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This paper is concerned with distributed sensors to measure the response of beam and

plate structures. The design of modal sensors for beam structures is well established.

The design for plate structures with constant thickness sensors may be achieved by

optimizing the shape of the sensor boundary, or by optimizing the effectiveness of the

electrode. Most applications consider vibration control, but this paper is concerned with

structural health monitoring, where the sensor output is made sensitive to changes in

key stiffness parameters, for example in joints. The procedure is based on finite element

models of the structures, and thus distributed transducers may be designed for arbitrary

beam and plate structures. Simulated examples of a beam and a plate excited by a

rotating machine are used to demonstrate the approach.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The idea of using modal sensors and actuators for beam and plate type structures has been a subject of intense interest
for many years. Using modal sensors in active control reduces problems of spillover, where high frequency unmodeled
modes affect the stability of the closed loop system. The sensors and actuators may be discrete or distributed, and are
usually manufactured using piezoelectric material, such as polyvinylidene fluoride (PVDF) film. For example, a modal
sensor for a beam type structure may be obtained by varying the sensor width along the length of the beam. If the sensor
covers the whole beam the shape of the sensor may be derived using the mode shape orthogonality property [1,2]. Modal
sensors may be designed that cover only part of the beam [3], or are segmented sensors sensitive to multiple modes. The
effect of geometric tolerances during manufacture on the quality of the sensors may be determined [3]. For beam structures
the width of the sensor may be parameterized using the finite element method and the underlying shape functions used to
approximate the transducer shape [4].

For two-dimensional structures, the approach used for beams may be implemented by varying the thickness of the
PVDF, although this is very difficult to achieve in practice. Sun et al. [5] replaced an actuator layer with variable thickness
by many small segments of uniform thickness. Kim et al. [6,7] developed two design methods for distributed modal
transducers for composite plates, the first using multi-layered PVDF films with optimized electrode pattern, lamination
angle, and poling direction, and the second using PVDF film segments and an interface circuit. Preumont et al. [8]
introduced the porous electrode concept, which allows the gains to be introduced by changing the local effectiveness of the
electrodes. The alternative is to design a distributed modal transducer by optimizing the continuous boundary shape of a
constant thickness PVDF film by assuming a smooth boundary [9–11] or using topology optimization methods
[12–14].
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This paper uses the design methods for modal sensors, but extends this approach to the structural health monitoring
application.

The identification of the location and severity of cracks, loose bolts and other types of damage in structures using
vibration data has received considerable attention [15]. Most of the approaches use the modal data of a structure before
damage occurs as baseline data, and all subsequent tests are compared to it [16–19]. Any deviation in the modal properties
from this baseline data is used to estimate model parameters related to the damage severity and location. The advantage of
using this baseline data is that some allowance is made for modeling errors. However changes in the structure not due to
damage, for example due to environmental effects, will be difficult to distinguish from changes due to damage [20,21].
The approach adopted in this paper is to use shaped transducers to reduce the sensitivity of the sensor output to the
unmodeled parameter changes and environmental effects. For structural health monitoring this means that the response
can be made sensitive to particular regions of interest, so that, for example, the sensor may be used to monitor the health of
a single joint. This concept is different to the usual approach in health monitoring where the key objective is to determine
the location of damage. The assumption here is that we know of several regions that need to be monitored (for example,
joints) and the motivation is to design a sensor that requires very little post processing to estimate the condition of the
monitored region. Thus one sensor monitors one region of the structure, and multiple sensors could be used to monitor
multiple regions. The method is an extension of the selective sensitivity technique which was developed to design
excitations that produce strong sensitivities to a subset of the parameters whilst causing the sensitivities to other
parameters to vanish. This concept is modified to choose the shaped sensor, although the spatial and spectral properties of
the expected in-service excitation are still an important aspect of the design.

The finite element model of the structure is of the form

M €q þ D _q þ Kq ¼ Bu; y ¼ Cq ð1Þ

where M, D and K are the mass, damping and stiffness matrices based on the degrees of freedom, q. The inputs to the
structure, u, are applied via a matrix, B, which determines the location and gain of the actuators (or the actuator shape for
distributed actuators). Similarly the outputs, y, are obtained via the output matrix C which is determined by the sensor
shape. For parameter estimation and health monitoring applications the mass, damping and stiffness matrices depend on a
set of physical parameters, y.

2. Defining shaped sensors

For beam structures whose response is predominantly in bending in a single plane, the transducer may be shaped by
varying the width of the PVDF material. For beam and plate structures either the thickness [5–7] or the electrode
effectiveness [8] (which may be considered equivalent to thickness) may be changed. In all these cases the width or
thickness is assumed to be a continuous function. However this function needs to be parameterized to enable the
optimization of the sensor. Using the shape functions of the underlying finite element model is a convenient approach to
approximate the width or thickness of the piezoelectric material [4]. In this way modal transducers may be designed for
arbitrary beam or plate type structures, and the sensor width or thickness (and often its slope also) will be continuous
across the element boundaries. Furthermore modal transducers that only cover part of a structure may be designed.
Most of the development will concern sensors, although actuators may be dealt with in a similar way.

The approach is developed using simple models of the structure and assuming an isotropic piezoelectric material,
although the concept could be extended to a general piezoelectric formulation. The integration within a commercial finite
element code is outside the scope of this paper, and would require the calculation and assembly of extra element matrices.

For a plate element, the output (voltage or charge) from the part of the sensor covering element number e is [5]

yeðtÞ ¼ Ks

ZZ
feðx;ZÞ

@2weðx;Z; tÞ
@x2

þ
@2weðx;Z; tÞ

@Z2

 !
dxdZ ð2Þ

where feðx;ZÞ defines the effectiveness of the sensor at location ðx;ZÞ which incorporates the sensor thickness (or possibly
distance from the plate neutral plane), the piezoelectric coefficient and also the polarization direction. Here a Cartesian
coordinate system is used and the integration is performed over the element, although other coordinate systems could be
used. we is the plate deflection within the element. Ks is a constant relating to the piezoelectric properties. For a rectangular
plate element, with dimensions 2a and 2b in the x and Z directions respectively, the output would be

yeðtÞ ¼ Ks

Z b

�b

Z a

�a
feðx;ZÞ

@2weðx;Z; tÞ
@x2

þ
@2weðx;Z; tÞ

@Z2

 !
dxdZ ð3Þ

For a beam element of length ‘e the output is

yeðtÞ ¼ Ks

Z ‘e

0
feðxÞ

@2weðx; tÞ
@x2

dx ð4Þ

where now the sensor effectiveness feðxÞ allows for varying width, as well as (possibly) varying electrode effectiveness or
thickness. The development will concentrate on sensors for plate structures, although it is clear that the results for beam
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structures will be a special case. Sensor thickness will be used, although this should be interpreted as sensor effectiveness
for plates, and sensor width for beams.

The objective is to approximate the continuous sensor effectiveness using a discrete set of parameters, based on the
finite element shape functions. In finite element analysis the displacement is approximated as

weðx;ZÞ ¼ Nðx;ZÞqe ð5Þ

where Nðx;ZÞ are the shape functions and qe are the nodal generalized displacements. Suppose that the sensor thickness is
also approximated by the shape functions, so that

feðx;ZÞ ¼ Nðx;ZÞfse ð6Þ

where fse is a vector of the same length as the nodal displacements, that defines the thickness of the sensor. In this way the
continuous sensor thickness is approximated using a finite set of parameters in fse. Substituting into Eq. (2) gives

yeðtÞ ¼ f>seCseqe ð7Þ

where

Cse ¼ Ks

ZZ
Nðx;ZÞ> @2Nðx;ZÞ

@x2
þ
@2Nðx;ZÞ
@Z2

 !
dxdZ ð8Þ

If a commercial finite element code were employed then the matrix Cse would have to be computed for the elements used.
The total sensor output is obtained by summing the output from all of the elements. Thus

y ¼
X

e

ye ¼ f>s Csq ð9Þ

where q is the vector of generalized displacements of the full model, and fs is a vector incorporating the sensor parameter
vectors. In this way, the problem of a continuous thickness variation is changed into a discrete optimization problem for fs.
The assembly process is exactly analogous to the assembly of mass and stiffness matrices in standard finite element
analysis. The only slight difference is the incorporation of boundary conditions. For example a pinned boundary will require
that some of the generalized displacements are set to zero, which reduces the number of degrees of freedom. Just because a
generalized displacement at a given node is zero does not mean that the corresponding element of the sensor thickness
parameters, fs, should be zero, as the sensor thickness may be non-zero at the boundary. In turn this means that Cs may be
a rectangular matrix. Comparing Eqs. (1) and (9) it is clear that C ¼ fT

s Cs.
For a beam element with cubic shape functions [4],

Cse ¼ �
Ks

30‘e

36 33‘e �36 3‘e

3‘e 4‘2
e �3‘e �‘2

e

�36 �3‘e 36 �33‘e

3‘e �‘2
e �3‘e 4‘2

e

2
66664

3
77775 ð10Þ

For plate elements the matrices are relatively easy to generate, although difficult to express in a closed and compact
form. Dawe [22] described the R1 rectangular element which has four nodes and three degrees of freedom per node. As an
example, consider a square element with side 2a. Then the element output matrix, Cse, is

Ks

720

�600 �120a �120a 168 48a 0 264 �72a �72a 168 0 48a

�552a �143a2 �159a2 �240a �79a2 111a2 24a 31a2 15a2 48a 47a2 �15a2

�552a �159a2 �143a2 48a �15a2 47a2 24a 15a2 31a2 �240a 111a2 �79a2

168 48a 0 �600 �120a 120a 168 0 �48a 264 �72a 72a

�240a �79a2 �111a2 �552a �143a2 159a2 48a 47a2 15a2 24a 31a2 �15a2

�48a 15a2 47a2 552a 159a2 �143a2 240a �111a2 �79a2 �24a �15a2 31a2

264 72a 72a 168 0 �48a �600 120a 120a 168 �48a 0

�24a 31a2 15a2 �48a 47a2 �15a2 552a �143a2 �159a2 240a �79a2 111a2

�24a 15a2 31a2 240a 111a2 �79a2 552a �159a2 �143a2 �48a �15a2 47a2

168 0 48a 264 72a �72a 168 �48a 0 �600 120a �120a

�48a 47a2 15a2 �24a 31a2 �15a2 240a �79a2 �111a2 552a �143a2 159a2

�240a �111a2 �79a2 24a �15a2 31a2 48a 15a2 47a2 �552a 159a2 �143a2

2
666666666666666666666664

3
777777777777777777777775
ð11Þ

3. Health monitoring and selective sensitivity

A significant problem with any inverse problem, such as structural health monitoring, is ill-conditioning of the
estimation equations. One major cause of this ill-conditioning is the large number of candidate parameters that may be
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regarded as uncertain. Applying excitations that produce strong sensitivities to a subset of the parameters whilst causing
the sensitivities to other parameters to vanish is one way of reducing the number of parameters to estimate. For structural
health monitoring this means that the response can be made sensitive to particular regions of interest, so that, for example,
the sensor may be used to monitor the health of a single joint. One approach to local structural health monitoring is to use
high frequency impedance measurements [23], although using shaped distributed actuators and sensors could also be
applied to these impedance techniques. Discrete spatial filters have been used for health monitoring using the vibration
response [24–27] and for ultrasonic waves [28,29].

The method of selective sensitivity considers the response predictions to a relatively large number of excitation forces.
In order to provide further explanation, the work of Ben-Haim [30–33] will be adapted to sensors rather than actuators.
The selective sensitivity approach is best derived in the frequency domain. From Eq. (1):

yðo; yÞ ¼ C½�o2Mþ joDþ K��1BuðoÞ ¼ f>CsHðo; yÞBuðoÞ ð12Þ

where Hðo; yÞ ¼ ½�o2Mþ joDþ K��1 is the frequency response function (receptance matrix).
At any frequency the sensitivity of the response to parameter yj is given by

Sjðf;oÞ ¼
@y

@yj

����
����

2

ð13Þ

Notice that only a single output has been assumed, so that y is a scalar, although the approach is easily extended to multiple
outputs. Then

Sjðf;oÞ ¼ f>Cs
@H

@yj
BuuHBH @HH

@yj
C>s f ¼ f>GjðoÞf ð14Þ

where GjðoÞmay be calculated and the superscript H denotes the conjugate transpose. GjðoÞ is usually complex, although it
will be Hermitian from the definition in Eq. (14). Hence the real part of GjðoÞ is symmetric and the imaginary part is skew-
symmetric. Since f is real, the imaginary part of GjðoÞ does not affect the sensitivity and may be neglected, and the
sensitivity is real. Note that for excitation at a single location, GjðoÞ has rank 1. The derivative of H may be calculated as

@H

@yj
¼ �H �o2 @M

@yj
þ jo @D

@yj
þ
@K

@yj

� �
H ð15Þ

The sensitivity defined in Eq. (14) varies with frequency. For the standard selective sensitivity method the force input is
designed and so may be varied with both location and frequency. With a shaped sensor for health monitoring the excitation
is likely to be due to either ambient forces or operational conditions. Furthermore, to use a simple threshold to determine
damage the output required is a single response quantity. In these cases an integrated sensitivity may be defined as

ŜjðfÞ ¼

Z o2

o1

WðoÞSjðf;oÞdo ð16Þ

or some frequency weighting function WðoÞ (that can be designed along with the sensor shape) and frequency range
ðo1;o2Þ. For a given force input

ŜjðfÞ ¼ f>
Z o2

o1

WðoÞGjðf;oÞdo
� �

f ¼ f>Ĝjf ð17Þ

The design of suitable frequency weighting functions for particular applications is the subject of further investigation.
If the location and spectrum of the force is not known then this makes the design of a selectively sensitive sensor

extremely difficult. If the location of the excitation were uncertain, then one possibility is to include a number of
independent potential excitation locations. However this would increase the number of columns in B, which would
increase the rank of Gj, and therefore reduce the chances of designing a suitable shaped sensor. Excitation at a single known
location will be assumed in this paper. The rest of the development will consider only a single frequency using GjðoÞ
defined in Eq. (14), although the methods are readily extended to the frequency weighted versions using Ĝ j defined
in Eq. (17).

The selective sensitivity problem for parameter s is to design the sensor such that

SjðfÞ ¼
a0 if j ¼ s

¼ 0 otherwise

�
ð18Þ

Since the sensitivities are all real and non-negative, the conditions in Eq. (18) may be written as

SsðfÞ ¼ f>Gsfa0;
X
jas

SjðfÞ ¼
X
jas

f>Gjf ¼ f> ~Gsf ¼ 0 ð19Þ

where ~Gs ¼
P

jasGj.
Solving the selective sensitivity requirements exactly is often not possible, in the sense that a solution may not exist,

or may not be unique. One straight-forward approach is to employ an optimization scheme directly. For example the sensor
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shape f sensitive to parameter ys is obtained as the vector that minimizes the objective function

JðfÞ ¼
X
jas

WjSjðfÞ

8<
:

9=
; SsðfÞ= ð20Þ

where Wj are weighting factors for the different parameters. The thickness of the sensor is then normalized to the
maximum thickness required.
3.1. Designing the sensor shape

The simple approaches to calculate the sensor shape may lead to difficulties if the solution is not unique and hence there
are many solutions for perfect sensors that satisfy Eq. (18). If the excitation is at a single degree of freedom then the
complex matrix GjðoÞ will have rank 1, although the real part alone will usually have rank 2. If there are p parameters, and
the response should be insensitive to p� 1 of them, then the dimension of the space of suitable sensor shape vectors, f,
based on Eq. (18), is n� 2pþ 2, where n is the length of the vector f. In this case one has to introduce other regularizing
conditions into the optimization. One possibility is to reduce the number of elements that the sensor covers, and subset
selection techniques could be used to determine the optimum choice of elements. Another possibility is to minimize the
transducer curvature [4], which has the advantage of producing sensors that are easier to manufacture. For beam
structures, minimizing transducer curvature for a sensor covering the whole beam was shown to be equivalent to
minimizing f>K̂f where K̂ is the stiffness matrix for the free–free beam. This is equivalent to minimizing a strain energy
type expression, and motivates the optimization problem for the general system.

The best approach is to enforce the zero sensitivity to unwanted parameters before optimizing any other objectives.
Thus a transformation, T, is introduced such that

T> ~GsT ¼ 0 ð21Þ

This transformation matrix may be found easily using the singular value decomposition of ~Gs (which is equivalent to the
eigenvalue problem since the real part of ~Gs is symmetric), and will generally be of dimension n� ðn� 2pþ 2Þ. Thus a
reduced dimension sensor vector fr may be defined such that f ¼ Tfr , and is chosen by minimizing

JðfÞ ¼ f>r ½T
>K̂T�fr ð22Þ

subject to

SsðfÞ ¼ f>Gsf ¼ f>r ½T
>GsT�fra0 ð23Þ

This is easily solved by calculating the eigenvalues of T> ~KT, and taking the eigenvector corresponding to the smallest
eigenvalue, consistent with Eq. (23). An alternative is to maximize the sensitivity SsðfÞ by choosing fr as the eigenvector
corresponding to the largest eigenvalue of T>GsT.
force

θ1 θ2 θ3

Fig. 1. The beam with intermediate supports and harmonic excitation.

Mode 1

Mode 2

Mode 3 Mode 4

Fig. 2. The first four mode shapes of the beam with intermediate supports.
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Fig. 3. The distributed sensor shape designed to be sensitive to particular support stiffnesses at 40 Hz for the beam example, and the associated

receptances. The solid line is the baseline FRF, the dashed line is due to a 10% change in support stiffness 1, the dot-dashed line is due to a change in

stiffness 2, and the dotted line is due to a change in stiffness 3: (a) sensitive to support 1 and (b) sensitive to support 2 (note the zoomed FRF in the range

39–41 Hz).
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4. A simulated beam example

A clamped–clamped beam example inspired by Gawronski [34] will be used here to demonstrate the feasibility of the
approach. The steel beam is 1.5 m long with cross-section 20� 5 mm, and bending in the more flexible plane is modeled
using 15 finite elements. The beam has three further supports along its length, modeled as springs at nodes 4, 8 and 11,
where the node numbering convention means that node 1 is clamped, see Fig. 1. The nominal spring stiffnesses of the
supports are 10 kN/m. The first four natural frequencies of the system are 32.4, 42.7, 70.1 and 109.0 Hz and the
corresponding modes are shown in Fig. 2. For comparison, the corresponding natural frequencies for the beam without
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Fig. 4. The distributed sensor shape designed to be sensitive to support stiffness 1 at 40 Hz for the beam example, and the associated receptances.

The solid line is the baseline FRF, the dashed line is due to a 10% change in support stiffness 1, the dot-dashed line is due to a change in stiffness 2, and the

dotted line is due to a change in stiffness 3: (a) maximize sensitivity to support 1 and (b) restrict sensor region.
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spring supports are 11.8, 32.6, 63.9 and 105.6 Hz. The damping is assumed to be proportional to stiffness with a factor of
10�4 s. The force is applied from a rotating machine operating at 40 Hz at node 6. The distributed sensor is to be designed
for the whole length of the beam initially. The parameters of interest are the three support stiffnesses.

Fig. 3(a) shows the sensor shape obtained by minimizing the objective function in Eq. (22) for the first support stiffness.
Note that T> ~KT has two zero eigenvalues that produce zero sensitivity to the first parameter and are therefore not chosen.
The sensor width is normalized so that the maximum width is 1. The result is sensitivity ratios of S1=S2 ¼ 1:2� 1015 and
S1=S3 ¼ 8:7� 1012, demonstrating that the required sensitivity is obtained. Also shown is the frequency response between
the force input location and the sensor output. The baseline (solid line) is based on the undamaged system, and the
responses due to a 10% reduction in each of the three support stiffnesses in turn are also shown. Remember that the sensor
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has been designed to operate only at 40 Hz, and at this frequency the response is indeed insensitive to changes in support
stiffnesses 2 and 3. Fig. 3(b) shows the equivalent plots when the sensor is designed to be sensitive to support stiffness 2,
also at 40 Hz. Although the FRF at 40 Hz is not sensitive to parameter 1 or 3, as demonstrated by the zoomed plot area in the
figure, the sensitivity to parameter 2 is not very high. It is clear that the procedure has designed sensors with relatively
simple shapes in both cases.

Suppose now that the sensor shape is chosen to maximize the sensitivity to the first parameter. The result is shown in
Fig. 4(a), and highlights that the sensor shape is now more complicated. The sensitivity to parameter 1 is now over 600
times higher than that for the sensor in Fig. 3(a). Fig. 4(b) shows the effect of restricting the region where the sensor is
placed, by setting the elements of the parameter vector f corresponding to finite element nodes 1–4 and 11–16 to zero.
The sensor is designed to ensure zero sensitivity to parameters 2 and 3 and the minimum curvature solution is chosen.
There is clearly a compromise between the smaller region for the sensor and the complexity of the shape.

The examples thus far have considered the design of the sensors and have shown the frequency response function over a
large frequency range. We now consider the performance of the sensor when there is noise and errors in the system.
The three stiffness parameters are assumed to be uncertain with a Gaussian distribution with a 2% standard deviation
based on the nominal values of the stiffness. Fig. 5(a) shows the probability density function of the output of the sensor at
40 Hz due to these uncertainties at the nominal values of stiffness (solid) and when the value of the first stiffness changes
by 10%. Clearly the output is able to distinguish that the first support has changed significantly. The probability density was
calculated using a Monte Carlo simulation with 10,000 samples. Fig. 5(b) shows the equivalent result for a 10% change to
the second stiffness parameter and shows that the sensor is insensitive to large changes in this stiffness.

Suppose now that the stiffness of the clamped supports also varies, perhaps due to environmental factors. This is
modeled by varying the stiffness of the elements nearest to the clamped ends. Fig. 6 shows the sensor shape that is
sensitive to support stiffness 1, and insensitive to support stiffnesses 2 and 3, and also the stiffnesses of the elements
nearest the clamped ends. Also shown are the FRFs for the nominal values of the parameters, and for 10% reductions in all
of the parameters. Interestingly the FRF is relatively insensitive to the element stiffnesses over the whole frequency range,
although only the response at 40 Hz is used in the design. The environment will also change global parameters, such as the
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Young’s modulus of the whole beam. Suppose a sensor is designed to be insensitive to support stiffnesses 2 and 3, and also
to the global flexural rigidity of the beam. The result is shown in Fig. 7 and demonstrates that shaped sensors can be
designed to be insensitive to global parameters.

The examples thus far have considered excitation at a single frequency, namely 40 Hz. Suppose now we consider
excitation at 30, 35 and 40 Hz, and we set the frequency weighting to unity. The objective is to make the response sensitive
to support stiffness 1 and insensitive to support stiffnesses 2 and 3. The output of the sensor for the nominal support
stiffnesses, shown in Fig. 8, is approximately constant across the frequency range. Clearly the objective has been met and
the response is only sensitive to support stiffness 1. Note that the sensor shape is now only slightly more complex than that
in Fig. 3(b), despite the increase in the number of frequencies considered from one to three.
5. A simulated plate example

Consider now a rectangular steel plate of dimensions 400� 300 mm and of thickness 7 mm. The plate is supported at
each of its corners by a spring of stiffness 500 kN/m. The finite element model has 16� 12 elements, so that each element is
25 mm square, as shown in Fig. 9. The first four natural frequencies of the system are 21.0, 44.7, 48.8 and 72.7 Hz and the
corresponding modes are shown in Fig. 10. The damping is assumed to be proportional to stiffness with a factor of 10�4 s.
The force is applied from a rotating machine operating at 40 Hz at the node shown in Fig. 9 by a circle. The distributed
sensor is to be designed for the whole plate.
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Fig. 7. The distributed sensor shape designed to be sensitive to support stiffness 1 at 40 Hz for the beam example and insensitive to the beam flexural

rigidity, and the associated receptances. The solid line is the baseline FRF, the dashed line is due to a 10% change in support stiffness 1, the dotted lines are

due to change in support stiffnesses 2 and 3, and the dot-dashed line is due to a 2% change in the flexural rigidity of the beam. Note the zoomed plot in the

frequency range 39–41 Hz.
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Fig. 8. The distributed sensor shape designed to be sensitive to support stiffness 1 at 30, 35 and 40 Hz for the beam example, and the associated

receptances. The solid line is the baseline FRF, the dashed line is due to a 10% change in support stiffness 1, the dot-dashed line is due to a change in

stiffness 2, and the dotted line is due to a change in stiffness 3.
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Fig. 11(a) shows the sensor shape sensitive to the first support stiffness, y1, only and insensitive to the other supports,
obtained by minimizing the objective function in Eq. (22). Note that T> ~KT has three zero eigenvalues that produce zero
sensitivity to the first parameter and are therefore not chosen. The sensor width is normalized so that the maximum
thickness is 1. The result is sensitivity ratios of S1=S2 ¼ 7:0� 1014, S1=S3 ¼ 5:6� 1013 and S1=S4 ¼ 1:4� 1012,
demonstrating that the required sensitivity is obtained. Fig. 11(b) shows the sensor shape designed to be sensitive only
to the second support stiffness, y2, and the corresponding sensitivity ratios are S2=S1 ¼ 1:7� 109, S2=S3 ¼ 6:3� 1011 and
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Fig. 9. The layout of the plate with corner support springs. The crosses denote the springs and the circle denotes the forcing position.

Mode l
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Fig. 10. The first four modes of the plate with corner supports.

Fig. 11. The distributed sensor shape designed to be sensitive to the support stiffnesses at 40 Hz for the plate example, obtained by minimizing curvature:

(a) maximize sensitivity to support 1 and (b) maximize sensitivity to support 2.

Fig. 12. The distributed sensor shape designed to be sensitive to the support stiffnesses at 40 Hz for the plate example, obtained by maximizing the sensor

response: (a) maximize sensitivity to support 1 and (b) maximize sensitivity to support 2.
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S2=S4 ¼ 2:3� 109. Notice that the shape is very close to that obtained for the first support stiffness and this means that the
sensor would have to be manufactured very accurately.

The alternative is to maximize the sensor response. Thus for parameter 1 the sensor shape is given by the eigenvector
corresponding to the largest eigenvalue of T>G1T. Note that this matrix has rank 2. Fig. 12 gives the sensor shapes that are
sensitive to parameters 1 and 2, and insensitive to the other parameters. Note that the shapes are now significantly
different in the two cases, and that now the thickness change is not very smooth. There are various alternatives that could
be considered to produce a sensor shape that is a compromise between those in Figs. 11 and 12.

6. Conclusions

This paper has designed distributed sensors by varying the width (for beams) or thickness (for plates) for structural
health monitoring applications. The finite element shape functions are used to define the width or thickness of the sensor
and this allows much more flexibility in designing sensors that cover only part of the structure, and other constraints, such
as the minimum curvature, may be easily included. It has been demonstrated that sensors may be designed that are
sensitive to changes in a single parameter, and insensitive to changes in other parameters. Although much more analysis of
these designs is required, the approach does allow the prospect of a simple distributed sensor to monitor a single region,
such as a joint, and be insensitive to other changes, such as those arising from environmental changes. The output from
such a sensor could have a threshold alarm system, allowing a robust but simple distributed structural health monitoring
system. There is significant work still to do before such a method could be applied robustly, including the design of the
frequency weighting and the experimental validation of the approach. However the authors hope that this paper will
motivate further research to investigate the possibilities.
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