
F. PÁPAI, S. ADHIKARI, B. WANG

ESTIMATION OF MODAL 
DAMPINGS FOR UNMEASURED 
MODES

KEY WORDS

•	 Modal damping ratio,
•	 Modal decay rate,
•	 Regression,
•	 Damping matrix.

ABSTRACT

Damping effects are of great interest for structural analysis and evaluations. Structural 
modal damping characteristics can be obtained from experiments. This paper introduces 
new possibilities for the modelling of the damping of a dynamic system with classical normal 
modes and provides an overview of the known methods for formulating a damping matrix 
base with experimental modal damping values. The proposed method offers an opportunity 
to extrapolate modal damping values for unmeasured modes by a regression method based 
on the measured modal properties. The points of view on the choice of an analytical form 
for damping regression functions are examined. An analytical form of regression functions 
can be chosen as the modal decay rate versus the square of the frequency or the modal 
damping ratio versus the frequency. Damping regressions can be performed based on 
a group of typical vibration modes, such as bending, torsion and lateral, symmetrical or 
anti-symmetrical modes. The regression data obtained for the damping constants can then 
be applied in a finite element model for further structural analysis.
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1.	 INTRODUCTION

The equation of motion of a viscously damped system is expressed by

,	 (1)

where M, C, K are the mass, damping and stiffness matrices 
respectively;  is the dynamic displacement response. The 
system matrix of (1) is

.	 (2)
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The eigenvalues  are complex 
quantities.  are damping, and  is the damped natural 
frequency. It is known that for symmetrical undamped systems, 
the  eigenvalues of the  
system matrix are pure imaginary quantities, and due to the 

 ⇒ , there 
are n eigenvectors , which are linearly independent. They can be 
made for vectors with real elements by appropriate normalisation. 
The equivalent transformation, which is performed by a modal 
matrix constructed from eigenvectors , simultaneously 
diagonalizes M, K. Such modal shapes of undamped systems are 
called normal modes or classical normal modes in the literature. In 
the case of normal modes all the displacement coordinates of the 
structure reach the extreme position at the same time (pure phase / 
outphase; in other words, a standing wave in a modal shape).
The concept of decaying systems of classical normal modes was 
introduced by Lord Rayleigh (1877), who proved that classical 
modes can exist in damped systems too. Such a case is, for example, 
the so-called proportional damping, where the damping matrix C is 
a linear combination of M  and K, that is:

 (Rayleigh damping)	 (3)

where the a, b material pendants (usually real) are scalar constants.

Caughey and O’Kelly (1965) [1] proved that a necessary and sufficient 
condition for the existence of classical normal modes is to satisfy 

,	 (4)

the so-called commutative relationship . If 
the commutative relationship shown in Eq. (4) is satisfied for the 
coefficient matrices of system Eq. (1), the real modal coordinate 
transformation

	 (5)
can be performed. In this modal space the equation of the motion of 
a viscously damped system is expressed by

	 (6a)

where 
, , , 

	 (6b)             (6c)                       (6d)                          (6e)
notation   means a diagonal matrix.

Caughey (1960) [2] verified that these normal modes of a damped 

system are equivalent to the modes of an undamped system. “In 
the case of a damped linear system, classical normal modes exist 
if and only if the damping matrix is diagonalized by the same 
transformation, which makes the undamped system diagonal.” 
He formulated a sufficient condition for coefficient matrices: “In 
damped systems, the condition for classical normal modes is that 
the product M–1C can be expressed as the power of product M–1K, 
in the form of the following series:”

	 (7)

He proposed the following expression for the possible analytical form 
of a damping matrix that satisfies the condition mentioned above:

.	 (8)

This form is called the Caughey series in the literature. The damping 
matrix formed by Eq. (8) is also known as the proportional damping 
matrix after Rayleigh.
The traditional Rayleigh damping in Eq. (3) is a special case of the 
expression in Eq. (8), because with the substitution a0 = a, a1 = b, 
a2 = a3 = ... = an-1 = 0, we have:

.	 (9)

Fawzy (1977) [3] gave the following analytical form for a damping 
matrix: , which satisfied the condition 

in Eq. (4). Sas et al. (1998) [4] composed the commutative 
relationship in the form of .

 

Adhikari (2000) [5] suggested a further generalization for 
a proportional damping matrix. He proved that if the damping 
matrix can be expressed as
	 ,	 (10)
	 ,	 (11)
	 ,	 (12)
	 ,	 (13)

where  are analytical functions, the system 
possesses classical normal modes.

1.1	 The relationship between modal characteristics 
and the damping matrix

Let us study Adhikari’s relationship as given by Eq. (10)

.	 (14)
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In this relationship replace  with their spectral decompo
sition to express the modal matrices from Eqs. (6b) and (6c)

,	 (15)

and then the specified C damping matrix transforms into the modal 
space

.	 (16)

Bring forward matrices  from this spectral decomposition 
 [6, p. 249], 

.	 (17)

Substituting the modal damping Eq.(6 c)  relation
ship into Eq. (17), we finally get

,	 (18)

as a simple equation. This expression means the following:
„Modal dampings  of symmetrical, single eigenvalued 
systems with classical normal modes are equal to the return 
values of a  generalized Rayleigh damping matrix generator 
function  at undamped eigenfrequencysquare  loca­
tions.”

In the case of classic Rayleigh damping the function in Eq. (18) has 
been known for a long time: , which is seen 
in Fig. 1.

The generator function of the Caughey series defined in Eq. (8) is

 or  as a scalar function.

A key objective of this paper is to exploit the generic functional 
relationship in Eq. (18) and investigate whether this can be used 
effectively to model a damping mechanism in practical engineering 
problems. A novel idea based on the grouping of similar modes has 
been proposed in this context. 

2.	 IDENTIFICATION OF THE PARAMETERS OF 
A DAMPING MECHANISM

The relationship in Eq. (18) can be appropriate for identifying the 
parameters of a damping mechanism. If the regression function is 
known, the following procedure and possible application can be 
used (Fig. 2):

1.	An experimental modal analysis is carried out to determine the 
eigenfrequencies and damping values in the frequency range 
investigated.

2.	These value pairs are drawn according to a chart (Fig. 2), and 
then the regression function  is determined.

3.	Extrapolate the regression function  to the outband modes 
(to the higher frequency range).

4.	The results are available for FEM programs as damping data 
input.

5.	The damping matrix can be written in the explicit form 
.

The following questions or problems occur relating to regression:
a)	Undamped eigenfrequencies cannot be established by experi
mental measurements.

b)	W h a t kind of quantities should be represented for 
a regression?

c)	Is the regression function considered global in the 
sense that it is valid for all the modal types? 

d)	What should the analytical form of the regression function be?

As is well known, undamped eigenfrequencies cannot be determined 
by experimental measurements. The undamped system eigen

Fig. 1 Generator function of the proportional (Rayleigh) damping 
matrix.

Fig. 2 Regression of generalised Rayleigh damping.
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frequencies  are included in Eq. (18); however, the experimental 
measurements define the damped eigenfrequencies . The 
approximation  is widely accepted in the case of small 
damped systems. For plotting the relationship between damping vs. 
an eigenfrequency, the  (undamped eigenfrequency vs. Lehr 
damping) diagram is used in the literature, e.g., [10]-[14]. In the 
case of the measurement data  points are plotted, where the 
damped eigenfrequencies are . If the undamped 
eigenfrequency squares , as determined by FEM or any 
analytical methods, are available, it is advisable to use them.
As to what kind of quantities should be represented for the 
regression, we propose the selection of the regression function 
for plotting  instead of , because the former is 
appropriate for the function defined in Eq. (18).

3.	 CASE STUDIES

In the following sections we introduce a selection of graph representations 
suitable for evaluating the experimental measurement results.

3.1.	 Experimental investigations: I. Cantilever beam

Measurements of the EMA (Experimental Modal Analysis) cantilever 
beam, SISO (Single Input – Single Output), and FRF (Frequency 
Response Function) were performed (Fig. 3). A schematic diagram 
of the experimental setup is shown in the illustration.
The excitation and response measurements were performed 
horizontally (xy). The total number of the measured locations 
was 153.  N=5 modes were detected in the investigated frequency 
range [0 – 200 Hz]. The LSFD (Least Squares Frequency Domain) 
method was applied to identify the eigenfrequencies and damping 
parameters [8] (Fig. 4). 
The results are shown in Table 1.
Then we composed a modal model of the structure and visualized 
its modal shapes. The first four bending modes and the first torsion 
mode appeared in the investigated frequency band. The third 
bending and the shape of the first torsion modes are shown in Fig. 5.
The eigenvalue parameters seen in Table 1 are plotted in Fig. 6a 
by a traditional representation. The features of the curve can be 
identified with difficulty on this chart.
In the proposed representation shown in Fig. 6b, the relationship 
of the values presents a square root function. A regression with the 
analytical form  was carried out, which 
corresponds to a linear regression on the  values (Fig. 6c). 
The results of the regression for function can be seen 
in Fig. 7, which is proper for the extrapolation of damping in an 
outband frequency range.

According to the experimental results, in the case of the investigated 
prismatic beam, the regression function  is global for both the 
bending and torsion modes. Only one torsion mode was detected 
in the frequency range investigated. We think more tests should be 
carried out in a higher frequency band for higher torsion modes.
The problem of determining the shape of a curve in regression 
analysis is related to the question of whether the specific function 

 is global. The global  means the function  is valid 
for all the modes. 
We conducted some experimental measurements, where we found 
that different types of modes could have different regression 
functions. Some of them are shown below.

Fig. 3. Schematic representation of the experimental setup of the 
cantilever beam [8] (EMA, SISO, FRF measurements).

Fig. 4 LSFD regression of the measured FRF function [8].

Table 1 Eigenfrequency and damping values of the cantilever beam 
[8].
Mode i 1 2 3 4 5
fi [Hz] 4.671 30.93 87.36 125.5 171.5
ξi [%] 5.49 0.918 0.373 0.282 0.224
Type BXZ 1 BXZ 2 BXZ 3 TZ 1 BXZ 4

BXZ bending
T torsion
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Fig. 5 Modal shapes of the cantilever beam [8].

Fig. 6 Methods representating of the cantilever beam’s eigenvalue parameters.

Fig. 7 Regression of the eigenvalue parameters.
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3.2.	Experimental investigation II: Damping 
Identification in a Clamped Plate With Slots

In this section we consider a two-dimensional structure [7]. 
A schematic model of the test structure is shown in Fig. 8. This 
is fabricated by making slots in a mild steel rectangular plate of 
a 2 mm thickness, resulting in three-cantilever beams joined at their 
base by a rectangular plate. The source of the damping in this test 
structure is the wedged foam between the fork benches 1 and 2.

A schematic diagram of the test rig is shown in Fig. 9.
A classic EMA SISO FRF measurement was performed. The modal 
shapes from the 4th to the 9th are shown in Fig. 10. On the left side 
modes 4 th, 5th and 6 th are the second bending, torsion and mixed 
modes. On the right modes 7 th, 8 th and 9 th are the third bending, 
torsion and mixed modes respectively.

The measured natural frequencies and damping factors for the first 
nine modes are shown in Table 2. The three mode groups were 
separated according to the type of mode shape: a bending, a torsion 
and a mixed one. Each mode group consists of three modes.

Table 2 Measured natural frequencies, damping factors and modal types of the clamped plate with slots [7].
Mode: 1 2 3 4 5 6 7 8 9
f [Hz] 12.46 14.36 15.01 75.60 88.94 93.97 232.74 243.37 261.93 
ξ [%] 0.1032 0.0969 0.1159 0.1404 0.1389 0.1254 0.1494 0.0953 0.1260 
Type B T M B T M B T M

Mode types B: Bending, T: Torsion, M: Mixed 

Fig. 8 Geometric shape of the plate with slots [7].

Fig. 10 The mode shapes from the 4th to the 9th [7].

Fig. 9 Schematic representation of the experimental setup of the 
clamped plate with slots [7].
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The measured values on Fig. 11a are seen in three different viewing 
plots. The results of the regression by mode groups on Fig. 11b are 
shown. The analytical form of the regression function in each group 
is  with different coefficients of .

3.3.	Experimental investigation III: Ambient Response 
Analysis of the Heritage Court Tower Building

Let us see as an example the regression of the modal damping taken 
from the literature based on the measurements of Brincker et  al. [9].

The modal shapes of the Tower Building were examined. The photo 
of this building is seen in Fig.12. Its size is 20 m x 25 m x 50 m. 
The building structure has classical normal modes. The eigenvalue 
parameters and types of modal shapes are summarized in Table 3.
In processing the published data, we got the following results. The 
damping and eigenfrequency values were plotted on traditional and 
proposed diagrams as shown in Fig. 13.
For this data series the regression was performed by mode groups as 
in the previous chapter. One mode group is of the bending modes; 
the other is of the torsion ones. The results are shown in Fig. 14.

Fig 11. Regression of the eigenvalue parameters of the plate.
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These results raise the following questions:
•	 Could classical normal modes exist in the case of a not global 
generator function?

•	 Can regression be done per-mode-group without the loss of the 
classical normal modes?

The following section describes the method of grouping the modes.

4.	 GROUPING OF THE MODES

The spectral decomposition of matrix , using the expressions 
in Eqs. (6b) and (6d), is:

,	 (19)

which is the sum of the n number of dyads (columns of , and rows 
of , and the matrix  is a diagonal matrix).
Let us make m number of mode groups. According to the mode 
groups, m performs a partition of the columns of the modalmatrix 

, the elements of the spectral matrix , and the rows of the 
inverse of modalmatrix ,

Fig. 12 Picture of the investigated building.

Fig. 13 Eigenvalue parameters of the investigated Tower Building [9].

Table 3 Building’s EMA measurement results [9]. 
Mode i 1 2 3 4 5 6 7 8 9 10 11
fi [Hz] 1.23 1.28 1.45 3.85 4.25 5.34 6.39 7.47 7.58 8.22 9.26
ξi [%] 2.12 1.77 1.2 1.16 1.52 1.69 1.54 2.2 2.31 2.66 1.95
Type BXZ1 T1 BYZ1 T2 BXZ2 BYZ2 T3 BXZ BXZ BXZ T4

	        BXZ: Bending in XZ plane	                 BYZ: Bending in YZ plane	            T: Torsion around Z axis
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, ,

	 (20)

where  are the eigenvectors of mode group p;  are the row 
vectors of , which belong to mode group p, and finally are 
the elements of the spectral matrix belonging to mode group p.
The spectral decomposition of  in terms of mode groups is

.	 (21)

Let functions be the regression functions of the mode groups. 
It is verifiable that the damping matrix

	 (22)

generated by functions  satisfies the commutative relationship 
in Eq. (4), so the damped system has classical normal modes, the 

proof is seen in the Appendix. Using  based on 
Eq. (6b) in Eq. (22), we can obtain an explicit form of the classical 
damping matrix

	 (23)

(see Lancaster damping matrix).
If the regression function is not global, but the grouping of the modes 
is secure, you can use the following procedure and application field:
1.	The experimental modal analysis is carried out in the investigated 
frequency range, and the damping and eigenfrequency values are 
identified. 

2.	The eigenfrequency-damping values are plotted. The damping-
eigenfrequency points are grouped according to the types of 
modal shapes.

3.	The regression functions are fitted on points by the group of 
modes.

4.	The fitted smooth continuous functions used as extrapolation 
functions can give the value of the damping for the outband 
modes, which can be used with FEM programs to input the 
damping values for the unmeasured modes.

5.	The generalized proportional damping matrix can be made in an 
explicit form by applying Eq. (23).

5.	 SUMMARY, ADDITIONAL TASKS

In this paper the possibilities of identifying damping mechanisms 
have been reviewed. After our performed measurements and an 
analysis of the literature, the main conclusions are:

Fig. 14 Eigenvalue parameters of the Tower Building investigated [9] Regression of damping by mode group.
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Construction of a damping matrix by a global generator function is 
not always possible.
However, it may be constructed by functions defined in mode 
groups, without the loss of classical normal modes. 

Additional tasks

The grouping of modes is should be solved. Such a method should 

be developed by which the classification of a modal shape can be 
performed automatically. The effects that cause variations in the 
damping values with an EMA method should be analysed.
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APPENDIX

Theorem:
The damping matrix generated  by 

	  	 (A-1)
satisfies the commutative relationship.

Proof:
Consider the  commutative relationship. Substitute the spectral decomposition of all the matrices in it. 
The left side of this relationship is
 

The right side of this relationship is:
 

Here

	 	                                                                      
Consequently,

	 	                                                       	  	

(A-2)

	 	                                                       	  	

(A-3)

The right side of Eq. (A-2) equals the right side of Eq. (A-3), because a  and  are diagonal matrices, so they are commutative. 
Consequently, the left side of Eq. (A-2) and the left side of Eq. (A-3) are equal, so the commutative relationship is satisfied.


