
F. PÁPAI, S. ADHIKARI, B. WANG

ESTIMATION OF MODAL 
DAMPINGS FOR UNMEASURED 
MODES

KEY WORDS

•	 Modal damping ratio,
•	 Modal decay rate,
•	 Regression,
•	 Damping matrix.

ABSTRACT

Damping effects are of great interest for structural analysis and evaluations. Structural 
modal damping characteristics can be obtained from experiments. This paper introduces 
new possibilities for the modelling of the damping of a dynamic system with classical normal 
modes and provides an overview of the known methods for formulating a damping matrix 
base with experimental modal damping values. The proposed method offers an opportunity 
to extrapolate modal damping values for unmeasured modes by a regression method based 
on the measured modal properties. The points of view on the choice of an analytical form 
for damping regression functions are examined. An analytical form of regression functions 
can be chosen as the modal decay rate versus the square of the frequency or the modal 
damping ratio versus the frequency. Damping regressions can be performed based on 
a group of typical vibration modes, such as bending, torsion and lateral, symmetrical or 
anti-symmetrical modes. The regression data obtained for the damping constants can then 
be applied in a finite element model for further structural analysis.
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1. INTRODUCTION

The	equation	of	motion	of	a	viscously	damped	system	is	expressed	by

,	 (1)

where	 M,	 C,	 K	are	 the	 mass,	 damping	 and	 stiffness	 matrices	
respectively;	 	 is	 the	 dynamic	 displacement	 response.	The	
system	matrix	of	(1)	is

.	 (2)
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The	 eigenvalues	 	 are	 complex	
quantities.	 	 are	 damping,	 and	 	 is	 the	 damped	 natural	
frequency.	 It	 is	 known	 that	 for	 symmetrical	 undamped	 systems,	
the	 	 eigenvalues	 of	 the	 	
system	 matrix	 are	 pure	 imaginary	 quantities,	 and	 due	 to	 the	

	⇒	 ,	 there	
are	n	eigenvectors	 ,	which	are	linearly	independent.	They	can	be	
made	 for	vectors	with	 real	elements	by	appropriate	normalisation.	
The	 equivalent	 transformation,	 which	 is	 performed	 by	 a	modal	
matrix	 constructed	 from	 eigenvectors	 ,	 simultaneously	
diagonalizes	M,	K.	 Such	modal	 shapes	 of	 undamped	 systems	 are	
called	normal modes or	classical normal modes	in	the	literature.	In	
the	 case	 of	 normal	modes	 all	 the	 displacement	 coordinates	 of	 the	
structure	reach	the	extreme	position	at	the	same	time	(pure	phase	/	
outphase;	in	other	words,	a	standing	wave	in	a	modal	shape).
The	 concept	 of	 decaying	 systems	 of	 classical	 normal	 modes	 was	
introduced	 by Lord Rayleigh (1877),	 who	 proved	 that	 classical	
modes	can	exist	in	damped	systems	too.	Such	a	case	is,	for	example,	
the	so-called	proportional	damping,	where	the	damping	matrix	C	is	
a	linear	combination	of	M		and	K,	that	is:

	(Rayleigh	damping)	 (3)

where	the	a,	b	material	pendants	(usually	real)	are	scalar	constants.

Caughey and O’Kelly (1965)	[1]	proved	that	a	necessary and sufficient 
condition for the existence of	classical	normal	modes	is	to	satisfy	

,	 (4)

the	so-called commutative relationship	 .	If	
the	 commutative	 relationship	 shown	 in	 Eq.	(4)	 is	 satisfied	 for	 the	
coefficient	 matrices	 of	 system	 Eq.	(1),	 the	 real	 modal	 coordinate	
transformation

	 (5)
can	be	performed. In	this	modal	space	the	equation	of	the	motion	of	
a	viscously	damped	system	is	expressed	by

	 (6a)

where	
,	 ,	 ,	

	 (6b)													(6c)																							(6d)																										(6e)
notation	 		means	a	diagonal	matrix.

Caughey (1960)	[2]	verified	that	these	normal	modes	of	a	damped	

system	 are	 equivalent	 to	 the	 modes	 of	 an	 undamped	 system.	 “In	
the	 case	 of	 a	damped	 linear	 system,	 classical	 normal	modes	 exist	
if	 and	 only	 if	 the	 damping	 matrix	 is	 diagonalized	 by	 the	 same	
transformation,	 which	 makes	 the	 undamped	 system	 diagonal.”	
He	 formulated	 a	sufficient condition	 for	 coefficient	 matrices:	 “In	
damped	 systems,	 the	 condition	 for	 classical	 normal	modes	 is	 that	
the	product	M–1C	can	be	expressed	as	the	power	of	product	M–1K,	
in	the	form	of	the	following	series:”

	 (7)

He	proposed	the	following	expression	for	the	possible	analytical	form	
of	a	damping	matrix	that	satisfies	the	condition	mentioned	above:

.	 (8)

This	form	is	called	the	Caughey	series	in	the	literature.	The	damping	
matrix	formed	by	Eq.	(8)	is	also	known	as	the	proportional	damping	
matrix	after Rayleigh.
The	traditional	Rayleigh	damping	in	Eq.	(3)	is	a	special	case	of	the	
expression	in	Eq.	(8),	because	with	the	substitution	a0	=	a,	a1	=	b,	
a2	=	a3	=	...	=	an-1	=	0,	we	have:

.	 (9)

Fawzy	(1977)	[3]	gave	the	following	analytical	form	for	a	damping	
matrix:	 ,	which	satisfied	the	condition	

in	 Eq.	(4).	 Sas et al. (1998) [4]	 composed	 the	 commutative	
relationship	in	the	form	of	 .

	

Adhikari (2000)	 [5]	 suggested	 a	further	 generalization	 for	
a	proportional	 damping	 matrix.	 He	 proved	 that	 if	 the	 damping	
matrix	can	be	expressed	as
	 ,	 (10)
	 ,	 (11)
	 ,	 (12)
	 ,	 (13)

where 	 are	 analytical	 functions,	 the	 system	
possesses	classical	normal	modes.

1.1 The relationship between modal characteristics 
and the damping matrix

Let	us	study	Adhikari’s relationship	as	given	by	Eq.	(10)

.	 (14)
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In	 this	 relationship	 replace	 	with	 their	 spectral	de	compo-
sition	to	express	the	modal	matrices	from	Eqs.	(6b)	and	(6c)

,	 (15)

and	then	the	specified	C	damping	matrix	transforms	into	the	modal	
space

.	 (16)

Bring	 forward	matrices	 	 from	 this	 spectral	 decomposition	
	[6,	p.	249],	

.	 (17)

Substituting	the	modal	damping	Eq.(6	c)	 	rela	tion-
ship	into	Eq.	(17),	we	finally	get

,	 (18)

as	a	simple	equation.	This	expression	means	the	following:
„Modal dampings  of symmetrical, single eigenvalued 
systems with classical normal modes are equal to the return 
values of a generalized Rayleigh damping matrix generator 
function  at undamped eigenfrequencysquare  loca
tions.”

In	the	case	of	classic	Rayleigh	damping	the	function	in	Eq.	(18)	has	
been	 known	 for	 a	long	 time:	 ,	which	 is	 seen	
in	Fig. 1.

The	generator	function	of	the	Caughey	series	defined	in	Eq.	(8)	is

	or	 	as	a	scalar	function.

A	key	 objective	 of	 this	 paper	 is	 to	 exploit	 the	 generic	 functional	
relationship	 in	 Eq.	(18)	 and	 investigate	 whether	 this	 can	 be	 used	
effectively	to	model	a	damping	mechanism	in	practical	engineering	
problems.	A	novel	idea	based	on	the	grouping	of	similar	modes	has	
been	proposed	in	this	context.	

2. IDENTIFICATION OF THE PARAMETERS OF 
A DAMPING MECHANISM

The	relationship	 in	Eq.	(18)	can	be	appropriate	 for	 identifying	 the	
parameters	of	 a	damping	mechanism.	 If	 the	 regression	 function	 is	
known,	 the	 following	 procedure	 and	 possible	 application	 can	 be	
used	(Fig. 2):

1.	An	experimental	modal	analysis	 is	carried	out	 to	determine	 the	
eigenfrequencies	 and	 damping	 values	 in	 the	 frequency	 range	
investigated.

2.	These	 value	 pairs	 are	 drawn	 according	 to	 a	chart	 (Fig.	 2),	 and	
then	the	regression	function	 	is	determined.

3.	Extrapolate	the	regression	function	 	to	the	outband	modes	
(to	the	higher	frequency	range).

4.	The	 results	 are	 available	 for	 FEM	 programs	 as	 damping	 data	
input.

5.	The	 damping	 matrix	 can	 be	 written	 in	 the	 explicit	 form	
.

The	following	questions	or	problems	occur	relating	to	regression:
a)	Undamped	 eigenfrequencies	 cannot	 be	 established	 by	 expe	ri-
mental	measurements.

b)	W h a t	 kind	 of	 quantities	 should	 be	 represented	 for	
a	regression?

c)	Is	 the	 regression	 function	 considered	 global	 in	 the	
sense	that	it	is	valid	for	all	the	modal	types?	

d)	What	should	the	analytical	form	of	the	regression	function	be?

As	is	well	known,	undamped	eigenfrequencies	cannot	be	determined	
by	 experimental	 measurements.	 The	 undamped	 system	 eigen-

Fig. 1 Generator function of the proportional (Rayleigh) damping 
matrix.

Fig. 2 Regression of generalised Rayleigh damping.
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frequencies	 	are	included	in	Eq.	(18);	however,	the	experimental	
measurements	 define	 the	 damped	 eigenfrequencies	 .	 The	
approximation	 	 is	 widely	 accepted	 in	 the	 case	 of	 small	
damped	systems.	For	plotting	the	relationship	between	damping	vs.	
an	eigenfrequency,	the	 	(undamped	eigenfrequency	vs.	Lehr	
damping)	 diagram	 is	 used	 in	 the	 literature,	 e.g.,	 [10]-[14].	 In	 the	
case	of	the	measurement	data	 	points	are	plotted,	where	the	
damped	 eigenfrequencies	 are	 .	 If	 the	 undamped	
eigenfrequency	 squares	 ,	 as	 determined	 by	 FEM	 or	 any	
analytical	methods,	are	available,	it	is	advisable	to	use	them.
As	 to	 what	 kind	 of	 quantities	 should	 be	 represented	 for	 the	
regression,	 we	 propose	 the	 selection	 of	 the	 regression	 function	
for	 plotting	 	 instead	 of	 ,	 because	 the	 former	 is	
appropriate	for	the	function	defined	in	Eq.	(18).

3. CASE STUDIES

In	the	following	sections	we	introduce	a	selection	of	graph	representations	
suitable	for	evaluating	the	experimental	measurement	results.

3.1. Experimental investigations: I. Cantilever beam

Measurements	of	the	EMA	(Experimental	Modal	Analysis)	cantilever	
beam,	SISO	 (Single	 Input	 –	Single	Output),	 and	FRF	 (Frequency	
Response	Function)	were	performed	(Fig. 3).	A	schematic	diagram	
of	the	experimental	setup	is	shown	in	the	illustration.
The	 excitation	 and	 response	 measurements	 were	 performed	
horizontally	 (xy).	 The	 total	 number	 of	 the	 measured	 locations	
was	153.		N=5	modes	were	detected	in	the	investigated	frequency	
range	[0	–	200	Hz].	The	LSFD (Least Squares Frequency Domain)	
method	was	applied	 to	 identify	 the	eigenfrequencies	and	damping	
parameters	[8]	(Fig. 4).	
The	results	are	shown	in	Table 1.
Then	we	composed	a	modal	model	of	 the	structure	and	visualized	
its	modal	shapes.	The	first	four	bending	modes	and	the	first	torsion	
mode	 appeared	 in	 the	 investigated	 frequency	 band.	 The	 third	
bending	and	the	shape	of	the	first	torsion	modes	are	shown	in	Fig. 5.
The	eigenvalue	parameters	 seen	 in	Table 1	 are	plotted	 in	Fig. 6a	
by	 a	traditional	 representation.	 The	 features	 of	 the	 curve	 can	 be	
identified	with	difficulty	on	this	chart.
In	 the	 proposed	 representation	 shown	 in	Fig. 6b,	 the	 relationship	
of	the	values	presents	a	square	root	function.	A	regression	with	the	
analytical	 form	 	 was	 carried	 out,	 which	
corresponds	 to	a	linear	regression	on	 the	 	values	(Fig. 6c).	
The	 results	of	 the	 regression	 for	 function	 can	be	 seen	
in	Fig. 7,	which	 is	 proper	 for	 the	 extrapolation	of	 damping	 in	 an	
outband	frequency	range.

According	to	the	experimental	results,	in	the	case	of	the	investigated	
prismatic	beam,	the	regression	function	 	is	global	for	both	the	
bending	 and	 torsion	modes.	Only	 one	 torsion	mode	was	 detected	
in	the	frequency	range	investigated.	We	think	more	tests	should	be	
carried	out	in	a	higher	frequency	band	for	higher	torsion	modes.
The	 problem	 of	 determining	 the	 shape	 of	 a	curve	 in	 regression	
analysis	 is	related	to	 the	question	of	whether	 the	specific	function	

	 is	global.	The	global	 	means	 the	 function	 	 is	valid	
for	all	the	modes.	
We	conducted	some	experimental	measurements,	where	we	found	
that	 different	 types	 of	 modes	 could	 have	 different	 regression	
functions.	Some	of	them	are	shown	below.

Fig. 3. Schematic representation of the experimental setup of the 
cantilever beam [8] (EMA, SISO, FRF measurements).

Fig. 4 LSFD regression of the measured FRF function [8].

Table 1 Eigenfrequency and damping values of the cantilever beam 
[8].
Mode	i 1 2 3 4 5
fi	[Hz] 4.671 30.93 87.36 125.5 171.5
ξi	[%] 5.49 0.918 0.373 0.282 0.224
Type BXZ	1 BXZ	2 BXZ	3 TZ	1 BXZ	4

BXZ	bending
T	torsion
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Fig. 5 Modal shapes of the cantilever beam [8].

Fig. 6 Methods representating of the cantilever beam’s eigenvalue parameters.

Fig. 7 Regression of the eigenvalue parameters.
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3.2. Experimental investigation II: Damping 
Identification in a Clamped Plate With Slots

In	 this	 section	 we	 consider	 a	two-dimensional	 structure	 [7].	
A	schematic	 model	 of	 the	 test	 structure	 is	 shown	 in	Fig. 8.	 This	
is	 fabricated	 by	 making	 slots	 in	 a	mild	 steel	 rectangular	 plate	 of	
a	2	mm	thickness,	resulting	in	three-cantilever	beams	joined	at	their	
base	by	a	rectangular	plate.	The	source	of	the	damping	in	this	test	
structure	is	the	wedged	foam	between	the	fork	benches	1	and	2.

A	schematic	diagram	of	the	test	rig	is	shown	in	Fig. 9.
A	classic	EMA SISO FRF	measurement	was	performed.	The	modal	
shapes	from	the	4th	to	the	9th	are	shown	in	Fig. 10.	On	the	left	side	
modes	4	th,	5th	and	6	th	are	 the	second	bending,	 torsion	and	mixed	
modes.	On	the	right	modes	7	th,	8	th	and	9	th	are	the	third	bending,	
torsion	and	mixed	modes	respectively.

The	measured	natural	frequencies	and	damping	factors	for	the	first	
nine	 modes	 are	 shown	 in	Table 2.	 The	 three	 mode	 groups	 were	
separated	according	to	the	type	of	mode	shape:	a	bending,	a	torsion	
and	a	mixed	one.	Each	mode	group	consists	of	three	modes.

Table 2 Measured natural frequencies, damping factors and modal types of the clamped plate with slots [7].
Mode:	 1 2 3 4 5 6 7 8 9
f	[Hz] 12.46	 14.36	 15.01	 75.60	 88.94	 93.97	 232.74	 243.37	 261.93	
ξ	[%] 0.1032	 0.0969	 0.1159	 0.1404	 0.1389	 0.1254	 0.1494	 0.0953	 0.1260	
Type	 B T M B T M B T M

Mode	types	B:	Bending,	T:	Torsion,	M:	Mixed	

Fig. 8 Geometric shape of the plate with slots [7].

Fig. 10 The mode shapes from the 4th to the 9th [7].

Fig. 9 Schematic representation of the experimental setup of the 
clamped plate with slots [7].
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The	measured	values	on	Fig. 11a	are	seen	in	three	different	viewing	
plots.	The	results	of	the	regression	by	mode	groups	on	Fig. 11b are	
shown.	The	analytical	form	of	the	regression	function	in	each	group	
is	 	with	different	coefficients	of	 .

3.3. Experimental investigation III: Ambient Response 
Analysis of the Heritage Court Tower Building

Let	us	see	as	an	example	the	regression	of	the	modal	damping	taken	
from	the	literature	based	on	the	measurements	of	Brincker et  al. [9].

The	modal	shapes	of	the	Tower	Building	were	examined.	The	photo	
of	 this	 building	 is	 seen	 in	Fig.12.	 Its	 size	 is	 20	m	x	25	m	x	50	m.	
The	building	structure	has	classical	normal	modes.	The	eigenvalue	
parameters	and	types	of	modal	shapes	are	summarized	in	Table 3.
In	processing	the	published	data,	we	got	the	following	results.	The	
damping	and	eigenfrequency	values	were	plotted	on	traditional	and	
proposed	diagrams	as	shown	in	Fig. 13.
For	this	data	series	the	regression	was	performed	by	mode	groups	as	
in	the	previous	chapter.	One	mode	group	is	of	the	bending	modes;	
the	other	is	of	the	torsion	ones.	The	results	are	shown	in	Fig. 14.

Fig 11. Regression of the eigenvalue parameters of the plate.
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These	results	raise	the	following	questions:
•	 Could	 classical	 normal	modes	 exist	 in	 the	 case	 of	 a	not	 global	
generator	function?

•	 Can	regression	be	done	per-mode-group	without	 the	loss	of	 the	
classical	normal	modes?

The	following	section	describes	the	method	of	grouping	the	modes.

4. GROUPING OF THE MODES

The	spectral	decomposition	of	matrix	 ,	using	the	expressions	
in	Eqs.	(6b)	and	(6d),	is:

,	 (19)

which	is	the	sum	of	the	n	number	of	dyads	(columns	of	 ,	and	rows	
of	 ,	and	the	matrix	 	is	a	diagonal	matrix).
Let	 us	make	m	 number	 of	 mode	 groups.	According	 to	 the	mode	
groups,	m	performs	a	partition	of	 the	columns	of	 the	modalmatrix	

,	 the	 elements	 of	 the	 spectral	 matrix	 ,	 and	 the	 rows	 of	 the	
inverse	of	modalmatrix	 ,

Fig. 12 Picture of the investigated building.

Fig. 13 Eigenvalue parameters of the investigated Tower Building [9].

Table 3 Building’s EMA measurement results [9]. 
Mode	i 1 2 3 4 5 6 7 8 9 10 11
fi	[Hz] 1.23 1.28 1.45 3.85 4.25 5.34 6.39 7.47 7.58 8.22 9.26
ξi	[%] 2.12 1.77 1.2 1.16 1.52 1.69 1.54 2.2 2.31 2.66 1.95
Type BXZ1 T1 BYZ1 T2 BXZ2 BYZ2 T3 BXZ BXZ BXZ T4

	 							BXZ:	Bending	in	XZ	plane	 																BYZ:	Bending	in	YZ	plane	 											T:	Torsion	around	Z	axis
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, ,

	 (20)

where	 	are	the	eigenvectors	of	mode	group	p;	 	are	the	row	
vectors	of	 ,	which	belong	to	mode	group	p,	and	finally	 are	
the	elements	of	the	spectral	matrix	belonging	to	mode	group	p.
The	spectral	decomposition	of	 	in	terms	of	mode	groups	is

.	 (21)

Let	functions	 be	the	regression	functions	of	the	mode	groups.	
It	is	verifiable	that	the	damping	matrix

	 (22)

generated	by	functions	 	satisfies	the	commutative relationship	
in	Eq.	(4),	 so	 the	damped	system	has	classical	normal	modes,	 the	

proof	 is	 seen	 in	 the	 Appendix.	 Using	 	 based	 on	
Eq.	(6b)	in	Eq.	(22),	we	can	obtain	an	explicit	form	of	the	classical	
damping	matrix

	 (23)

(see	Lancaster	damping	matrix).
If	the	regression	function	is	not	global,	but	the	grouping	of	the	modes	
is	secure,	you	can	use	the	following	procedure	and	application	field:
1.	The	experimental	modal	analysis	is	carried	out	in	the	investigated	
frequency	range,	and	the	damping	and	eigenfrequency	values	are	
identified.	

2.	The	 eigenfrequency-damping	 values	 are	 plotted.	The	 damping-
eigenfrequency	 points	 are	 grouped	 according	 to	 the	 types	 of	
modal	shapes.

3.	The	 regression	 functions	 are	 fitted	 on	 points	 by	 the	 group	 of	
modes.

4.	The	 fitted	 smooth	 continuous	 functions	 used	 as	 extrapolation	
functions	 can	 give	 the	 value	 of	 the	 damping	 for	 the	 outband	
modes,	 which	 can	 be	 used	 with	 FEM	 programs	 to	 input	 the	
damping	values	for	the	unmeasured	modes.

5.	The	generalized	proportional	damping	matrix	can	be	made	in	an	
explicit	form	by	applying	Eq.	(23).

5. SUMMARY, ADDITIONAL TASKS

In	 this	paper	 the	possibilities	of	 identifying	damping	mechanisms	
have	 been	 reviewed.	 After	 our	 performed	 measurements	 and	 an	
analysis	of	the	literature,	the	main	conclusions	are:

Fig. 14 Eigenvalue parameters of the Tower Building investigated [9] Regression of damping by mode group.
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Construction	of	a	damping	matrix	by	a	global	generator	function	is	
not	always	possible.
However,	 it	 may	 be	 constructed	 by	 functions	 defined	 in	 mode	
groups,	without	the	loss	of	classical	normal	modes.	

Additional tasks

The	grouping	of	modes	is	should	be	solved.	Such	a	method	should	

be	developed	by	which	 the	classification	of	a	modal	shape	can	be	
performed	 automatically.	 The	 effects	 that	 cause	 variations	 in	 the	
damping	values	with	an	EMA	method	should	be	analysed.
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APPENDIX

Theorem:
The	damping	matrix	generated		by	

	 		 (A-1)
satisfies	the	commutative	relationship.

Proof:
Consider	the	 	commutative	relationship.	Substitute	the	spectral	decomposition	of	all	the	matrices	in	it.	
The	left	side	of	this	relationship	is
	

The	right	side	of	this	relationship	is:
	

Here

	 																																																																							
Consequently,

	 																																																							 	 		

(A-2)

	 																																																							 	 		

(A-3)

The	right	side	of	Eq.	(A-2)	equals	the	right	side	of	Eq.	(A-3),	because	a	 	and	 	are	diagonal	matrices,	so	they	are	commutative.	
Consequently,	the	left	side	of	Eq.	(A-2)	and	the	left	side	of	Eq.	(A-3)	are	equal,	so	the	commutative	relationship	is	satisfied.


