretized stochastic finite element equation (46) can be expressed by the

series

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (49)

Outline of the derivation: In the first step a complete basis is generated with

the eigenvectors φk ∈ R
n of the generalized eigenvalue problem

K0φk = λ0k
M0φk ; k = 1, 2, . . . n (50)



Projection in the modal space

We define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ R

n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R
n×n (51)

Eigenvalues are ordered in the ascending order: λ01
< λ02

< . . . < λ0n
.

We use the orthogonality property of the modal matrix Φ as

Φ
T K0Φ = λ0, and Φ

T M0Φ = I (52)

Using these we have

Φ
T A0Φ = Φ

T
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (53)

This gives Φ
T A0Φ = Λ0 and A0 = Φ

−T
Λ0Φ

−1, where

Λ0 =
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 and I is the identity matrix.



Projection in the modal space

Hence, Λ0 can also be written as

Λ0 = diag [λ01
, λ02

, . . . , λ0n
] ∈ C

n×n (54)

where λ0j
=
(
−ω2 + iωζ1

)
+ (iωζ2 + 1) λj and λj is as defined in

Eqn. (51). We also introduce the transformations

Ãi = Φ
T AiΦ ∈ C

n×n; i = 0, 1, 2, . . . ,M. (55)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ
−T ÃiΦ

−1 ∈ C
n×n; i = 1, 2, . . . ,M. (56)



Projection in the modal space

Suppose the solution of Eq. (46) is given by

û(ω, θ) =

[
A0(ω) +

M∑

i=1

ξi (θ)Ai(ω)

]−1

f(ω) (57)

Using Eqs. (51)–(56) and the mass and stiffness orthogonality of Φ one has

û(ω, θ) =

[
Φ

−T
Λ0(ω)Φ

−1 +

M∑

i=1

ξi(θ)Φ
−T Ãi(ω)Φ

−1

]−1

f(ω)

⇒ û(ω, θ) = Φ

[
Λ0(ω) +

M∑

i=1

ξi (θ)Ãi(ω)

]−1

︸ ︷︷ ︸
Ψ (ω,ξ(θ))

Φ
−T f(ω)

(58)

where ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T
.



Projection in the modal space

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i , i = 1, 2, . . . ,M (59)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag [λi1 , λi2 , . . . , λin ] ∈ R

n×n (60)

and ∆i = Ãi − Λi is an off-diagonal only matrix.

Ψ (ω, ξ(θ)) =



Λ0(ω) +

M∑

i=1

ξi(θ)Λi(ω)

︸ ︷︷ ︸
Λ(ω,ξ(θ))

+

M∑

i=1

ξi(θ)∆i(ω)

︸ ︷︷ ︸
∆(ω,ξ(θ))




−1

(61)

where Λ (ω, ξ(θ)) ∈ R
n×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an

off-diagonal only matrix.



Projection in the modal space

We rewrite Eq. (61) as

Ψ (ω, ξ(θ)) =
[
Λ (ω, ξ(θ))

[
In + Λ

−1 (ω, ξ(θ))∆ (ω, ξ(θ))
]]−1

(62)

The above expression can be represented using a Neumann type of matrix

series as

Ψ (ω, ξ(θ)) =

∞∑

s=0

(−1)s
[
Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))

]s

Λ
−1 (ω, ξ(θ)) (63)



Projection in the modal space

Taking an arbitrary r -th element of û(ω, θ), Eq. (58) can be rearranged to have

ûr (ω, θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)


 (64)

Defining

Γk (ω, ξ(θ)) =

n∑

j=1

Ψkj (ω, ξ(θ))
(
φT

j f(ω)
)

(65)

and collecting all the elements in Eq. (64) for r = 1, 2, . . . , n one has

û(ω, θ) =

n∑

k=1

Γk (ω, ξ(θ))φk (66)



Spectral functions

Definition

The functions Γk (ω, ξ(θ)) , k = 1, 2, . . . n are the frequency-adaptive spectral
functions as they are expressed in terms of the spectral properties of the

coefficient matrices at each frequency of the governing discretized equation.

Each of the spectral functions Γk (ω, ξ(θ)) contain infinite number of terms

and they are highly nonlinear functions of the random variables ξi(θ).

For computational purposes, it is necessary to truncate the series after

certain number of terms.

Different order of spectral functions can be obtained by using truncation

in the expression of Γk (ω, ξ(θ))



First-order and second order spectral functions

Definition

The different order of spectral functions Γ
(1)
k (ω, ξ(θ)), k = 1, 2, . . . , n are

obtained by retaining as many terms in the series expansion in Eqn. (63).

Retaining one and two terms in (63) we have

Ψ
(1) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) (67)

Ψ
(2) (ω, ξ(θ)) = Λ

−1 (ω, ξ(θ)) − Λ
−1 (ω, ξ(θ))∆ (ω, ξ(θ))Λ−1 (ω, ξ(θ)) (68)

which are the first and second order spectral functions respectively.

From these we find Γ
(1)
k (ω, ξ(θ)) =

∑n
j=1 Ψ

(1)
kj (ω, ξ(θ))

(
φT

j f(ω)
)

are

non-Gaussian random variables even if ξi (θ) are Gaussian random
variables.



Nature of the spectral functions
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(a) Spectral functions for σa = 0.1.

0 100 200 300 400 500 600
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

S
pe

ct
ra

l f
un

ct
io

ns
 o

f a
 r

an
do

m
 s

am
pl

e

 

 

Γ(4)
1

(ω,ξ(θ))

Γ(4)
2

(ω,ξ(θ))

Γ(4)
3

(ω,ξ(θ))

Γ(4)
4

(ω,ξ(θ))

Γ(4)
5

(ω,ξ(θ))

Γ(4)
6

(ω,ξ(θ))

Γ(4)
7

(ω,ξ(θ))

(b) Spectral functions for σa = 0.2.

The amplitude of first seven spectral functions of order 4 for a particular
random sample under applied force. The spectral functions are obtained for

two different standard deviation levels of the underlying random field:
σa = {0.10, 0.20}.



Summary of the basis functions (frequency-adaptive spectral functions)

The basis functions are:

1 not polynomials in ξi(θ) but ratio of polynomials.

2 independent of the nature of the random variables (i.e. applicable to

Gaussian, non-Gaussian or even mixed random variables).

3 not general but specific to a problem as it utilizes the eigenvalues and

eigenvectors of the system matrices.

4 such that truncation error depends on the off-diagonal terms of the matrix

∆ (ω, ξ(θ)).

5 showing ‘peaks’ when ω is near to the system natural frequencies

Next we use these frequency-adaptive spectral functions as trial functions

within a Galerkin error minimization scheme.



The Galerkin approach

One can obtain constants ck ∈ C such that the error in the following
representation

û(ω, θ) =
n∑

k=1

ck(ω)Γ̂k (ω, ξ(θ))φk (69)

can be minimised in the least-square sense. It can be shown that the vector

c = {c1, c2, . . . , cn}T
satisfies the n × n complex algebraic equations

S(ω) c(ω) = b(ω) with

Sjk =
M∑

i=0

Ãijk Dijk ; ∀ j, k = 1, 2, . . . , n; Ãijk = φT
j Aiφk , (70)

Dijk = E
[
ξi(θ)Γ̂k (ω, ξ(θ))

]
, bj = E

[
φT

j f(ω)
]
. (71)



The Galerkin approach

The error vector can be obtained as

ε(ω, θ) =

(
M∑

i=0

Ai(ω)ξi(θ)

)(
n∑

k=1

ck Γ̂k (ω, ξ(θ))φk

)
− f(ω) ∈ C

N×N (72)

The solution is viewed as a projection where φk ∈ R
n are the basis

functions and ck are the unknown constants to be determined. This is

done for each frequency step.

The coefficients ck are evaluated using the Galerkin approach so that the

error is made orthogonal to the basis functions, that is, mathematically

ε(ω, θ)⊥φj ⇛
〈
φj , ε(ω, θ)

〉
= 0 ∀ j = 1, 2, . . . , n (73)



The Galerkin approach

Imposing the orthogonality condition and using the expression of the
error one has

E

[
φT

j

(
M∑

i=0

Aiξi(θ)

)(
n∑

k=1

ck Γ̂k (ξ(θ))φk

)
− φT

j f

]
= 0, ∀j (74)

Interchanging the E [•] and summation operations, this can be simplified

to
n∑

k=1

(
M∑

i=0

(
φT

j Aiφk

)
E
[
ξi (θ)Γ̂k (ξ(θ))

])
ckE

[
φT

j f
]

(75)

or

n∑

k=1

(
M∑

i=0

Ãijk Dijk

)
ck = bj (76)



Model Reduction by reduced number of basis

Suppose the eigenvalues of A0 are arranged in an increasing order such
that

λ01
< λ02

< . . . < λ0n
(77)

From the expression of the spectral functions observe that the
eigenvalues ( λ0k

= ω2
0k

) appear in the denominator:

Γ
(1)
k (ω, ξ(θ)) =

φT
k f(ω)

Λ0k
(ω) +

∑M
i=1 ξi (θ)Λik (ω)

(78)

where Λ0k
(ω) = −ω2 + iω(ζ1 + ζ2ω

2
0k
) + ω2

0k

The series can be truncated based on the magnitude of the eigenvalues

relative to the frequency of excitation. Hence for the frequency domain
analysis all the eigenvalues that cover almost twice the frequency range

under consideration can be chosen.



Computational method

The mean vector can be obtained as

ū = E [û(θ)] =

p∑

k=1

ckE
[
Γ̂k (ξ(θ))

]
φk (79)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(θ) − ū) (û(θ)− ū)

T
]
=

p∑

k=1

p∑

j=1

ck cjΣΓkj
φkφ

T
j (80)

where the elements of the covariance matrix of the spectral functions are

given by

ΣΓkj
= E

[(
Γ̂k (ξ(θ)) − E

[
Γ̂k (ξ(θ))

])(
Γ̂j(ξ(θ))− E

[
Γ̂j(ξ(θ))

])]
(81)



Summary of the computational method

1 Solve the generalized eigenvalue problem associated with the mean

mass and stiffness matrices to generate the orthonormal basis vectors:

K0Φ = M0Φλ0

2 Select a number of samples, say Nsamp. Generate the samples of basic

random variables ξi(θ), i = 1, 2, . . . ,M.

3 Calculate the spectral basis functions (for example, first-order):

Γk (ω, ξ(θ)) =
φT

k
f(ω)

Λ0k
(ω)+

∑
M
i=1 ξi (θ)Λik

(ω)
, for k = 1, · · · p, p < n

4 Obtain the coefficient vector: c(ω) = S
−1(ω)b(ω) ∈ R

n, where

b(ω) = f̃(ω)⊙ Γ(ω), S(ω) = Λ0(ω)⊙ D0(ω) +
∑M

i=1 Ãi(ω)⊙ Di(ω) and

Di(ω) = E
[
Γ(ω, θ)ξi (θ)Γ

T (ω, θ)
]
, ∀ i = 0, 1, 2, . . . ,M

5 Obtain the samples of the response from the spectral series:
û(ω, θ) =

∑p
k=1 ck(ω)Γk (ξ(ω, θ))φk



The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending modulus for a

specified value of the correlation length and for different degrees of

variability of the random field.

F

(c) Euler-Bernoulli beam
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(e) Eigenvalue ratio of KL de-
composition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus: 2 ×
1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.



Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (82)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean stationary

random field.

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (83)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present numerical

study.



Problem details

The random field is assumed to be Gaussian. The results are compared with

the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such that 90%
variability is retained.

direct MCS have been performed with 10,000 random samples and for

three different values of standard deviation of the random field,

σa = 0.05, 0.1, 0.2.

Constant modal damping is taken with 1% damping factor for all modes.

Time domain response of the free end of the beam is sought under the
action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the present
problem. Comparison have been made with 4th order Polynomial chaos

results.



Mean of the response

(f) Mean, σa = 0.05. (g) Mean, σa = 0.1. (h) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever for

three values of standard deviation σa of the underlying random field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC results

increases.



Standard deviation of the response

(i) Standard deviation of de-
flection, σa = 0.05.

(j) Standard deviation of de-
flection, σa = 0.1.

(k) Standard deviation of de-
flection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products of the
Hermite polynomials associated with the PC expansion, the higher order

moments are less accurately replicated and tend to deviate more

significantly.



Frequency domain response: mean
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(l) Beam deflection for σa = 0.1.
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(m) Beam deflection for σa = 0.2.

The frequency domain response of the deflection of the tip of the
Euler-Bernoulli beam under unit amplitude harmonic point load at the free

end. The response is obtained with 10, 000 sample MCS and for

σa = {0.10, 0.20}.



Frequency domain response: standard deviation
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(n) Standard deviation of the response for
σa = 0.1.
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(o) Standard deviation of the response for
σa = 0.2.

The standard deviation of the tip deflection of the Euler-Bernoulli beam under

unit amplitude harmonic point load at the free end. The response is obtained
with 10, 000 sample MCS and for σa = {0.10, 0.20}.



Experimental investigations

Figure : A cantilever plate with randomly attached oscillators - Probabilistic Engineering Mechanics, 24[4]

(2009), pp. 473-492



Measured frequency response function
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Summary

The mean response of a damped stochastic system is more damped

than the underlying baseline system

For small damping, ξe ≈ 31/4√ǫ√
π

√
ξ

Care must be taken to apply random modal analysis to stochastic
multiple degrees of freedom systems

Conventional response surface based methods fails to capture the
physics of damped dynamic systems

Proposed spectral function approach uses the undamped modal basis

and can capture the statistical trend of the dynamic response of
stochastic damped MDOF systems



Summary

The solution is projected into the modal basis and the associated

stochastic coefficient functions are obtained at each frequency step (or
time step).

The coefficient functions, called as the spectral functions, are expressed

in terms of the spectral properties (natural frequencies and mode
shapes) of the system matrices.

The proposed method takes advantage of the fact that for a given
maximum frequency only a small number of modes are necessary to

represent the dynamic response. This modal reduction leads to a

significantly smaller basis.



Assimilation with experimental measurements

In the frequency domain, the response can be simplified as

u(ω, θ) ≈
nr∑

k=1

φT
k f(ω)

−ω2 + 2iωζkω0k
+ ω2

0k
+
∑M

i=1 ξi(θ)Λik (ω)
φk

Some parts can be obtained from experiments while other parts can come

from stochastic modelling.



Sondipon Adhikari 

Introduction to Monte Carlo 
Methods 



Monte Carlo Simulation 

•  Uncertainty analysis 
•  What are Monte Carlo methods? 

•  Steps in the Monte Carlo simulation procedure 

•  How to use Matlab for MCS? 

•  Examples: 

•  Estimate of π 

•  Expectation of a dice throw 

•  Beam deflection with random properties 

•  Overview of practical aspects 

 



Context 

x yf(x)Deterministic computer model	


Uncertainty analysis	


Remark: understanding the impact of uncertainty on performance is a 	

crucial step in engineering design	


Rp � R

Measures of output uncertainty	


Mean

Variance

kth order moment

Prob[y � ymax]



Context (Contd.) 

How about numerical quadrature schemes?	


Number of eval. points	

for p variables10p	


The curse of 
dimensionality!	


10	
 100	
 1000	


1D	
 2D	
 3D	




What are Monte Carlo Methods? 
•  A class of non-deterministic numerical 

methods that rely on random sampling 

•  Useful in situations where deterministic 
algorithms are difficult to formulate or 
implement 

•  The Monte Carlo method was coined in the 
1940s by John von Neumann, Stanislaw Ulam 
and Nicholas Metropolis, while they were 
working on nuclear weapon projects 
(Manhattan Project) in the Los Alamos National 
Laboratory.  

•  It was named after the Monte Carlo Casino, a 
famous casino where Ulam's uncle often 
gambled away his money. 

 

 

 



MCS for Uncertainty Analysis 
 

1.  Draw samples from the joint pdf of inputs 

2.  Compute outputs at corresponding points 

3.  Calculate Monte Carlo estimate of the integral  

 

 

 

 

I � ⇥I =
1

N

N�

i=1

�(x(i))



Standard Error of the 
Monte Carlo Estimate 

The MCS standard error is independent of the number 
of variables! 

I � ⇥I =
1

N

N�

i=1

�(x(i))

�2
� =

1

N � 1

N⇤

i=1

�
⇥(x(i))� ⌅I

⇥2



Compute the mean value of f(X,Y ) = 1 + X + Y + X2 + Y 2 � 2XY , given
X and Y are uncorrelated Gaussian random variables with zero mean and unit
variance. N = 100000; % Define sample size!

X=randn(N,1); Y=randn(N,1); % Draw samples of 
inputs!
F = 1 + X + Y + X.^2 + Y.^2 - 2*X.*Y; % Compute 
function values!
Muf = mean(F)  % Mean!
stdf=std(F)  % Standard deviation!

Example Problem Using Matlab 

If the variables are Uniform with zero mean and unit variance?    
% Uniform RV!
N = 10000; % Define sample size!
a=-sqrt(3);b=sqrt(3);!
X=a + (b-a).*rand(N,1); Y=a + (b-a).*rand(N,1);!
F = 1 + X + Y + X.^2 + Y.^2 - 2*X.*Y; % Compute 
function values!
Muf = mean(F)  % Mean!
stdf=std(F)  % Standard deviation!
	




Monte Carlo Estimate of π	


π	




Monte Carlo Estimate of π	

clear all;close all;!
SampleSize = 1000; % Define sample 
size!
NInside = 0;!
for i = 1:SampleSize!
Xrand = rand; % Generate Random XY 
Point!
Yrand = rand;!
if (Xrand^2 + Yrand^2 <= 1)!
NInside = NInside + 1;!
end!
end!
piapprox = 4*NInside/SampleSize!
	




Throwing of a dice	


Matlab command:  unidrnd(6)!
Or  unidrnd(6,SampleSize,1)!
	

 



Mean and Variance of Dice Throw 

Var=15.17-3.52  =  2.92 

SampleSize = 1000; 
AllSamples=unidrnd(6,Samp
leSize,1);!
mean(AllSamples)!
var(AllSamples)!



Exercise: Deflection of a beam with 
random properties	
 •  Bending rigidity (EI) is 

random: mean 9, standard 
deviation 20% of the mean 

•  Length(L) is random: mean 
3, standard deviation 20% of 
the mean 

•  Unit force is applied 
 
  Obtain the mean and standard deviation of the tip 

deflection using MCS for the following two cases: 
Ø Random variables are uniform 
Ø Random variables are Gaussian – explain possible 

problems! 
Ø Compare the pdfof the deflection for both cases and 

spot the difference! 



Exercise: Deflection of a beam with 
random properties	

 
Ø When Random variables 

are uniform 
 Mean=1.1665, 
Std=0.70591, min=0.20852, 
max=3.7089 
Ø Random variables are 

Gaussian  
Mean=1.1725 , Std=0.7536, 
min=0.0143, max=10.124 
 



Monte Carlo Methods in Practice 

Good features 
•  Easy to implement 
•  Embarrassingly parallel 

•  Accuracy independent of number of variables 

Bad feature 
•  Slow convergence rate makes it prohibitive for 

computationally expensive functions 
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Overview of the course

The course is dived into eight topics:
Introduction to probabilistic models & dynamic systems
Stochastic finite element formulation
Numerical methods for uncertainty propagation
Spectral function method
Parametric sensitivity of eigensolutions
Random eigenvalue problem in structural dynamics
Random matrix theory - formulation
Random matrix theory - application and validation



Outline of this talk

1 Parametric sensitivity of eigensolutions
Derivative of eigenvalues
Derivative of eigenvectors

2 Statistics of the eigensolutions

3 Higher order perturbation
Eigenvalue statistics using theory of quadratic forms

4 Asymptotic integral method
Multidimensional integrals in unbounded domains
Calculation of an arbitrary moment of the eigenvalues
Probability density function of the eigenvalues

Truncated Gaussian density function
Approximation by χ2 probability density function

Application examples
A two DOF system

A three DOF system with closely spaced eigenvalues
Case 1: All eigenvalues are well separated
Case 2: Two eigenvalues are close



Parametric sensitivity of the eigensolutions

Changes of the eigenvalues and eigenvectors of a linear vibrating system
due to changes in system parameters are of wide practical interest.
Motivation for this kind of study arises, on one hand, from the need to
come up with effective structural designs without performing repeated
dynamic analysis, and, on the other hand, from the desire to visualise the
changes in the dynamic response with respect to system parameters.
This kind of sensitivity analysis of eigenvalues and eigenvectors has an
important role to play in the area of fault detection of structures and
modal updating methods.
Rates of change of eigenvalues and eigenvectors are useful in the study
of bladed disks of turbomachinery where blade masses and stiffness are
nearly the same, or deliberately somewhat altered (mistuned), and one
investigates the modal sensitivities due to this slight alteration.
Eigensolution derivatives also constitute a central role in the analysis of
stochastically perturbed dynamical systems.



Parametric sensitivity of the eigensolutions

The eigenvalue problem of undamped or proportionally damped systems
can be expressed by

K(x)φj = λjM(x)φj (1)

Here λj and φj are the eigenvalues and the eigenvectors of the dynamic
system. M(x) : Rm 7→ Rn×n and K(x) : Rm 7→ Rn×n, the mass and
stiffness matrices, are assumed to be smooth, continuous and at least
twice differentiable functions of a random vector x ∈ Rm.
The vector x may consist of material properties, e.g., mass density,
Poisson’s ratio, Young’s modulus; geometric properties, e.g., length,
thickness, and boundary conditions.
The eigenvalues and eigenvectors are smooth differentiable functions of
the random parameter vector x.



Parametric sensitivity of the eigenvalues

We rewrite the eigenvalue equation as[
K− λjM

]
φj = 0 (2)

or φT
j
[
K− λjM

]
(3)

The functional dependence of x is removed for notational convenience.
Differentiating the eigenvalue equation (2) with respect to the element xi
of the parameter vector we have[

∂K
∂xi
−
∂λj

∂xi
M− λj

∂M
∂xi

]
φj +

[
K− λjM

] ∂φj

∂xi
= 0 (4)

Premultiplying by φT
j we have

φT
j

[
∂K
∂xi
−
∂λj

∂xi
M− λj

∂M
∂xi

]
φj + φT

j
[
K− λjM

] ∂φj

∂xi
= 0 (5)



Parametric sensitivity of the eigenvalues

Using the identity in (3) we have

φT
j

[
∂K
∂xi
−
∂λj

∂xi
M− λj

∂M
∂xi

]
φj = 0 (6)

or
∂λj

∂xi
=

φT
j

[
∂K
∂xi
− λj

∂M
∂xi

]
φj

φT
j Mφj

(7)

Note that when the modes are mass normalised φT
j Mφj = 1

The derivatives need to be evaluated at certain value x. It is customary to
evaluate this at the nominal value (which is normally the mean value if x
is a random vector).
Denote the mean of x as µ ∈ Rm, and consider that

M(µ) = M0, and K(µ) = K0 (8)

are the ‘deterministic parts’ of the mass and stiffness matrices
respectively.



Parametric sensitivity of the eigenvalues

The deterministic part of the eigenvalues:

λ0j = λj (µ) (9)

is obtained from the deterministic eigenvalue problem:

K0 φ0j
= λ0j M0 φ0j

. (10)

Using these, the derivative at the mean/nominal point can be obtained as

∂λj

∂xi
= φ0j

T
[
∂K
∂xi
− λ0j

∂M
∂xi

]
φ0j

(11)

Consider the standard expansion of the stiffness and mass matrices

K(x) = K0 +

mK∑
i=1

xiKi and M(x) = M0 +

mM∑
i=1

xiMi (12)

where m = mK + mM



Parametric sensitivity of the eigenvalues

Therefore
∂K
∂xi

= Ki , i ∈ mK and
∂M
∂xi

= Mi , i ∈ mM (13)

Using these, the eigenvalue derive can be obtained succinctly as

∂λj

∂xi
= φ0j

T [Ki − λ0j Mi
]
φ0j

(14)

Each eigenvalues can be expanded in a Taylor series about the mean of
the parameter values as

λj (x) ≈ λj (α) + dT
λj

(α) (x−α) +
1
2

(x−α)T Dλj (α) (x−α) + · · · (15)

Without any loss of generality, considering the mean of x is zero and
retaining only the first order terms we have

λj (x) ≈ λ0j +
m∑

i=1

(
φ0j

T [Ki − λ0j Mi
]
φ0j

)
xi (16)



Parametric sensitivity of the eigenvectors

Different methods have been developed to calculate the derivatives of the
eigenvectors. One of these methods expands the derivative of
eigenvectors as a linear combination of the eigenvectors

∂φj

∂xi
=

n∑
r=1

αjirφr (17)

It is necessary to find expressions for the constant αjir for all r = 1,2, · · · n.
Substituting this in Eq. (4) we have[

∂K
∂xi
−
∂λj

∂xi
M− λj

∂M
∂xi

]
φj +

n∑
r=1

[
K− λjM

]
αjirφr = 0 (18)

Premultiplying by φT
k we have

φT
k

[
∂K
∂xi
−
∂λj

∂xi
M− λj

∂M
∂xi

]
φj +

n∑
r=1

φT
k
[
K− λjM

]
αjirφr = 0 (19)



Parametric sensitivity of the eigenvectors

We consider r = k and the orthogonality of the eigenvectors:

φT
k Kφr = λkδkr and φT

k Mφr = δkr (20)

Using these we have

φT
k

[
∂K
∂xi
− λj

∂M
∂xi

]
φj +

(
λk − λj

)
αjik = 0 (21)

From this we obtain

αjik = −
φT

k

[
∂K
∂xi
− λj

∂M
∂xi

]
φj

λk − λj
, ∀ k 6= j (22)



Parametric sensitivity of the eigenvectors

To obtain the j-th term αjij we differentiate the mass orthogonality
relationship in (20) as

∂(φT
j Mφj )

∂xi
= 0 or

∂φT
j

∂xi
Mφj + φT

j
∂M
∂xi

φj + φT
j M

∂φj

∂xi
= 0 (23)

Considering the symmetry of the mass matrix and using the expansion of
the eigenvector derivative we have

φT
j
∂M
∂xi

φj + 2φT
j M

∂φj

∂xi
= 0 or

n∑
r=1

2φT
j Mαjirφr = −φT

j
∂M
∂xi

φj (24)

Utilising the othonormality of the mode shapes we have

αjij = −1
2
φT

j
∂M
∂xi

φj (25)



Parametric sensitivity of the eigenvectors

The complete eigenvector derivative is therefore given by

∂φj

∂xi
= −1

2

(
φT

j
∂M
∂xi

φj

)
φj +

n∑
k=16=j

φT
k

[
∂K
∂xi
− λj

∂M
∂xi

]
φj

λj − λk
φk (26)

Considering the conventional expansion of the mass and stiffness
matrices, the derivative at the mean values of the parameter can be
obtained as

∂φj

∂xi
= −1

2

(
φT

0j
Miφ0j

)
φ0j +

n∑
k=16=j

φT
0k

[
Ki − λ0j Mi

]
φ0j

λ0j − λ0k

φ0k
(27)

Considering the mean of x is zero and retaining only the first order terms
we have

φj (x) ≈ φ0j
+

m∑
i=1

∂φj

∂xi
xi = φ0j

+
m∑

i=1

(
n∑

k=1

αjikφ0k

)
xi (28)



Covariance of the eigensolutions

Suppose Σir is the ir -th element of the covariance matrix, that is

Σir = cov (xi , xr ) (29)

The covariance of eigenvalue j and s can be obtained as

E
[(
λj − λ0j

)
(λs − λ0s )

]
=

m∑
i=1

m∑
r=1

(
φ0j

T [Ki − λ0j Mi
]
φ0j

)(
φ0s

T [Kr − λ0s Mr ]φ0s

)
Σir (30)

The covariance matrix of eigenvector j and s can be obtained as

E
[(

φj − φ0j

) (
φs − φ0s

)T
]

=
n∑

k=1

n∑
l=1

φ0k
φT

0l

m∑
i=1

m∑
r=1

αjirαsrl Σir (31)



Numerical example

8−th
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An eight DOF system consisting of a linear array of spring-mass
oscillators is considered
Eight masses, each of nominal mass mu = 1 kg, are connected by
springs of nominal stiffness ku = 10 N/m
It is assumed that the mass and stiffness associated with all the units are
random. Randomness associated with each unit has the following form

muj = mu
(
1 + εmj gj

)
, kuj = ku

(
1 + εkj gj

)
(32)

Here gj ,∀j are assumed to be uncorrelated, identically distributed,
zero-mean, unit-standard-deviation Gaussian random variables (N(0,1)).
For this assumption, the joint covariance matrix Σ becomes a diagonal
matrix.



Numerical example
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(a) The mean of the natural frequencies (b) Standard deviation of the natural
frequencies; ‘X-axis’ Mode number; ‘—’ Analytical; ‘-.-.-’ MCS



Numerical example

Numerical values of the ‘strength parameters’, εmj and εkj are assumed to
be 0.1, that is, we consider 10% randomness for all the parameter values.
Because the random variables describing the system properties are
assumed to be Gaussian, the mean values are the same as the nominal
values.
In the same figure, the mean values obtained from the proposed theory
are compared with the results obtained from an independent Monte Carlo
simulation (MCS) using 5000 samples. Both the curves follow each other
very closely.



Mode shape statistics
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Mode shape statistics
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Higher-order perturbation

Higher-order perturbation method can be used to improve upon the
results obtained from the first-order perturbation method
Statistical properties of the system are completely described by the joint
probability density function px(x) : Rm 7→ R. For mathematical
convenience we express

px(x) = exp {−L(x)} (33)

where −L(x) is often known as the log-likelihood function.
For example, if x is a m-dimensional multivariate Gaussian random vector
with mean µ ∈ Rm and covariance matrix Σ ∈ Rm×m then

L(x) =
m
2

ln(2π) +
1
2

lndet {Σ}+
1
2

(x− µ)T Σ−1 (x− µ) . (34)

It is assumed that M and K are symmetric and positive definite random
matrices so that all the eigenvalues are real and positive.



Higher-order perturbation

The eigenvalues, λj (x) : Rm 7→ R are non-linear functions of the
parameter vector x.
If the eigenvalues are not repeated, then each λj (x) is expected to be a
smooth and twice differentiable function since the mass and stiffness
matrices are smooth and twice differentiable functions of the random
parameter vector.
In the mean-centered perturbation approach the function λj (x) is
expanded by its Taylor series about the point x = µ as

λj (x) ≈ λj (µ) + dT
λj

(µ) (x− µ) +
1
2

(x− µ)T Dλj (µ) (x− µ) . (35)

Here dλj (µ) ∈ Rm and Dλj (µ) ∈ Rm×m are respectively the gradient
vector and the Hessian matrix of λj (x) evaluated at x = µ, that is

{
dλj (µ)

}
k =

∂λj (x)

∂xk
|x=µ (36)

and
{

Dλj (µ)
}

kl =
∂2λj (x)

∂xk
2 xl |x=µ. (37)



Higher-order perturbation

Providing the eigenvalues are distinct, the element of the Hessian matrix
can be explicitly obtained as

∂2λj (x)

∂xk ∂xl
= φj (x)T

[
∂2K(x)

∂xk
2 xl − λj (x)

∂2M(x)

∂xk
2 xl

]
φj (x)

−
(
φj (x)T ∂M(x)

∂xk
φj (x)

)(
φj (x)TG jl (x)φj (x)

)
−
(
φj (x)T ∂M(x)

∂xl
φj (x)

)(
φj (x)TG jk (x)φj (x)

)
+ 2

N∑
r=1

(
φr (x)TG jk (x)φj (x)

)(
φr (x)TG jl (x)φj (x)

)
λj (x)− λr (x)

. (38)

The elements of the gradient vector and Hessian matrix of the
eigenvalues are therefore completely defined in closed-form.



The theory of quadratic forms

When x is a multivariate Gaussian random vector, the moment
generating function of λj (x), for any s ∈ C, can be obtained from (35) as

Mλj (s) = E
[
exp

{
sλj (x)

}]
=

∫
Rm

exp
{

sλj (µ) + sdT
λj

(µ) (x− µ) (39)

+
s
2

(x− µ)T Dλj (µ) (x− µ)− L(x)
}

dx (40)

where L(x) is given by equation (34).
Using the transformation

y = (x− µ) (41)
the integral in (39) can be evaluated exactly as

Mλj (s) = (2π)−m/2‖Σ‖−1/2
∫
Rm

exp
{

sλj + sdT
λj

(µ)y

−1
2

yT
[
Σ−1 − sDλj (µ)

]
y
}

dy

=
exp

{
sλj + s2

2 dT
λj

(µ)Σ
[
I− sΣ Dλj (µ)

]−1 dλj (µ)
}

√∥∥I− sΣ Dλj (µ)
∥∥ . (42)



The theory of quadratic forms

To obtain the pdf of λj (x), the inverse Laplace transform of equation (42)
is required. T
If the mean-centered first-order perturbation is used then Dλj (µ) = O and
from equation (42) we obtain

Mλj (s) ≈ exp
{

sλj +
s2

2
dT
λj

(µ)Σ dλj (µ)

}
. (43)

This implies that λj (x) is a Gaussian random variable with mean λj and
variance dT

λj
(µ)Σ dλj (µ).

However, for second-order perturbations in general the mean of the
eigenvalues is not the deterministic value. The cumulants of λj (x) can be
obtained from

κ
(r)
j =

d r

dsr ln Mλj (s)|s=0. (44)



The theory of quadratic forms

Here κ(r)j is the r th order cumulant of j th eigenvalue and from equation
(42) we have

ln Mλj (s) = sλj +
s2

2
dT
λj

(µ)Σ
[
I− sΣ Dλj (µ)

]−1 dλj (µ)

− 1
2

ln
∥∥I− sΣ Dλj (µ)

∥∥ . (45)

Using this expression and after some simplifications it can be shown that

κ
(r)
j = λj +

1
2
Trace

(
Dλj (µ)Σ

)
, r = 1, (46)

κ
(r)
j =

r !

2
dT
λj

(µ)
[
Σ Dλj (µ)

]r−2
Σ dλj (µ) (47)

+
(r − 1)!

2
Trace

([
Dλj (µ)Σ

]r)
, r ≥ 2. (48)



The theory of quadratic forms

The mean and first few cumulants of the eigenvalues can be explicitly
obtained as

λ̂j = κ
(1)
j = λj +

1
2
Trace

(
Dλj (µ)Σ

)
(49)

Var
[
λj
]

= κ
(2)
j = dT

λj
(µ)Σ dλj (µ) +

1
2
Trace

([
Dλj (µ)Σ

]2)
, (50)

κ
(3)
j = 3dT

λj
(µ)

[
Σ Dλj (µ)

]
Σ dλj (µ) + Trace

([
Dλj (µ)Σ

]3)
,

(51)

and κ
(4)
j = 12dT

λj
(µ)

[
Σ Dλj (µ)

]2
Σ dλj (µ) + 3Trace

([
Dλj (µ)Σ

]4)
.

(52)

From the cumulants, the raw moments µ(r)
j = E

[
λr

j

]
and the central

moments µ
′(r)

j = E
[
(λj − λ̄j )

r
]

can be obtained using standard formulae.



Asymptotic integral method

The moments of the eigenvalues are obtained based on an asymptotic
approximation of the multidimensional integral.
Consider a function f (x) : Rm 7→ R which is smooth and at least twice
differentiable. Suppose we want to evaluate an integral of the following
form:

J =

∫
Rm

exp {−f (x)} dx. (53)

This is a m-dimensional integral over the unbounded domain Rm.
The maximum contribution to this integral comes from the neighborhood
where f (x) reaches its global minimum. Suppose that f (x) reaches its
global minimum at a unique point θ ∈ Rm. Therefore, at x = θ

∂f (x)

∂xk
= 0,∀k or df (θ) = 0. (54)



Higher-order perturbation

Using this, f (x) is expanded in a Taylor series about θ and equation (53)
is rewritten as

J =

∫
Rm

exp
{
−
{

f (θ) +
1
2

(x− θ)T Df (θ) (x− θ) + ε (x,θ)

}}
dx

= exp {−f (θ)}
∫
Rm

exp
{
−1

2
(x− θ)T Df (θ) (x− θ)− ε (x,θ)

}
dx

(55)

where ε (x,θ) is the error if only the terms up to second-order were
retained in the Taylor series expansion.
With suitable scaling of x the integral in (53) can be transformed to the so
called ‘Laplace integral’. Under special conditions such integrals can be
well approximated using asymptotic methods.
We neglect the error ε (x,θ) considering the higher-order derivatives are
small.



Higher-order perturbation

The integral in (55) can be approximated as

J ≈ exp {−f (θ)}
∫
Rm

exp
{
−1

2
(x− θ)T Df (θ) (x− θ)

}
dx. (56)

If θ is the global minimum of f (x) in Rm, the symmetric Hessian matrix
Df (θ) ∈ Rm×m is also expected to be positive definite.
Using the coordinate transformation

ξ = (x− θ) D−1/2
f (θ). (57)

The Jacobian of this transformation is

det {J} = det {Df (θ)}−1/2
. (58)

Using equation (57), the integral in equation (56) can be evaluated as

J ≈ exp {−f (θ)}
∫
Rm

det {Df (θ)}−1/2 exp
{
−1

2

(
ξTξ

)}
dξ (59)

or J ≈ (2π)m/2 exp {−f (θ)} det {Df (θ)}−1/2
. (60)

This approximation is expected to yield good result if the minimum of f (x)
around x = θ is sharp. Equation (60) will now be used to obtain moments
of the eigenvalues.



Moments of the eigenvalues

An arbitrary r th order moment of the eigenvalues can be obtained from

µ
(r)
j = E

[
λr

j (x)
]

=

∫
Rm

λr
j (x)px(x) dx

=

∫
Rm

exp
{
−
(
L(x)− r lnλj (x)

)}
dx, r = 1,2,3 · · · .

(61)

The equation can be expressed in the form of equation (53) by choosing

f (x) = L(x)− r lnλj (x). (62)

Differentiating the above equation with respect to xk we obtain

∂f (x)

∂xk
=
∂L(x)

∂xk
− r
λj (x)

∂λj (x)

∂xk
. (63)



Moments of the eigenvalues

The optimal point θ can be obtained from (54) by equating the above
expression to zero. Therefore at x = θ

∂f (x)

∂xk
= 0, ∀ k (64)

or
r

λj (θ)

∂λj (θ)

∂xk
=
∂L(θ)

∂xk
, ∀ k (65)

or dλj (θ)r = λj (θ)dL(θ). (66)

Equation (66) needs to be solved numerically to obtain θ. It implies that
at the optimal point the gradient vectors of the eigenvalues and
log-likelihood function are parallel.
The non-linear set of equations (66) have to be solved numerically. Due
to the explicit analytical expression of dλj in terms of the derivative of the
mass and stiffness matrices, expensive numerical differentiation of λj (x)
at each step is not needed.



Moments of the eigenvalues

For most px(x), a closed-form expression of dL(x) is available.
For example, when x has multivariate Gaussian distribution, L(x) is given
by equation (34). By differentiating this we obtain

dL(x) = Σ−1 (x− µ) . (67)

Substituting this in equation (66), the optimal point θ can be obtained as

θ = µ +
1

λj (θ)
Σ dλj (θ). (68)

This equation also gives a recipe for an iterative algorithm to obtain θ.
One starts with an initial θ in the right-hand side and obtains an updated
θ in the left-hand side.
This procedure can be continued until the difference between the values
of θ obtained from both sides of (68) is less than (l2 vector norm can be
used to measure the difference) a predefined small value.
A good value to start the iteration process is θ = µ, as in the case of
mean-centred approach. Note that the solution of a deterministic
eigenvalue problem is needed at each step of the iteration process.



Moments of the eigenvalues

The elements of the Hessian matrix Df (θ) can be obtained by
differentiating equation (63) with respect to xl :

∂2f (x)

∂xk
2 xl =

∂2L(x)

∂xk
2 xl − r

(
− 1
λ2

j (x)

∂λj (x)

∂xl

∂λj (x)

∂xk
+

1
λj (x)

∂2λj (x)

∂xk
2 xl

)

=
∂2L(x)

∂xk
2 xl +

1
r

{
r

λj (x)

∂λj (x)

∂xk

}{
r

λj (x)

∂λj (x)

∂xl

}
− r
λj (x)

∂2λj (x)

∂xk
2 xl .

(69)

At x = θ we can use equation (65) so that equation (69) reads

∂2f (x)

∂xk
2 xl |x=θ =

∂2L(θ)

∂xk
2 xl +

1
r
∂L(θ)

∂xk

∂L(θ)

∂xl
− r
λj (θ)

∂2λj (θ)

∂xk
2 xl . (70)

Combining this equation for all k and l we have

Df (θ) = DL(θ) +
1
r

dL(θ)dL(θ)T − r
λj (θ)

Dλj (θ). (71)

where Dλj (•) is defined in equation (37).



Moments of the eigenvalues

Using the asymptotic approximation (60), the r th moment of the
eigenvalues can be obtained as

µ
(r)
j ≈ (2π)m/2λr

j (θ) exp {−L (θ)}∥∥∥∥DL(θ) +
1
r

dL(θ)dL(θ)T − r
λj (θ)

Dλj (θ)

∥∥∥∥−1/2

. (72)

This is perhaps the most general formula to obtain the moments of the
eigenvalues of linear stochastic dynamic systems. The optimal point θ
needs to be calculated by solving non-linear set of equations equation
(66) for each λj and r . Several special cases arising from equation (72)
are of practical interest:
Mean of the eigenvalues: The mean of the eigenvalues can be obtained
by substituting r = 1 in equation (72), that is

λ̂j = µ
(1)
j = (2π)m/2λj (θ) exp {−L (θ)}

det
{

DL(θ) + dL(θ)dL(θ)T − Dλj (θ)/λj (θ)
}−1/2

. (73)



Moments of the eigenvalues

Central moments of the eigenvalues: Once the mean in known, the
central moments can be expressed in terms of the raw moments µ(r)

j
using the binomial transform

µ
′(r)

j = E

[(
λj − λ̂j

)r
]

=
r∑

k=0

(
r
k

)
(−1)r−kµ

(k)
j λ̂r−k

j . (74)

Random vector x has multivariate Gaussian distribution: In this case L(x)
is given by equation (34) and by differentiating equation (67) we obtain

and DL(x) = Σ−1. (75)

The optimal point θ can be obtained from equation (66) as

θ = µ +
r

λj (θ)
Σ dλj (θ). (76)



Moments of the eigenvalues

Using equation (67) and equation (75), the Hessian matrix can be derived
from equation (71) as

Df (θ) = Σ−1 +
1
r
Σ−1 (θ − µ) (θ − µ)T Σ−1 − r

λj (θ)
Dλj (θ)

= Σ−1
(

I +
1
r

(θ − µ) (θ − µ)T Σ−1
)
− r
λj (θ)

Dλj (θ).

(77)

Therefore, the r th moment of the eigenvalues can be obtained from Eq.
(72) as

µ
(r)
j ≈ λ

r
j (θ) exp

{
−1

2
(θ − µ)T Σ−1 (θ − µ)

}
det {Σ}−1/2

det {Df (θ)}−1/2

(78)



Moments of the eigenvalues

Using Eq. (77) and recalling that for any two matrices A and B,
det {A}det {B} = det {AB} we have

µ
(r)
j ≈ λ

r
j (θ) exp

{
−1

2
(θ − µ)T Σ−1 (θ − µ)

}
det
{

I + D̃f (θ)
}−1/2

(79)

where
D̃f (θ) =

1
r

(θ − µ) (θ − µ)T Σ−1 − r
λj (θ)

ΣDλj (θ) (80)

The probability density function of the eigenvalues can be obtained from
these moments.



Maximum entropy probability density function

Once the cumulants/moments of the eigenvalues are known, the pdf of
the eigenvalues can be obtained using the Maximum Entropy Method
(MEM). Because equations (46), (47) and (72) can be used to calculate
any arbitrary order cumulant and moment, the pdf can be obtained
accurately by taking higher order terms.
Since M and K are symmetric and positive definite random matrices, all
the eigenvalues are real and positive. Suppose the pdf of λj is given by
pλj (u) where u ∈ R is positive, that is u ∈ [0,∞]. Considering that only
first n moments are used, the pdf of each eigenvalue must satisfy the
following constraints:∫ ∞

0
pλj (u)du = 1 (81)

and
∫ ∞

0
ur pλj (u)du = µ

(r)
j , r = 1,2,3, · · · ,n. (82)



Maximum entropy probability density function

Using Shannon’s measure of entropy

S = −
∫ ∞

0
pλj (u) ln pλj (u)du (83)

we construct the Lagrangian

L = −
∫ ∞

0
pλj (u) ln pλj (u)du − (ρ0 − 1)

[∫ ∞
0

pλj (u)du − 1
]

−
n∑

r=1

ρr

[∫ ∞
0

ur pλj (u)du − µ(r)
j

]
. (84)

where ρr , r = 0,1,2, · · · ,n are Lagrange multipliers.
The function pλj (u) which maximizes L can be obtained using the
calculus of variations. Using the Euler-Lagrange equation the solution is
given by

pλj (u) = exp

{
−ρ0 −

n∑
i=1

ρiui

}
= exp {−ρ0}exp

{
−

n∑
i=1

ρiui

}
, u ≥ 0.

(85)



Maximum entropy probability density function

The Lagrange multipliers can be obtained from the constraint equations
(81) and (82) as

exp {ρ0} =

∫ ∞
0

exp

{
−

n∑
i=1

ρiui

}
du

and exp {ρ0}µ(r)
j =

∫ ∞
0

ur exp

{
−

n∑
i=1

ρiui

}
du, for r = 0,1,2, · · · n.

Closed-form expressions for ρr are in general not possible for all n. If we
take n = 2, then the resulting pdf can be expressed as the truncated
Gaussian density function

pλj (u) =
1

√
2πσj Φ

(
λ̂j/σj

) exp

−
(

u − λ̂j

)2

2σ2
j

 , u ≥ 0. (86)

where σj is given by
σ2

j = µ
(2)
j − λ̂

2
j . (87)

The truncated Gaussian density function derived here ensures that the
probability of any eigenvalues becoming negative is zero.



Maximum entropy probability density function

We use an approximation analogous to Pearson’s three moment central
χ2 approximation to the distribution of a noncentral χ2 . The eigenvalues
are approximated as

λj ≈ ηj + γjχ
2
νj

(u) (88)

where χ2
νj

(u) is a central χ2 density function with νj degrees-of-freedom.
The constants ηj , γj , and νj are obtained such that the first three
moments of λj are equal to that of the approximated χ2 pdf. The moment
generating function of the approximated χ2 pdf is given by

E
[
exp

{
−s
(
ηj + γjχ

2
νj

)}]
= exp

{
−sηj

} (
1 + 2sγj

)−νj/2
. (89)

Equating the first three moments we have

ηj + νjγj = µ
(1)
j , (90)

ηj
2 + 2ηjνjγj + νj

2γj
2 + 2νjγj

2 = µ
(2)
j (91)

and ηj
3 + 3ηj

2νjγj + 3ηjνj
2γj

2 + 6ηjνjγj
2 + νj

3γj
3 + 6νj

2γj
3 + 8νjγj

3 = µ
(3)
j .

(92)



Maximum entropy probability density function

This set of coupled non-linear equations can be solved exactly in
closed-form to obtain ηj , γj , and νj :

ηj =
µ
(1)
j

2
µ
(2)
j − 2µ(2)

j

2
+ µ

(1)
j µ

(3)
j

2µ(1)
j

3
− 3µ(1)

j µ
(2)
j + µ

(3)
j

(93)

γj =
2µ(1)

j

3
− 3µ(1)

j µ
(2)
j + µ

(3)
j

4
(
µ
(2)
j − µ

(1)
j

2
) , (94)

and νj = 8

(
µ
(2)
j − µ

(1)
j

2
)3

(
2µ(1)

j

3
− 3µ(1)

j µ
(2)
j + µ′3

)2 . (95)



Maximum entropy probability density function

Moments of λj (x) obtained in equation (72), can be used directly in the
right-hand side of these equations. Alternatively, this approach can also
be used in conjunction with the perturbation methods by transforming the
cumulants obtained from equations (46) and (47) to moments.
Using the transformation in equation (88) the approximate probability
density function of λj (x) is given by

pλj (u) ≈ 1
γj

pχ2
νj

(
u − ηj

γj

)
=

(u − ηj )
νj/2−1 exp

{
−(u − ηj )/2γj

}
(2γj )νj/2Γ(νj/2)

. (96)

The two approximated pdf proposed here have simple forms but it should
be noted that they are not exhaustive. Given the moments/cumulants,
different probability density functions can be fitted using different
methods. The application of the approximate pdfs derived here is
illustrated in the next section.



A two DOF system

A simple two-degree-of-freedom undamped system has been considered
to illustrate a possible application of the expressions developed so far.
The main purpose of this example is to understand how the proposed
methods compare with the existing methods. 1 shows the example,
together with the numerical values of the masses and spring stiffnesses.
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Figure : The undamped two degree-of-system system, m1 = 1 kg, m2 = 1.5 kg,
k̄1 = 1000 N/m, k̄2 = 1100 N/m and k3 = 100 N/m.



A two DOF system

The system matrices for the example are given by

M =

[
m1 0
0 m2

]
and K =

[
k1 + k3 −k3
−k3 k2 + k3

]
. (97)

It is assumed that only the stiffness parameters k1 and k2 are uncertain
so that ki = k̄i (1 + εixi ), i = 1,2 and k̄i denote the deterministic values of
the spring constants. Here x = {x1, x2}T ∈ R2 is a vector of standard
Gaussian random variables, that is µ = 0 and Σ = I.
The numerical values of the ‘strength parameters’ are considered as
ε1 = ε2 = 0.25. The strength parameters are selected so that the system
matrices are almost surely positive definite.



A two DOF system

Noting that M is independent of x and K is a linear function of x, the
derivative of the system matrices with respect to the random vector x can
be obtained as

∂K
∂x1

= ε1

[
k̄1 0
0 0

]
,

∂K
∂x2

= ε2

[
0 0
0 k̄2

]
, (98)

∂M
∂xi

= O and
∂2K
∂xi

2 xj = O. (99)

We calculate the raw moments and the probability density functions of
the two eigenvalues of the system. Recall that the eigenvalues obtained
from equation (1) are the square of the natural frequencies (λj = ω2

j ).
Several methods are used to obtain the moments and the pdfs.



Mean-centered first-order perturbation

This case arises when Dλj (µ) in the Taylor series expansion (35) is
assumed to be a null matrix so that only the first-order terms are retained.
This is the simplest approximation, and as mentioned earlier, results in a
Gaussian distribution of the eigenvalues.
Recalling that for this problem µ = 0 and Σ = I, the resulting statistics for
this special case can be obtained from equations (49) and (50) as

λ̂j = λj (100)

and Var
[
λj
]

= dT
λj

(0)dλj (0). (101)

The gradient vector dλj (0) can be obtained from equation (11) using the
system derivative matrices (98) and (99).



Mean-centered second-order perturbation

In this case all the terms in equation (35) are retained. This
approximation results in a quadratic form in the Gaussian random
variables. The resulting statistics can be obtained from equations (46)
and (47) by substituting µ = 0 and Σ = I.
The elements of the Hessian matrix Dλj (0) can be obtained from
equation (38) and using the system derivative matrices (98) and (99).



Monte Carlo Simulation

The samples of two independent Gaussian random variables x1 and x2
are generated and the eigenvalues are computed directly from equation
(1).
A total of 15000 samples are used to obtain the statistical moments and
pdf of both the eigenvalues.
The results obtained from the Monte Carlo simulation are assumed to be
the benchmark for the purpose of comparing the five analytical methods
described above.
The percentage error for an arbitrary k th moment of an eigenvalue
obtained using any one of the five analytical methods is given by

Errori th method =

∣∣∣{µ(r)
j }i th method − {µ(r)

j }MCS

∣∣∣
{µ(r)

j }MCS

× 100. (102)



A two DOF system
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A two DOF system
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A two DOF system
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A two DOF system
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A three DOF system
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Figure : The three degree-of-freedom random system.

The main purpose of this example is to understand how the proposed
methods work when some of the system eigenvalues are closely spaced.



A three DOF system

This is an interesting case because it is well known that closely spaced
eigenvalues are parameter sensitive. We will investigate how the
parameter uncertainty affects the eigenvalue distribution in such cases.
This study has particular relevance to the dynamics of nominally
symmetric rotating machines, for example, turbine blades with random
imperfections. The mass and stiffness matrices of the example system
are given by

M =

m1 0 0
0 m2 0
0 0 m3

 and K =

k1 + k4 + k6 −k4 −k6
−k4 k4 + k5 + k2 −k5
−k6 −k5 k5 + k3 + k6

 .
(103)

It is assumed that all mass and stiffness constants are random.



A three DOF system

The randomness in these parameters are assumed to be of the following
form:

mi = mi (1 + εmxi ) , i = 1,2,3 (104)

ki = k i (1 + εk xi+3) , i = 1, · · · ,6. (105)

Here x = {x1, · · · , x9}T ∈ R9 is the vector of random variables. It is
assumed that all random variables are Gaussian and uncorrelated with
zero mean and unit standard deviation, that is µ = 0 and Σ = I.
Therefore, the mean values of mi and ki are given by mi and k i . The
numerical values of both of the ‘strength parameters’ εm and εk are fixed
at 0.15.
In order to obtain statistics of the eigenvalues using the methods
developed in this paper the gradient vector and the Hessian matrix of the
eigenvalues are required. This in turn requires the derivative of the
system matrices with respect to the entries of x. For most practical
problems, which usually involve Finite Element modeling, these
derivatives need to be determined numerically.



A three DOF system

The derivatives of M(x) and K(x) with respect to elements of x can be
obtained from equation (103) together with equations (104) and (105).
For the mass matrix we have

∂M
∂x1

=

m1εm 0 0
0 0 0
0 0 0

 , ∂M
∂x2

=

0 0 0
0 m2εm 0
0 0 0

 , ∂M
∂x3

=

0 0 0
0 0 0
0 0 m3εm

 .
(106)

All other ∂M∂xi
are null matrices.



A three DOF system

The derivatives of the stiffness matrix are

∂K
∂x4

=

k1εk 0 0
0 0 0
0 0 0

 , ∂K
∂x5

=

0 0 0
0 k2εk 0
0 0 0

 , ∂M
∂x6

=

0 0 0
0 0 0
0 0 k3εk

 ,
∂K
∂x7

=

 k4εk −k4εk 0
−k4εk k4εk 0

0 0 0

 , ∂K
∂x8

=

0 0 0
0 k5εk −k5εk
0 −k5εk k5εk

 , ∂M
∂x9

=

 k6εk 0 −k6εk
0 0 0

−k6εk 0 k6εk


(107)

and all other ∂K∂xi
are null matrices.

Also note that all of the first-order derivative matrices are independent of
x. For this reason, all the higher order derivatives of the M(x) and K(x)
matrices are null matrices.



A three DOF system

We calculate the moments and the probability density functions of the
three eigenvalues of the system. The following two sets of physically
meaningful parameter values are considered:

Case 1: All eigenvalues are well separated
For this case mi = 1.0 kg for i = 1, 2, 3; k i = 1.0 N/m for i = 1, · · · , 5 and
k6 = 3.0 N/m.
Case 2: Two eigenvalues are close
All parameter values are the same except k6 = 1.275 N/m.

The moments of the eigenvalues for the above two cases are calculated
first.



A three DOF system

The moments are then used to obtain σj from equation (87) and the
constants in equations (93)–(95).
Using these constants the truncated Gaussian pdf and the χ2 pdf of the
eigenvalues are obtained from equations (86) and (96) respectively.
These results are compared with Monte Carlo simulation.
The samples of the nine independent Gaussian random variables
xi , i = 1, · · · ,9 are generated and the eigenvalues are computed directly
from equation (1). A total of 15000 samples are used to obtain the
statistical moments and histograms of the pdf of the eigenvalues.
The results obtained from Monte Carlo simulation are assumed to be the
benchmark for the purpose of comparing the analytical methods.
For the purpose of determining the accuracy, we again calculate the
percentage error associated with an arbitrary r th moment using equation
(102).



All eigenvalues are well separated

When all of the eigenvalues are well separated their derivatives with
respect to the system parameters generally behave well.
For the given parameter values the eigenvalues of the corresponding
deterministic system is given by

λ1 = 1, λ2 = 4, and λ3 = 8. (108)
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All eigenvalues are well separated
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All eigenvalues are well separated

Figure : Probability density functions of the second and third eigenvalues; Case 1.



Two eigenvalues are close

When some eigenvalues are closely spaced, their derivatives with
respect to the system parameters may not behave well
For the given parameter values the eigenvalues of the corresponding
deterministic system are calculated as

λ1 = 1, λ2 = 4, and λ3 = 4.55. (109)

Clearly λ2 and λ3 are close to each other.
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Two eigenvalues are close
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Two eigenvalues are close
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Two eigenvalues are close

Figure : Probability density functions of the second and third eigenvalues; Case 2.
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Overview of the course

The course is dived into eight topics:

Introduction to probabilistic models & dynamic systems

Stochastic finite element formulation

Numerical methods for uncertainty propagation

Spectral function method

Parametric sensitivity of eigensolutions

Random eigenvalue problem in structural dynamics

Random matrix theory - formulation

Random matrix theory - application and validation



Outline of this talk

1 Matrix variate distributions

2 Matrix distributions for system matrices

Wishart random matrices

Parameter selection
Reduced computational modelling

3 Identification of the dispersion parameters

4 Examples applications for random matrix theory

5 Experimental validations

6 Hybrid uncertainty formulations

7 Domain decomposition for multi-frequency scale problems

Domain decomposition for two domains
Computational approach for uncertainty propagation

Stochastic interface problem
Stochastic interior problems

Numerical example



Introduction

Broadly speaking, there are two complimentary approaches to quantify
uncertainties in a model. The first is the parametric approach and the

second is the non-parametric approach.

In the parametric approach the uncertainties associated with the system

parameters, such as Young’s modulus, mass density, Poisson’s ratio,
damping coefficient and geometric parameters are quantified using

statistical methods and propagated, for example, using the stochastic

finite element.

This type of approach is suitable to quantify aleatoric uncertainties.

Epistemic uncertainty on the other hand do not explicitly depend on the
systems parameters. For example, there can be unquantified errors

associated with the equation of motion (linear on non-linear), in the
damping model (viscous or non-viscous), in the model of structural joints,

and also in the numerical methods (e.g, discretisation of displacement

fields, truncation and roundoff errors, tolerances in the optimization and
iterative algorithms, step-sizes in the time-integration methods).

The parametric approach is not suitable to quantify this type of

uncertainties and a non-parametric approach is needed for this purpose.



Non-parametric uncertainty

In majority of practical problems, the complete information regarding

uncertainties is not available.

In some ceases, for example, cars manufactured from a production chain
and soil property distribution in a construction site, it may be possible to

obtain probabilistic descriptions of the system parameters experimentally.

However, obtaining such probabilistic information may be prohibitively

expensive for many problems.

In another class of problems, for example, dynamic analysis of a space
vehicle, even ‘in principle’ it may not be possible to obtain probabilistic

information because there may be just ‘only one sample’. However, there

will still be some uncertainties in the model.

Regardless of what type of uncertainties exist in the model of a linear
dynamical system, it must be characterized by the random matrices M, C

and K.

These We obtain the probability density function of the random matrices

based on the maximum entropy principle.

It will be shown that Wishart random matrix is the simplest physically
realistic random matrix model for the system matrices appearing in linear

structural dynamical systems.



Dynamics of a general linear system

The equation of motion is given by

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:

to quantify uncertainties in the system matrices

to predict the variability in the response vector q

We aim to derive the probability density function of the system matrices
directly.



Random Matrix Method (RMM)

Derive the matrix variate probability density functions of M, C and K1

using available information.

The main assumption is that a reliable model of the baseline system

matrices is known.

Additionally we need to assume that ‘some information’ on the dispersion

of the system matrices from the ‘mean’ model is available.

Once the distribution is identified, we propagate the uncertainty (using
Monte Carlo simulation or analytical methods) to obtain the response

statistics (or pdf)

Several ways the parameters of the distribution can be identified.

1AIAA Journal, 45[7] (2007), pp. 1748-1762



Matrix variate distributions

A random matrix can be considered as an observable phenomenon

representable in the form of a matrix which under repeated observation

yields different non-deterministic outcomes.

Therefore, a random matrix is simply a collection of random variables

which may satisfy certain rules (for example symmetry, positive
definiteness etc). Random matrices were introduced by Wishart in 1928in

the context of multivariate statistics.

However, the Random Matrix Theory (RMT) was not used in other
branches until 1950s whenWigner published his works (leading to the

Nobel prize in Physics in 1963) on the eigenvalues of random matrices
arising in high-energy physics.

Using an asymptotic theory for large dimensional matrices, Wigner was

able to bypass the Schrödinger equation and explain the statistics of
measured atomic energy levels in terms of the limiting eigenvalues of

these random matrices.

Since then research on random matrices has continued to attract

interests in multivariate statistics, physics, number theory and more

recently in mechanical and electrical engineering.



Gaussian random matrix

The probability density function of a random matrix can be defined in a

manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate probability density

function of A ∈ Rn,m, denoted as pA(A), is a mapping from the space of

n × m real matrices to the real line, i.e., pA(A) : Rn,m → R.

Density of a random matrix is effectively the joint density function of all its

elements
The random matrix X ∈ Rn,p is said to have a matrix variate Gaussian

distribution with mean matrix M ∈ Rn,p and covariance matrix Σ⊗Ψ,

where Σ ∈ R
+
n and Ψ ∈ R

+
p provided the pdf of X is given by

pX (X) = (2π)−np/2det {Σ}−p/2
det {Ψ}−n/2

etr

{
−1

2
Σ

−1(X − M)Ψ−1(X − M)T

}
(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ⊗Ψ).



Symmetric Gaussian random matrix

Let Y ∈ R
n×n be a symmetric random matrix and M,Σ and Ψ are n × n

constant matrices such that the commutative relation ΣΨ = ΨΣ holds. If

the n(n + 1)/2 × 1 vector vecp (Y) formed from Y is distributed as

Nn(n+1)/2,1

(
vecp (M) ,BT

n (Σ⊗Ψ)Bn

)
, then Y is said to have a symmetric

matrix variate Gaussian distribution with mean M and covariance matrix

BT
n (Σ⊗Ψ)Bn and its pdf is given by

pY (Y) = (2π)−n(n+1)/4det
{

BT
n (Σ⊗Ψ)Bn

}−1/2

etr

{
−1

2
Σ

−1(Y − M)Ψ−1(Y −
(3)

This distribution is usually denoted as

Y = YT ∼ SNn,n

(
M,BT

n (Σ⊗Ψ)Bn

)
.

For a symmetric matrix Y ∈ R
n×n, vecp (Y) is a n(n + 1)/2-dimensional

column vector formed from the elements above and including the

diagonal of Y taken columnwise. The elements of the translation matrix

Bn ∈ R
n2×n(n+1)/2 are given by

(Bn)ij,gh =
1

2

(
δigδjh + δihδjg

)
, i ≤ n, j ≤ n, g ≤ h ≤ n (4)

where δij is the usual Kronecker’s delta.



Wishart matrix

A n × n symmetric positive definite random matrix S is said to have a
Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if its pdf is given

by

pS (S) =

{
2

1
2

np Γn

(
1

2
p

)
det {Σ}

1
2

p

}−1

|S| 1
2
(p−n−1)etr

{
−1

2
Σ

−1S

}
(5)

This distribution is usually denoted as S ∼ Wn(p,Σ).
Note: If p = n + 1, then the matrix is non-negative definite.

Wishart distribution is the most important distribution for structural

dynamics due to it symmetry and nonnegative definite property.



Matrix variate gamma distribution

A n × n symmetric positive definite random matrix W is said to have a
matrix variate gamma distribution with parameters a and Ψ ∈ R

+
n , if its

pdf is given by

pW (W) =
{
Γn (a) det {Ψ}−a

}−1

det {W}a− 1
2
(n+1)

etr {−ΨW} ;

ℜ(a) > 1

2
(n − 1) (6)

This distribution is usually denoted as W ∼ Gn(a,Ψ).

Comparing this distribution with the Wishart distribution, we have

Gn(a,Ψ) = Wn(2a,Ψ−1/2). The main difference between the gamma

and the Wishart distribution is that originally only integer values were
considered for the shape parameter p in the Wishart distribution.

From an analytical point of view the gamma and the Wishart distributions
are identical.



Distribution of the system matrices

The distribution of the random system matrices M, C and K should be such
that they are

symmetric

positive-definite, and

the moments (at least first two) of the inverse of the dynamic stiffness

matrix D(ω) = −ω2M + iωC + K should exist ∀ω. This ensures that the
moments of the response exist for all frequency values.



Maximum Entropy Distribution

Suppose that the mean values of M, C and K are given by M0, C0 and K0

respectively. Using the notation G (which stands for any one the system
matrices) the matrix variate density function of G ∈ R

+
n is given by

pG (G) : R+
n → R. We have the following constrains to obtain pG (G):

∫

G>0

pG (G) dG = 1 (normalization) (7)

and

∫

G>0

G pG (G) dG = G0 (the mean matrix) (8)



Further constraints

Suppose that the inverse moments up to order ν of the system matrix

exist. This implies that E
[∥∥∥G

−1
∥∥∥
F

ν]
should be finite. Here the Frobenius

norm of matrix A is given by ‖A‖
F
=

(
Trace

(
AAT

))1/2

.

Taking the logarithm for convenience, the condition for the existence of

the inverse moments can be expresses by

E
[
ln det {G}−ν

]
< ∞

We extend the maximum entropy principle to matrix variate distribution to

obtain the density of the matrices

This requires calculus of variation on matrix quantities



Maximum entropy distribution

The Lagrangian becomes:

L
(
pG

)
= −

∫

G>0

pG (G) ln
{

pG (G)
}

dG+

(λ0 − 1)

(∫

G>0

pG (G) dG − 1

)
− ν

∫

G>0

ln det {G} pG dG

+ Trace

(
Λ1

[∫

G>0

G pG (G) dG − G0

])
(9)

Note: ν cannot be obtained uniquely!

Using the calculus of variation

∂L
(
pG

)

∂pG
= 0

or − ln
{

pG (G)
}
= λ0 + Trace (Λ1G)− ln det {G}ν

or pG (G) = exp {−λ0} det {G}ν etr {−Λ1G}



Maximum entropy distribution

Using the matrix variate Laplace transform
(T ∈ Rn,n,S ∈ Cn,n, a > (n + 1)/2)

∫

T>0

etr {−ST} det {T}a−(n+1)/2
dT = Γn(a)det {S}−a

and substituting pG (G) into the constraint equations it can be shown that

pG (G) = r−nr {Γn(r)}−1
det {G0}−r

det {G}ν etr
{
−rG0

−1
G
}

(10)

where r = ν + (n + 1)/2.

Comparing it with the Wishart distribution we have: If ν-th order

inverse-moment of a system matrix G ≡ {M,C,K} exists and only the
mean of G is available, say G0, then the maximum-entropy pdf of G

follows the Wishart distribution with parameters p = (2ν + n + 1) and

Σ = G0/(2ν + n + 1), that is G ∼ Wn (2ν + n + 1,G0/(2ν + n + 1)).



Properties of the distribution

Covariance tensor of G:

cov (Gij ,Gkl) =
1

2ν + n + 1

(

G0ik
G0jl

+ G0il
G0jk

)

Normalized standard deviation matrix

δ2
G =

E

[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

=

1

2ν + n + 1







1 +

{Trace (G0)}
2

Trace

(

G0
2
)







δ2
G ≤

1 + n

2ν + n + 1
and ν ↑ ⇒ δ2

G
↓.



Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic finite element
modeling) the mean (G0) and the (normalized) standard deviation (δG) of

the system matrices:

δ2
G =

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2
F

. (11)

This is known as the dispersion parameter.

The parameters of the Wishart distribution can be identified using the

expressions derived before.

Samples from the Wishart distribution can be drawn and MCS can be

sued to obtain system response and eigensolutions.

We consider some strategies for reduced computational approaches.



Stochastic dynamic response

Taking the Laplace transform of the equation of motion:

[
s2M + sC + K

]
q̄(s) = f̄(s) (12)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the

system matrices are random matrices.

The system eigenvalue problem is given by

Kφj = ω2
j Mφj , j = 1, 2, . . . , n (13)

where ω2
j and φj are respectively the eigenvalues and mass-normalized

eigenvectors of the system.

We form the truncated undamped modal matrices m ≤ n

Ω = diag [ω1, ω2, . . . , ωm] and Φ = [φ1,φ2, . . . ,φm] . (14)

so that Φ
T KΦ = Ω

2 and Φ
T MΦ = Im (15)



Stochastic dynamic response

Transforming it into the reduced modal coordinates:

[
s2Im + sC

′ +Ω
2
]

q̄′ = f̄
′

(16)

Here

C
′ = Φ

T CΦ = 2ζΩ, q̄ = Φq̄′ and f̄
′
= Φ

T f̄ (17)

When we consider random systems, the matrix of eigenvalues Ω
2 will be

a random matrix of dimension m. Suppose this random matrix is denoted
by Ξ ∈ R

m×m:

Ω
2 ∼ Ξ (18)



Stochastic dynamic response

Since Ξ is a symmetric and positive definite matrix, it can be diagonalized

by a orthogonal matrix Ψr such that

Ψ
T
r ΞΨr = Ω

2
r (19)

Here the subscript r denotes the random nature of the eigenvalues and
eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = Im we obtain

q̄′ =
[
s2Im + sC

′ +Ω
2
]−1

f̄
′

(20)

= Ψr

[
s2Im + 2sζΩr +Ω

2
r

]−1

Ψ
T
r f̄

′
(21)



Stochastic dynamic response

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[
s2In + 2sζΩr +Ω

2
r

]−1

(ΦΨr )
T f̄(s)

=

m∑

j=1

xT
rj

f̄(s)

s2 + 2sζjωrj
+ ω2

rj

xrj
.

Here

Ωr = diag [ωr1
, ωr2

, . . . , ωrm
] , Xr = ΦΨr = [xr1

, xr2
, . . . , xrm

]

are respectively the matrices containing random eigenvalues and

eigenvectors of the system.

Conventional modal truncation has been applied to reduce the system.
This will lead to a smaller random eigenvalue problem to be solved.



Parameter-selection of Wishart matrices

Approach 1: M and K are fully correlated Wishart (most complex). For this

case M ∼ Wn(pM ,ΣM), K ∼ Wn(pK ,ΣK ) with E [M] = M0 and E [K] = K0. This
method requires the simulation of two n × n fully correlated Wishart matrices

and the solution of a n × n generalized eigenvalue problem with two fully
populated matrices.

Here

ΣM = M0/pM , pM =
γM + 1

δM

(22)

and ΣK = K0/pK , pK =
γK + 1

δK

(23)

γG = {Trace (G0)}2/Trace
(

G0
2
)

(24)



Parameter-selection of Wishart matrices

Approach 2: Scalar Wishart (most simple) In this case it is assumed that

Ξ ∼ Wm

(
p,

a2

n
Im

)
(25)

Considering E [Ξ] = Ω
2
0 and δΞ = δH the values of the unknown parameters

can be obtained as

p =
1 + γH

δ2
H

and a2 = Trace
(
Ω

2
0

)
/p (26)



Parameter-selection of Wishart matrices

Approach 3: Diagonal Wishart with different entries (something in the middle).

For this case Ξ ∼ Wm

(
p,Ω2

0/θ
)

with E
[
Ξ

−1
]
= Ω

−2
0 and δΞ = δH . This

requires the simulation of one n × n uncorrelated Wishart matrix and the

solution of an n × n standard eigenvalue problem.

The parameters can be obtained as

p = m + 1 + θ and θ =
(1 + γH)

δ2
H

− (n + 1) (27)



Parameter-selection of Wishart matrices

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}2

Trace
(

H0
2
) =

{
Trace

(
Ω

2
0

)}2

Trace
(
Ω

4
0

) =

(∑
j ω

2
0j

)2

∑
j ω

4
0j

(28)

Obtain the dispersion parameter of the generalized Wishart matrix

δ2
H =

(
pM

2 + (pK − 2 − 2n) pM + (−n − 1)pK + n2 + 1 + 2n
)
γH

pK (−pM + n) (−pM + n + 3)

+
pM

2 + (pK − 2n) pM + (1 − n) pK − 1 + n2

pK (−pM + n) (−pM + n + 3)
(29)



Summary of the method

A step-by-step method for implementing the new computational approach in

conjunction with any general purpose finite element software is given below:

Form the deterministic mass and stiffness matrices M0 and K0 using the

standard finite element method and the modal damping factors ζj . Select
the number of modes m < n. The number of modes to be retained, m

should be selected based on the frequency of excitation.

Solve the deterministic undamped eigenvalue problem

K0φ0 j = ω2
0j

M0φ0j , j = 1, 2, . . . ,m (30)

and create the matrix

Φ0 =
[
φ01

,φ02
, . . . ,φ0m

]
∈ R

n×m (31)

Calculate the ratio

γH =




m∑

j=1

ω2
0j




2

/

m∑

j=1

ω4
0j

(32)

Obtain the dispersion parameters δM and δK corresponding to the mass

and stiffness matrices. This can be obtained from physical or computer

experiments.



Summary of the method

Obtain the dispersion parameter of the generalized Wishart matrix H

δ2
H =

(
pM

2 + (pK − 2 − 2n) pM + (−n − 1)pK + n2 + 1 + 2n
)
γH

pK (−pM + n) (−pM + n + 3)

+
pM

2 + (pK − 2n) pM + (1 − n) pK − 1 + n2

pK (−pM + n) (−pM + n + 3)
(33)

where

pM =
1

δ2
M

{
1 + {Trace (M0)}2/Trace

(
M0

2
)}

(34)

and pK =
1

δ2
K

{
1 + {Trace (K0)}2/Trace

(
K0

2
)}

(35)

Calculate the parameters

θ =
(1 + γH)

δ2
H

− (m + 1) and p = [m + 1 + θ] (36)

where p is approximated to the nearest integer of m + 1 + θ.



Summary of the method

Create an m × p matrix Y such that

Yij = ω0i
Ŷij/

√
θ; i = 1, 2, . . . ,m; j = 1, 2, . . . , p (37)

where Ŷij are independent and identically distributed (i.i.d.) Gaussian
random numbers with zero mean and unit standard deviation.

Simulate the m × m Wishart random matrix

Ξ = YYT
or Ξij =

ω0i
ω0j

θ

p∑

k=1

Ŷik Ŷjk ; i = 1, 2, . . . ,m; j = 1, 2, . . . ,m

(38)

Since Ξ is symmetric, only the upper or lower triangular part need to be
simulated.

Solve the symmetric eigenvalue problem (Ωr ,Ψr ∈ R
m×m) for every

sample

ΞΨr = Ω
2
r Ψr (39)

and obtain the random eigenvector matrix

Xr = Φ0Ψr = [xr1
, xr2

, . . . , xrm
] ∈ R

n×m (40)



Summary of the method

Finally calculate the dynamic response in the frequency domain as

q̄r (iω) =

m∑

j=1

xT
rj

f̄(s)

−ω2 + 2iωζjωrj
+ ω2

rj

xrj
(41)

The samples of the response in the time domain can also be obtained
from the random eigensolutions as

qr (t) =

m∑

j=1

arj
(t)xrj

,

where arj
(t) =

1

ωrj

∫ t

0

xT
rj

f(τ)e−ζjωrj
(t−τ )

sin
(
ωrj

(t − τ)
)

dτ (42)



Identification of the dispersion parameters - 1

The dispersion parameter is related to the first and second moments of

eigenvalues

δ2
G =

∑n
j=1 E

[
λ2

j

]

∑n
j=1 E

[
λj

]2
− 1 (43)

so that, if information on the eigenvalues of the system is available, the
dispersion parameter can be retrieved.

Suppose the standard deviation of each eigenvalue is σj and mean of

each eigenvalue is λj . Therefore E
[
λj

]
= λj and E

[
λ2

j

]
= σ2

j + λ
2

j

Suppose the standard deviation is expressed as a fraction of the
respective mean values σj = ǫjλj .

Using these and applying modal truncation, from Eq. (43) we have

δ2
G =

∑m
j=1 λ

2

j ǫ
2
j

∑m
j=1 λ

2

j

(44)

This can be measured from experiments.



Identification of the dispersion parameters- 1

The dispersion parameter for the mass matrix can be obtained as

pM =
(n + 1)

∑n
j=1 E

[
λj

]
∑n

j=1 E
[
λj

]
− Trace

(
(M)−1/2K(M)−1/2

) (45)

The dispersion parameter for the stiffness matrix can be obtained as

pK =
(pM − n − 1)3T 2

1 + (pM − n + 3)(T2)

(n1 − pM)T 2
1 + (pM − n)T2((pM − n)(pM − n − 3)(δ2

G − 1)− 1)
(46)

with
T1 = Trace

(
(M)−1K

)
and T2 = Trace

(
((M)−1K)2

)
. (47)



Identification of the dispersion parameters- 2

We assume that the matrix G(θ) = {K(θ), M(θ)} can be expanded as

G(θ) = G0 + ǫG

M∑

j=1

ξGj
(θ)Gj (48)

Substituting this expansion in the expression of the dispersion parameter
one has

δ2
G =

E

[∥∥∥ǫG

∑M
j=1 ξGj

(θ)Gj

∥∥∥
2

F

]

‖E [G] ‖2
F

(49)

Because the matrices Gj are symmetric, using the definition of Frobenius
norm, from Eq. (49) we have

δ2
G =

E
[
Trace

(
(ǫG

∑M
j=1 ξGj

(θ)Gj)(ǫG

∑M
k=1 ξGk

(θ)Gk )
)]

‖G0 ‖2
F

(50)



Identification of the dispersion parameters- 2

Since both trace and expectation operators are linear they can be

swaped. Doing this we obtain

δ2
G =

ǫ2
GTrace

(
E
[
(
∑M

j=1

∑M
k=1 ξGj

(θ)ξGk
(θ)GjGk )

])

‖G0 ‖2
F

(51)

Recalling that the matrices Gj are not random and {ξG1
(θ), ξG2

(θ), . . . } is
a set of uncorrelated random variables with zero mean and

E
[
ξGj

(θ)ξGk
(θ)

]
= δjk , we have

δ2
G =

ǫ2
GTrace

(
(
∑M

j=1

∑M
k=1 E

[
ξGj

(θ)ξGk
(θ)

]
Gj Gk )

)

‖G0 ‖2
F

=
ǫ2

GTrace
(
(
∑M

j=1 G
2
j )
)

‖G0 ‖2
F

(52)



Identification of the dispersion parameters- 2

In the above expressions, the uncorrelated nature of the random
variables allowed us to transform the double summation into a single

summation. Finally, as trace and sum operators can be interchanged and

Trace
(

G
2
j

)
=

∥∥Gj

∥∥2

F
, we have

δ2
G = ǫ2

G

∑M
j

∥∥(Gj)
∥∥2

F

‖G0 ‖2
F

(53)

This result allows one to obtain the dispersion parameter using the

stochastic finite element, therefore avoiding the direct Monte Carlo

simulation. This expression also relates the stochastic finite element and
random matrix theory.

δM and δK obtained in this way can be used in (34) and (35) for the

simulation of the random matrices.



A vibrating cantilever plate
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Baseline Model: Thin plate elements with 0.7% modal damping

assumed for all the modes.



Physical properties

Plate Properties Numerical values

Length (Lx ) 998 mm
Width (Ly ) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa
Poisson’s ratio (µ) 0.3

Total weight 12.47 kg

Material and geometric properties of the cantilever plate consid-

ered for the experiment. The data presented here are available

from http://engweb.swan.ac.uk/∼adhikaris/uq/.

http://engweb.swan.ac.uk/~adhikaris/uq/


Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness are random

fields of the form

E(x) = Ē (1 + ǫE f1(x)) (54)

µ(x) = µ̄ (1 + ǫµf2(x)) (55)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (56)

and t(x) = t̄ (1 + ǫt f4(x)) (57)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated homogenous

Gaussian random fields.



Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by attaching 10

oscillators with random spring stiffnesses at random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally later.



Mean of cross-FRF: Utype 1
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Error in the mean of cross-FRF: Utype 1
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Error in the mean of the amplitude of the response of the cross-

FRF of the plate, n = 1200, σM = 0.078 and σK = 0.205.



Standard deviation of driving-point-FRF: Utype 1
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Standard deviation of the amplitude of the response of the
driving-point-FRF of the plate, n = 1200, σM = 0.078 and

σK = 0.205.



Error in the standard deviation of driving-point-FRF: Utype 1
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Error in the standard deviation of the amplitude of the response

of the driving-point-FRF of the plate, n = 1200, σM = 0.078 and

σK = 0.205.



Mean of cross-FRF: Utype 2
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Mean of the amplitude of the response of the cross-FRF of the

plate, n = 1200, σM = 0.133 and σK = 0.420.



Error in the mean of cross-FRF: Utype 2
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M and K are fully correlated Wishart
Scalar Wishart
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Error in the mean of the amplitude of the response of the cross-
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Standard deviation of driving-point-FRF: Utype 2
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M and K are fully correlated Wishart
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Direct simulation

Standard deviation of the amplitude of the response of the
driving-point-FRF of the plate, n = 1200, σM = 0.133 and

σK = 0.420.



Error in the standard deviation of driving-point-FRF: Utype 2
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries

Error in the standard deviation of the amplitude of the response

of the driving-point-FRF of the plate, n = 1200, σM = 0.133 and

σK = 0.420.



A cantilever plate: front view

The test rig for the cantilever plate; front view.



A cantilever plate: side view

The test rig for the cantilever plate; side view.



Comparison of driving-point-FRF
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Comparison of the mean of the amplitude obtained using the ex-
periment and three Wishart matrix approaches for the plate with

randomly attached oscillators
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Comparison of driving-point-FRF
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Experiment

Comparison of relative standard deviation of the amplitude
obtained using the experiment and three Wishart matrix ap-

proaches for the plate with randomly attached oscillators
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M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Experiment

Comparison of relative standard deviation of the amplitude
obtained using the experiment and three Wishart matrix ap-

proaches for the plate with randomly attached oscillators



Role of vibration frequency on uncertainty modelling

For low- frequency vibration problems (longer wavelength), parametric

uncertainty model is normally used.

Random field or random variables can be used to model uncertain

parameters and stochastic finite element method can be used to

propagate uncertainty.

For high-frequency vibration problems (shorter wavelength),

nonparametric uncertainty model is normally used.

Random matrix model, such as those based on Wishart random

matrices, can be used for this purpose.

In majority of practical engineering problems, one expects a mixture of
wavelengths.



Multifrequency dynamics

Complex dynamic structures such as aircrafts, helicopters contain several
substructures.

For a given frequency of excitation, the wavelength of vibration in different
substructures can be significantly different.

For example, in the context of an aircraft fuselage, the ring girders will

have significantly longer wavelength of vibration compared to the thin
panel for a given frequency of excitation.



Multifrequency dynamics

Complex dynamic structures such as aircrafts, helicopters contain several
substructures.

For a given frequency of excitation, the wavelength of vibration in different
substructures can be significantly different.

For example, in the context of an aircraft fuselage, the ring girders will

have significantly longer wavelength of vibration compared to the thin
panel for a given frequency of excitation.



Multifrequency dynamics

(a) Aircraft fusulage (b) Car body



Parametric uncertainty: low-frequency vibration problem

Fist few vibration modes (typically few tens) are participating in the
dynamical response of interest

Uncertainty models aim to characterise parametric uncertainty (type ‘a’)

Random variable or random field models are used to represent uncertain

parameters

Well established methods such as stochastic finite element method

(polynomial chaos, perturbation methods, spectral method) exist in

literature

A system matrix can be expressed as

A(θ1) = A0 +
M∑

i=1

ξi(θ1)Ai

A0: baseline model, ξi(θ1): random variables



Non-parametric uncertainty: high-frequency vibration problem

Many vibration modes are (in hundreds) participating in the dynamical
response of interest

Uncertainty models aim to characterise non-parametric uncertainties
(type ‘b-d’)

Random matrix models can be used to represent uncertain system

matrices

A system matrix can be expressed as

A = Wn(δA,A0)

A0: baseline model, δA: dispersion parameter, Wn: Wishart random

matrix of dimension n.



Domain decomposition method

Developed to solve a boundary value problem by splitting it into smaller

boundary value problems on subdomains

The problems on the subdomains are independent, which makes domain
decomposition methods suitable for parallel computing

Originally developed for numerical solution of partial differential equations
(not explicitly for uncertainty quantification)

Excellent and powerful computational tools are available



Domain decomposition method

Long wavelength

Small wavelength

Domain 1

Domain 2

Longwavelength: domain 1

shortwavelength: domain 2

Domain 1: A(θ1) = A0 +
∑M

i=1 ξi (θ1)Ai (dimension n1) - parametric uncertainty

Domain 2: A(θ2) = Wn2
(δA,A0) (dimension n2) - nonparametric uncertainty



Two subdomains

The equation of motion of a linear dynamic system in the frequency domain is

A(ω)u = f (58)

where the dynamic stiffness matrix over the whole domain Ω, A(ω) is given by

A(ω) = −ω2M + iωC + K ∈ C
n (59)

We aim to subdivide the domain Ω into two nonoverlapping domains.



Two subdomains

The region Ω partitioned into two nonoverlapping subdomains Ω1 and Ω2 as
below

The equilibrium equation of the system can be partitioned as





[A1
II ]m1×m1

0 [A1
IΓ]m1×mΓ

0 [A2
II ]m2×m2

[A2
IΓ]m2×mΓ

[A1
ΓI ]mΓ×m1

[A2
ΓI ]mΓ×m2

[A1
ΓΓ + A2

ΓΓ]m2×m2



× (60)







u1
I

u2
I

uΓ







=







f1
I

f2
I

f1
Γ + f2

Γ









Equilibrium equations

The above equilibrium equation can be rearranged into following explicit forms

(interior and interface problems):

[A1
II ]{u1

I } = {f1
I } − [A1

IΓ]{uΓ} (61)

[A2
II ]{u2

I } = {f2
I } − [A2

IΓ]{uΓ} (62)

[[A1
ΓΓ]− [A1

ΓI][A
1
II ]

−1[A1
IΓ]︸ ︷︷ ︸

S1

+ [A2
ΓΓ]− [A2

ΓI][A
2
II ]

−1[A2
IΓ]︸ ︷︷ ︸

S2

]{uΓ} (63)

= [{f1
Γ} − [A1

ΓI ][A
1
II ]

−1]{f1
I }︸ ︷︷ ︸

F1

] + [{f2
Γ} − [A2

ΓI][A
2
II ]

−1]{f2
I }︸ ︷︷ ︸

F2

]

The coefficient matrix S = S1 + S2 is known as the Schur complement matrix.



Stochastic domain decomposition

We have two system matrices. For the domain with parametric uncertainty

(long wavelength scale):

[A1(θ1)]n1×n1
=

[
A1

II(θ1) A1
IΓ(θ1)

A1
ΓI(θ1) A1

ΓΓ(θ1)

]
= A1

0 +
M∑

i=1

ξi (θ1)A
1
i (64)

with n1 = m1 + mΓ.

For the domain with nonparametric uncertainty (short wavelength scale):

A2(θ2)n2×n2
=

[
A2

II(θ2) A2
IΓ(θ2)

A2
ΓI(θ2) A2

ΓΓ(θ2)

]
= Wn2

(δA2
,A2

0) (65)

with n2 = m2 + mΓ.



Stochastic interface problem

For the stochastic interface problem we have a system of (densely) coupled

mΓ complex stochastic equations

[S1(θ1) + S2(θ2)]uΓ(θ1, θ2) = F1(θ1) + F2(θ2) (66)

where

S1(θ1) = A1
ΓΓ(θ1)− A1

ΓI(θ1)[A
1
II(θ1)]

−1A1
IΓ(θ1) (67)

F1(θ1) = f
1
Γ − A1

ΓI(θ1)[A
1
II(θ1)]

−1f
1
I (68)

and

S2(θ2) = A2
ΓΓ(θ2)− A2

ΓI(θ2)[A
2
II(θ2)]

−1A2
IΓ(θ2) (69)

F2(θ2) = f
2
Γ − A2

ΓI(θ2)[A
2
II(θ2)]

−1f
2
I (70)



Stochastic interior problems

Solving the interface problem we have uΓ(θ1, θ2). This can used to obtain the

interior solutions as

u1
I (θ1, θ2) = [A1

II(θ1)]
−1[f1

I − A1
IΓ(θ1)uΓ(θ1, θ2)] (71)

u2
I (θ1, θ2) = [A2

II(θ1)]
−1[f2

I − A2
IΓ(θ1)uΓ(θ1, θ2)] (72)

The most computationally intensive parts of the solution process is obtaining

[A1
II(θ1)]

−1 and [A2
II(θ1)]

−1 which involves the solution of m1 and m2 number of
coupled complex stochastic equations.

Existing computational methods for uncertainty propagation can be used.



Stochastic interior problems

Recall that in the frequency domain

AII(ω, θ) = −ω2MII(θ) + iωCII(θ) + KII(θ) (73)

Assuming proportional damping model, we have

[AII(ω, θ)]
−1 =

m∑

k=1

φk (θ)φ
T
k (θ)

ω2
k (θ)− ω2 + 2iζkωk(θ)

(74)

Here ζk are the modal damping factors and the eigenvalues are eigenvectors

are obtained from

KII(θ)φk (θ) = ω2
k MII(θ)φk (θ), k = 1, 2, · · · (75)

Any existing methods for random eigenvalue problem can be used

(perturbation, polynomial chaos, Neumann series . . .).



An Euler-Bernoulli beam example

Two coupled Euler-Bernoulli beams with stochastic elasticity are

considered

x

z

L1 = 1, EI10
= 1/3, ρA1 = π2/12, ζ1 = 0.04

L2 = L1, EI20
= EI10

/103, ρA2 = ρA1, ζ2 = ζ1/2

We study the deflection of the beam under the action of a point harmonic
load on the interior of beam 1.
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Beam 1
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Due to the difference in the stiffness values, beam 1 has less number of
frequencies compared to beam 2 within a given frequency range.



Frequency response
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Beam 1
Beam 2

Frequency response functions of the two beams in isolation (in cantilever
configuration with a point load at the end).



Stochastic models

The bending modulus of the first beam is modelled by two Gaussian
random variables (a discretised random field with standard deviation

σa = 0.2). The stiffness matrix is of the form

K1(θ1) = K0 + ξ1(θ1)K
1
1 + ξ2(θ1)K

1
2

For the second beam, an Wishart random matrix model with δ = 0.2 is

considered.

The mass matrix and the damping factors are deterministic for both the

beams.

First-order perturbation is used for the interior random eigenvalue
problems. 1000-sample Monte Carlo sample is used to for the interface

problem.

For the numerical calculation we used n1 = 60, n2 = 328. In the domain

decomposition approach, m1 = 58, m2 = 336 and mΓ = 2.



Stochastic response - driving point
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Response statistics of the stochastic multiscale system at the driving point.



Stochastic response - tip point
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Response statistics of the stochastic multiscale system at the tip.
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