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Helicopters & piles
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Motivation

The exact mechanism of pile a failure is difficult
to obtain for real-life systems.

In this lecture we address this problem using
general theory of linear distributed dynamical
systems.

Our aim is to come up with an unified approach
whereby different existing approaches can be
identified as special cases.
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Dynamic force modeling - I

During an earthquake there are three main types of
forces/excitations acting on a pile:

Bending force: arising due to the soil flow
around the pile during an earthquake - may
result in bending failure.

Axial force: arising due to the load coming from
the superstructure - may result in buckling
failure.
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Dynamic force modeling - II

Point/distributed frequency dependent force:
arising due to the ‘shaking’ of the bed-rock and
the surrounding medium - may result in
resonance failure.

The reality is perhaps some kind of nonlinear
combination of the above three types of forces
which is in general not known a priori!
We aim to address this issue by considering all of
the above forces for generality.
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Distributed dynamical system
model

Majority of existing works either consider a
distributed static system (namely Euler
Bernoulli beam equation) or a single
degree-of-freedom (SDOF) dynamic model.

The static model neglecters the resonance
effect while the SDOF model neglects the
buckling effect.

We propose a distributed dynamical system
model to include the neglected dynamics in the
above models.
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Scope of the proposed approach

An Euler-Bernoulli beam model resting against
an elastic support with axial force and tip mass
with rotary inertia are considered.

The elastic support is aimed at modeling the
surrounding soil while the tip mass together
with its rotary inertia is aimed at modeling the
superstructure.

Only free vibration analysis is considered in this
work.
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Equation of motion

∂2

∂x2

(

EI(x)
∂2w(x, t)

∂x2

)

+
∂

∂x

(

P (x)
∂w(x, t)

∂x

)

−

∂

∂x

(

mr2(x)
∂ẅ(x, t)

∂x

)

+k(x)w(x, t)+mẅ(x, t) = f(x, t)
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Boundary conditions

Deflection at x = 0:

w(0, t) = 0 (1)

Rotation at x = 0:
∂w(x, t)

∂x
= 0

����
x=0

or w′(0, t) = 0 (2)

Bending moment at x = L:

EI
∂2w(x, t)

∂x2
+ J

∂ẅ(x, t)

∂x
= 0

����
x=L

or EIw′′(L, t) + J
∂ẅ(L, t)

∂x
= 0 (3)

Shear force at x = L:

EI
∂3w(x, t)

∂x3
+ P

∂w(x, t)

∂x
− Mẅ(x, t) − mr2

∂ẅ(x, t)

∂x
= 0

����
x=L

or EIw′′′(L, t) + Pw′(L, t) − Mẅ(L, t) − mr2
∂ẅ(L, t)

∂x
= 0

(4)
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Separation of variables

Assuming harmonic solution we have

w(x, t) = W (ξ)exp {iωt} , ξ = x/L (5)

Substituting in the equation of motion and boundary conditions

EI

L4

∂4W (ξ)

∂ξ4
+

P

L2

∂2W (ξ)

∂ξ2
+ k W (ξ) − mω2W (ξ) +

mr2ω2

L2

∂2W (ξ)

∂ξ2
= 0 (6)

W (0) = 0 (7)

W ′(0) = 0 (8)

EI

L2
W ′′(1) −

ω2J

L
W ′(1) = 0 (9)

EI

L3
W ′′′(1) +

P

L
W ′(1) + ω2M W (1) +

mr2ω2

L
W ′(1) = 0 (10)
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Non-Dimensionalisation

We transform the previous equations as

∂4W (ξ)

∂ξ4
+ eν ∂2W (ξ)

∂ξ2
+ ηW (ξ) − Ω2W (ξ) = 0 (11)

W (0) = 0 (12)

W ′(0) = 0 (13)

W ′′(1) − βΩ2W ′(1) = 0 (14)

W ′′′(1) + eνW ′(1) + αΩ2W (1) = 0 (15)

where eν = ν + µ2Ω2 (16)
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Nondimensional parameters

ν =
PL2

EI
(nondimensional axial force), ν =

π2

4
(P/Pcr) (17)

η =
kL4

EI
(nondimensional support stiffness) (18)

Ω2 = ω2mL4

EI
(nondimensional frequency parameter) (19)

α =
M

mL
(mass ratio) (20)

β =
J

mL3
(nondimensional rotary inertia) (21)

µ =
r

L
(nondimensional radius of gyration). (22)
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Solution of the boundary value
problem

Assuming a solution of the form

W (ξ) = exp {λξ} (23)

and substituting in the equation of motion results

λ4 + eνλ2 −

�
Ω2 − η

�
= 0 (24)

This is the equation governing the natural frequencies of the beam. Solving this equation for
λ2 we have

λ2 = −

eν
2
±

s�eν
2

�
2

+ (Ω2 − η)

= −

0�s�eν
2

�
2

+ (Ω2 − η) +
eν

2

1A ,

0�s�eν
2

�
2

+ (Ω2 − η) −

eν
2

1A .

(25)

Depending on whether Ω2 − η > 0 or not two cases arise.
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Case 1

If eν > 0 and Ω2 − η > 0 or Ω2 > η then both roots are real with one negative and one
positive root. Therefore, the four roots can be expressed as

λ = ±iλ1, ±λ2 (26)

where

λ1 =

0�s�eν
2

�
2

+ (Ω2 − η) +

eν
2

1A1/2

(27)

and λ2 =

0�s�eν
2

�
2

+ (Ω2 − η) −

eν
2

1A1/2

. (28)

The solution W (ξ) can be expressed as

W (ξ) = a1 sin λ1ξ + a2 cos λ1ξ + a3 sinh λ2ξ + a4 cosh λ2ξ (29)
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Case 1

Substituting W (ξ) in the boundary conditions and eliminating the constants we have the
frequency equation�

− sin (λ1) λ1
2λ2Ω2 cosh (λ2) + λ1Ω2 cos (λ1) sinh (λ2) λ2

2 − Ω4β sin (λ1) λ1
2 sinh (λ2)

−Ω2 sin (λ1) cosh (λ2) λ2
3 + Ω4 sin (λ1) β sinh (λ2) λ2

2 + cos (λ1) λ1
3Ω2 sinh (λ2)

−2 λ1Ω4 cos (λ1) β cosh (λ2) λ2 + 2 Ω4λ2β λ1

�
α +

�
λ1λ2

3 − cos (λ1) λ1 cosh (λ2) λ2
3

−2 sin (λ1) λ1
2 sinh (λ2) λ2

2 − λ1
3λ2 + cos (λ1) λ1

3 cosh (λ2) λ2

� eν + λ1
5λ2 + λ1λ2

5

+ 2 cos (λ1) λ1
3 cosh (λ2) λ2

3 + sin (λ1) λ1
4 sinh (λ2) λ2

2 − sin (λ1) λ1
2 sinh (λ2) λ2

4

−sin (λ1) λ1
4Ω2β cosh (λ2) λ2−Ω2β sin (λ1) λ1

2 cosh (λ2) λ2
3−Ω2β cos (λ1) λ1 sinh (λ2) λ2

4

− cos (λ1) λ1
3Ω2β sinh (λ2) λ2

2 = 0. (30)
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Case 2

If eν > 0 and Ω2 − η < 0 or Ω2 < η then both the roots are real and negative. Therefore, all of
the four roots can be expressed as

λ = ±iλ1, ±ibλ2 (31)

where λ1 is as in the previous case

λ1 =

0�eν
2

+

s�eν
2

�
2

− (η − Ω2)
1A1/2

(32)

and bλ2 is given by bλ2 =

0�eν
2
−

s�eν
2

�
2

− (η − Ω2)

1A1/2

(33)

In view of the roots in in Eq. (??) the solution W (ξ) can be expressed as

W (ξ) = a1 sin λ1ξ + a2 cos λ1ξ + a3 sin bλ2ξ + a4 cos bλ2ξ (34)
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Case 2

Substituting W (ξ) in the boundary conditions and eliminating the constants we have the
frequency equation�

cos (λ1) λ1 cos

�bλ2

� bλ3

2 − λ1

bλ3

2 − λ1
3bλ2 + cos (λ1) λ1

3 cos

�bλ2

�
λ2 + 2 sin (λ1) λ1

2 sin

�bλ2

� bλ2

2

� e
+

�

−Ω4β sin (λ1) λ1
2 sin

�bλ2

�
+ cos (λ1) λ1

3Ω2 sin

�bλ2

�
− 2 λ1Ω4 cos (λ1) β cos

�bλ2

� bλ2 + 2 λ1Ω
4β b

−λ1Ω2 cos (λ1) sin

�bλ2

� bλ2

2 + Ω2 sin (λ1) cos

�bλ2

� bλ3

2 − sin (λ1) λ1
2bλ2Ω2 cos

�bλ2

�
−Ω4 sin (λ1) β sin

�bλ2

� bλ2

2

�
α − 2 cos (λ1) λ1

3 cos
�bλ2

� bλ3

2 − sin (λ1) λ1
4 sin

�bλ2

� bλ2

2

−sin (λ1) λ1
2 sin

�bλ2

� bλ4

2+λ1
5bλ2−Ω2β cos (λ1) λ1 sin

�bλ2

� bλ4

2+Ω2β sin (λ1) λ1
2 cos

�bλ2

� bλ3

2

− sin (λ1) λ1
4Ω2β cos

�bλ2

� bλ2 + cos (λ1) λ1
3Ω2β sin (λ2) bλ2

2 + λ1

bλ5

2 = 0 (35)
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Numerical Illustration

ν =
PL2

EI
=

π2

4
(P/Pcr) (36)

η =
kL4

EI
(37)

Ω2 = ω2
mL4

EI
= 4.7 × 10−5ω2

(38)

α =
M

mL
= 10.18 (39)

β =
J

mL3
= 0.099 (40)

µ =
r

L
= 0.016 (41)
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Parametric variation I

0
0.5

1
1.5 0

200
400

600
0

10

20

30

40

50

60

70

η = k L4/EI
P/P

cr

ω 1(H
z)

Variation of the resonance frequency

Dynamic Analysis of Piles – p.21/24



B E College, India, January 2007

Parametric variation II
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Observations

Natural frequency decreases with the increase in the
axial load and with the decrease in the surrounding soil
stiffness. When the soil is fully liquified, the natural
frequency can come very close to the frequency of
earthquake excitation (usually 1-10 Hz).

Closed-form equation for the natural frequencies cannot
be obtained due to the complex nature of the
transcendental frequency equation. For pinned-pinned
boundary conditions we have:

Ω2
n =

n4π4

1 + µ2n2π2

(

1 −

P/Pcr

n2
+

η

n4π4

)

(42)
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Conclusions & Outlook

Pile dynamics is a coupled phenomenon: the
response leading to failure is a fusion of
bending, buckling and resonance. We are
investigating the usefulness of a unified coupled
dynamical system approach for the pile design.

Our approach leads to a high-fidelity modeling
(however, needs advanced
mathematical/computational tools).

Further work will look at the detailed dynamical
response, optimal design and probabilistic
reliability analysis.

Dynamic Analysis of Piles – p.24/24


	Outline
	Bristol Aerospace
	Helicopters & piles
	Motivation
	Dynamic force modeling - I
	Dynamic force modeling - II
	Distributed dynamical system model
	Scope of the proposed approach
	Equation of motion
	Boundary conditions
	Separation of variables
	Non-Dimensionalisation
	Nondimensional parameters
	Solution of the boundary value problem
	Case 1
	Case 1
	Case 2
	Case 2
	Numerical Illustration
	Parametric variation I
	Parametric variation II
	Observations
	Conclusions & Outlook

