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Abstract

Purpose – High-dimensional model representation (HDMR) is a general set of quantitative model
assessment and analysis tools for capturing the high-dimensional relationships between sets of input
and output model variables. It is an efficient formulation of the system response, if higher-order
cooperative effects are weak, allowing the physical model to be captured by the lower-order terms.
The paper’s aim is to develop a new computational tool for estimating probabilistic sensitivity of
structural/mechanical systems subject to random loads, material properties and geometry.
Design/methodology/approach – When first-order HDMR approximation of the original high-
dimensional limit state is not adequate to provide the desired accuracy to the sensitivity analysis, this
paper presents an enhanced HDMR (eHDMR) method to represent the higher-order terms of HDMR
expansion by expressions similar to the lower-order ones with monomial multipliers. The accuracy of
the HDMR expansion can be significantly improved using preconditioning with a minimal number of
additional input-output samples without directly invoking the determination of second- and higher-
order terms. As a part of this effort, the efficacy of HDMR, which is recently applied to uncertainty
analysis, is also demonstrated. The method is based on computing eHDMR approximation of system
responses and score functions associated with probability distribution of a random input. Surrogate
model is constructed using moving least squares interpolation formula. Once the surrogate model
form is defined, both the probabilistic response and its sensitivities can be estimated from a single
probabilistic analysis, without requiring the gradients of performance functions.
Findings – The results of two numerical examples involving mathematical function and structural/
solid-mechanics problems indicate that the sensitivities obtained using eHDMR approximation
provide significant accuracy when compared with the conventional Monte Carlo method, while
requiring fewer original model simulations.
Originality/value – This is the first time where application of eHDMR concepts is explored in the
stochastic sensitivity analysis. The present computational approach is valuable to the practical
modelling and design community.

Keywords Sensitivity analysis, Structural engineering, Modelling,
Mechanical behaviour of materials

Paper type Research paper

1. Introduction
Sensitivity analysis provides an important insight towards the understanding of the
physical mechanisms underpinning the failure of engineering structures. It is also
necessary for modifying the design towards mitigating risk. Significant advancements
have been made over the past few decades in developing methods such that the
sensitivity information is provided as a ‘‘by-product’’ of the analysis. Studies on
sensitivities of the random variables are carried out in the literature (McClendon and
Rabitz, 1988; Asmussen and Rubinstein, 1993; Helton, 1997; Melchers and Ahammed,
2004; Oakley and O’Hagan, 2004; Gunawan et al., 2005; Bae et al., 2006a, b; Ahammed
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and Melchers, 2006; Alyanak et al., 2008) in order to establish a systematic framework
for identifying relative importance of parameters that merit descriptions through
random variables or optimizing a system’s performance with an acceptable risk.
Generally three classes of approaches are available for estimating the sensitivity of a
general probabilistic response, which are named as finite-difference (L’Ecuyer and
Perron, 1994; Plyasunov and Arkin, 2007), perturbation (Ho and Cao, 1991; Glasserman,
1991; Adhikari and Friswell, 2007) and score function (Rubinstein and Shapiro, 1993;
Rahman, 2009; Millwater, 2009). In finite-difference approach (Plyasunov and Arkin,
2007) repeated probabilistic analyses needs to performed, for nominal and perturbed
values of system parameters and thus often expensive. In contrast to finite-difference
approach, both perturbation and score function approach require only single stochastic
analysis to estimate both performance as well sensitivities. For perturbation analysis
(Glasserman, 1991; Ghosh et al., 2004; Adhikari and Friswell, 2007), the probability
measure is fixed, and the gradient of a limit state is taken. Score function approach
(Rubinstein and Shapiro, 1993; Millwater, 2009) involves continuously varied probability
measure. Theoretically both perturbation and score function approach can be employed
in conjunction with the direct Monte Carlo simulation (MCS) but the problem lies in the
calculation of gradients. The gradient estimation of a stochastic system, embedded in
commercial software, using the direct MCS can be impractical. Due to this fact neither
perturbation approach nor score function method established their way in stochastic
sensitivity analysis of structural/mechanical systems.

The direct differentiation method provides an attractive alternative to the finite-
difference method for calculating stochastic sensitivities. In conjunction with classical
approaches (Nair and Keane, 2002; Adhikari, 2005) of reliability analysis, Liu and Der
Kiureghian (1991) has significantly contributed to the development of such methods for
obtaining reliability sensitivities. In contrast, the three sensitivity methods described in the
preceding are independent of underlying stochastic analysis. In a recent study (Rahman,
2009), a score function approach is implemented with dimensional decomposition, which is
same as high-dimensional model representation (HDMR) although not mentioned
explicitly in the paper, to estimate stochastic sensitivities. In this article, enhanced HDMR
(eHDMR) is explored in conjunction with score function for calculating stochastic
sensitivities of structural/mechanical system with respect to probability distribution
parameters. The novelty of the present approach lies in the fact that, it uses constant and
first-order terms of HDMR and approximates the higher-order terms by using monomials,
instead of directly invoking the higher-order HDMR expansion.

The paper is organized as follows. Section 2 presents a brief overview of statistical
moments. Section 3 describes the concept of sensitivity analysis using score function.
Section 4 presents a brief overview of HDMR. Section 5 portrays the mathematical
formulation of eHDMR. Section 6 presents approximation of the original limit state/
performance function using eHDMR. Section 7 presents the estimation of failure
probability, statistical moments and sensitivities by MCS using the approximate limit
state/performance function generated by HDMR. Numerical examples involving
elementary mathematical functions and structural problems are presented in section 8
to illustrate the proposed method.

2. Statistical moments
Let x ¼ fx1; x2; . . . ; xNg denote the uncertainties in loads, material properties and
geometry of structural/mechanical system. The probabilistic description of the random
variables is completely defined by joint density function ffxðx; uÞ; x 2 <N ; u 2 <Ng
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that is associated with the probability measure fPu; u 2 <Ng (Sudret and
Der-Kiureghian, 2000). In this study, it is assumed that the limit state gðxÞ is not an
explicit function of u, although gðxÞ implicitly depends on u through the probabilistic
description of the random variables considered. The objective of probabilistic
sensitivity analysis is to obtain the partial derivatives of a probabilistic characteristic
of gðxÞ with respect to a parameter �i; i ¼ 1; 2; . . . ;M, given a reasonably arbitrary
probability law of x ¼ fx1; x2; . . . ; xNg.

The qth moment of gðxÞ can be defined by:

MqðuÞ ¼ E� gqðxÞ½ � ¼
ð
<N

gqðxÞfxðx; uÞdx; q ¼ 1; 2; . . . ð1Þ

A similar integral appears in time-invariant reliability analysis, which entails
calculating the failure probability:

PF uð Þ ¼ Pu x 2 �F½ � ¼
ð
<N

J�F
xð ÞfX x; uð Þdx ð2Þ

where �F is the failure set for component reliability analysis and,

J�F
ðxÞ ¼ 1; x 2 �F

0; x 2 �n�F

�
; x 2 <N ð3Þ

is an indicator function. Therefore, both the expressions in equations (1) and (2) can be
consolidated into a generic probabilistic response:

h uð Þ ¼ Eu g xð Þ½ � ¼
ð
<N

g xð ÞfX x; uð Þdx ð4Þ

where hðuÞ and gðxÞ are either mqðuÞ and gqðxÞ, respectively, for statistical moment
analysis; PFðuÞ and J�F

ðxÞ, respectively, for reliability analysis.

3. Sensitivity analysis using score function
Consider a distribution parameter �i; i ¼ 1; 2; . . . ;M, and suppose that the gradient of
a generic probabilistic response hðuÞ, which is either statistical moment or reliability of
a structural/mechanical system, with respect to �i is sought (Rahman, 2009). According
to Rubinstein and Shapiro (1993), pioneers of the score function method, few
assumptions are necessary for such sensitivity analysis. Details of these assumptions
can be found elsewhere in Rubinstein and Shapiro (1993). Taking the partial derivative
of both sides of equation (4) with respect to �i yields:

@h uð Þ
@�i

¼ @

@�i

ð
<N

g xð ÞfX x; uð Þdx ð5Þ

By invoking Lebesgue dominated convergence theorem, the differential and integral
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operators can be interchanged (Rahman, 2009), which yields:

@h uð Þ
@�i

¼
ð
<N

g xð Þ @fX x; uð Þ
@�i

dx ¼
ð
<N

g xð Þ @ ln fX x; uð Þ
@�i

fX x; uð Þdx

¼ Eu g xð Þ @ ln fX x; uð Þ
@�i

� �
; i ¼ 1; . . . ;M

ð6Þ

Define:

K
ð1Þ
� ðx; uÞ ¼ @ ln fxðx; uÞ

@�i

ð7Þ

which is known as the first-order score function for the parameter �i (Rahman, 2009;
Millwater, 2009). Therefore, the first-order sensitivity of hðuÞ can be expressed by
(Rahman, 2009):

@hðuÞ
@�i

¼ Eu½gðxÞKð1Þ� ðx; uÞ�; i ¼ 1; . . . ;M ð8Þ

The score function method requires differentiating only the probability density function.
Also in most cases, resulting score functions can be easily determined analytically. In
contrast, the infinitesimal perturbation analysis requires derivatives or perturbation of the
limit state/performance function, which is always expensive in stochastic mechanics
applications (Rahman, 2009). Furthermore, if the performance function is not differentiable,
interchangeability of differential and integral operators is violated and the direct
differentiation-based approaches will not work. In the score function method, gðxÞ can be
discontinuous – for example, the indicator function J�F

ðxÞ arising in the reliability
analyses – but the method still allows evaluation of the sensitivity if the density function is
differentiable. Due to these facts, in this paper the score function method is chosen as a tool
for efficient computation of probabilistic sensitivity (Rahman, 2009).

The score functions K
ð1Þ
� ðx; uÞ depend only on the joint probability density

function of the random input vector x ¼ fx1; x2; . . . ; xNg. When the distribution of xi is
either independent or both independent and identical, the expressions of the score
functions simplify slightly. Since a major application of sensitivity analysis is the
design optimization, where the second-moment properties of random input play the role
of design parameters, attention is confined to the score functions associated with the
mean and standard deviations of input (Rahman, 2009). In general, the log-derivatives
of a marginal probability density function are required in determining the score functions.

4. High-dimensional model representation
The fundamental principle underlying the HDMR (Yaman and Demiralp, 2009; Tunga
and Demiralp, 2004, 2005; Sobol, 2003; Alis and Rabitz, 2001; Li et al., 2001a; Rabitz and
Alis, 1999; Wang et al., 1999) is that, from the perspective of the output/response, the
order of cooperative effects between the independent variables will die off rapidly. This
assertion does not eliminate strong variable dependence or even the possibility that all
the variables are important. Various sources (Alis and Rabitz, 2001; Rabitz and Alis,
1999; Wang et al., 1999) of information support this point of there being limited high-
order correlations. First, the variables in most systems are chosen to enter as
independent entities. Second, traditional statistical analyses of system behavior have
revealed that a variance and covariance analysis of the output in relation to the input
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variables often adequately describes the physics of the problem. These general
observations lead to a dramatically reduced computational scaling when one seeks to
map input-output relationships of complex systems.

Evaluating the input-output mapping of a system generates an HDMR (Rabitz and
Alis, 1999) of that system. This is achieved by expressing system response as a
hierarchical, correlated function expansion of a mathematical structure and evaluating
each term of the expansion independently. One may show that a general system
response gðxÞ ¼ gðx1; x2; . . . ; xN Þ, which is a function of N input variables, can be
expressed as summands of different dimensions:

gðxÞ ¼ g0 þ
XN

i¼1

giðxiÞ þ
X

1�i1<i2�N

gi1i2ðxi1 ; xi2Þ þ . . .

þ
X

1�i1<...<il�N

gi1i2...il ðxi1 ; xi2 ; . . . ; xil Þ þ . . .þ g12...N ðx1; x2; . . . ; xN Þ
ð9Þ

where g0 is a constant term representing the zeroth-order component function or the
mean response of gðxÞ. The function giðxiÞ is a first-order term expressing the effect of
variable xi acting alone, although generally nonlinearly, upon the output gðxÞ. The
function gi1i2ðxi1 ; xi2Þ is a second-order term which describes the cooperative effects of
the variables xi1 and xi2 upon the output gðxÞ.

The expansion functions are determined by evaluating the input-output responses
of the system relative to the defined reference point �xx ¼ f�xx1; �xx2; . . . ; �xxNg along
associated lines, surfaces, subvolumes, etc. in the input variable space. This process
reduces to the following relationship for the component functions in equation (9):

g0 ¼ gð�xxÞ ð10Þ

giðxiÞ ¼ gðxi; �xx iÞ � g0 ð11Þ

gi1i2ðxi1 ; xi2Þ ¼ gi1i2ðxi1 ; xi2 ; �xx i1i2Þ � gi1ðxi1Þ � gi2ðxi2Þ � g0 ð12Þ

where the notation gðxi; �xx iÞ ¼ gð�xx1; �xx2; . . . ; �xxi�1; xi; �xxiþ1; . . . ; �xxN Þ denotes that all the
input variables are at their reference point values except xi. The process of subtracting
off the lower-order expansion functions removes their dependence to assure a unique
contribution from the new expansion function.

Considering terms up to first-order in equation (9) yields:

gðxÞ ¼ g0 þ
XN

i¼1

giðxiÞ þ R2 ð13Þ

Substituting equations (10)-(11) into equation (13) leads to:

gðxÞ ¼
XN

i¼1

gð�xx1; �xx2; . . . ; �xxi�1; xi; �xxiþ1; . . . ; �xxN Þ � ðN � 1Þgð�xxÞ þ R2 ð14Þ
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Therefore, first-order HDMR approximation of gðxÞ can be represented as:

~ggðxÞ � gðx1; x2; . . . ; xN Þ ¼
XN

i¼1

gð�xx1; �xx2; . . . ; �xxi�1; xi; �xxiþ1; . . . ; �xxN Þ

� ðN � 1Þgð�xxÞ
ð15Þ

Comparison of equations (14) and (15) indicates that the first-order approximation leads to
the residual error gðxÞ � ~ggðxÞ ¼ R2, which includes contributions from terms of two and
higher-order component functions. It can be shown that (Li et al., 2001a), the first-order
component function giðxiÞ is the sum of all the Taylor series terms which contain and only
contain variable xi . Furthermore, the approximations contain contributions from all the
input variables. Thus, the infinite numbers of terms in the Taylor series are partitioned
into finite different groups and each group corresponds to one HDMR component function
(Chowdhury et al., 2009). Therefore, any truncated HDMR expansion provides a better
approximation and convergent solution of gðxÞ than any truncated Taylor series because
the latter only contains a finite number of terms of Taylor series (Li et al., 2001a).

5. Enhanced HDMR
Very often the contribution of higher-order HDMR terms (equation (9)) to the
multivariate function approximation are small thereby making low-order HDMR
approximations satisfactory for practical purposes. However, in some cases the lower-
order (e.g. first-order) HDMR approximation may not provide satisfactory accuracy,
and higher-order HDMR approximations might have to be considered (Li et al., 2001b).
For HDMR, the higher-order terms demand a polynomially increasing number of finite-
element (FE) model runs (Rao and Chowdhury, 2009). If the higher-order component
functions of HDMR can be approximately represented in a similar fashion as those for
the zeroth and first-order component functions, then higher-order approximation of
HDMR can be included without dramatically increasing the number of experiments or
model runs as well as reducing computer storage requirements. One way to realize this
concept is to represent a high-order HDMR component function as a sum of
preconditioned low-order HDMR component functions. The preconditioning may be
accomplished by multiplying each low-order HDMR component function with a
suitable known function of the remaining input variables.

When gðxÞ is approximated by the lth HDMR at reference point �xx, the error of this
approximation is given by the residual:

rlðxÞ ¼ gðxÞ � g0 �
XN

i¼1

giðxiÞ �
X

1�i1<i2�N

gi1i2ðxi1 ; xi2Þ � . . .

�
X

1�i1<...<il�N

gi1i2...il ðxi1 ; xi2 ; . . . ; xil Þ
ð16Þ

As outlined in section 4, gi1i2...il ðxi1 ; xi2 ; . . . ; xil Þ is the sum of all terms in Taylor series
which only contain xi1 ; xi2 ; . . . ; xil when gðxÞ can be expanded as a convergent Taylor
series at reference point �xx . Since the collective HDMR component functions
gi1i2...isðxi1 ; xi2 ; . . . ; xisÞ ðs ¼ 0; 1; . . . ; lÞ remove all the Taylor series terms of gðxÞ with
up to l variables, then rlðxÞ comprises only of the Taylor series terms containing more
than l variables.
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In order to estimate the contribution of the next term beyond that contained in the
HDMR expansion in equation (16), consider a subset I from the set of the input
variables considered, f1; 2; . . . ;Ng, i.e.:

I ¼ fi1; i2; . . . ; ikg � f1; 2; . . . ;Ng; k ¼ l þ 1 ð17Þ

and let,

xI ¼ fxi1 ; xi2 ; . . . ; xikg ð18Þ

Then rlðxI ; �xxI Þ (where �xxI is the �xx without elements f�xxi1 ; �xxi2 ; . . . ; �xxikg) is the residual
value with all variables evaluated at �xx except of the elements in �xxI . Considering that
rlðxÞ may be viewed as composed of the products of monomial bases
ðxi � �xxiÞ ði ¼ 1; 2; . . . ;NÞ, therefore rlðxI ; �xxI Þ only contains the Taylor series terms
with the variable in xI . This implies that rlðxI ; �xxI Þ is a kth order HDMR component
function:

rlðxI ; �xxI Þ ¼ gi1i2...ikðxi1 ; xi2 ; . . . ; xikÞ ð19Þ

The objective is to find an approximation of equation (19). In order to estimate the
approximation of equation (19), it is convenient to write rlðxI ; �xxI Þ as:

rlðxI ; �xxI Þ ¼ ’ðxI Þ
rlðxI ; �xxI Þ
’ðxI Þ

¼ ’ðxI ÞhlI ðxI ; �xxI Þ ð20Þ

where ’ðxI Þ is some appropriate known function (e.g. the product of monomials).
If hlI ðxI ; �xxI Þ can be represented by first-order HDMR approximations about some
other suitable center other than �xx , then ’ðxI Þ hlI ðxI ; �xxI Þ will provide an first-order
approximation of rlðxI ; �xxI Þ. By this way ’ðxI Þ can be viewed as a preconditioning
function that extracts some characteristics behavior from gi1i2...ikðxi1 ; xi2 ; . . . ; xikÞ.
If ’ðxI Þ is the product of monomials, i.e.:

’ðxI Þ ¼
Yk

s¼1

ðxis � �xxisÞ ð21Þ

then,

hlI ðxI ; �xxI Þ ¼ rlðxI ; �xxI ÞQk
s¼1

ðxis � �xxisÞ
ð22Þ

and the process is referred to as monomial based preconditioning.
Now consider approximating hlI ðxI ; �xxI Þ by first-order HDMR at a new reference

point:

b ¼ fb1; b2; . . . ; bNg ð23Þ

such that, bi 6¼ �xxi for all i, to avoid the singularity in hlI ðxI ; �xxI Þ, and set:



EC
27,7

848

bI ¼ fbi1 ; bi2 ; . . . ; bikg ð24Þ

which leads to:

hlI ðxI ; �xxI Þ � rlðbI ; �xxI ÞQk
s¼1

ðbis � �xxisÞ

þ
Xk

s¼1

rlðxis ;b
is
I ; �xxI Þ

ðxis � �xxisÞ
Qk

r¼1; ir 6¼is

ðbir � �xxirÞ
� rlðbI ; �xxI ÞQk

r¼1

ðbir � �xxirÞ

0
BBB@

1
CCCA

ð25Þ

The resultant first-order HDMR component functions for hlI ðxI ; �xxI Þ are then multiplied
by ’ðxI Þ ¼

Qk
s¼1 ðxis � �xxisÞ in equation (21), which gives an approximation for kth order

component function:

gi1i2...ikðxi1 ; xi2 ; . . . ; xikÞ ¼ rlðxI ; �xxI Þ

¼
Yk

s¼1

ðxis � �xxisÞhlI ðxI ; �xxI Þ

�
Yk

s¼1

ðxis � �xxisÞ
ðbis � �xxisÞ

rlðbI ; �xxI Þ þ
Xk

s¼1

Qk
r¼1; ir 6¼is

ðxir � �xxirÞ
ðbir � �xxirÞ

rlðxis ;b
is
I ; �xxI Þ�

Qk
r¼1; ir 6¼is

ðxir � �xxirÞ
ðbir � �xxirÞ

rlðbI ; �xxI Þ

0
BBBB@

1
CCCCA

ð26Þ

where bis
I is just bI without elements bis . When all possible choices of I are considered, the

collective terms results in an approximation of the (l þ 1)th order component functions of
HDMR to gðxÞwithout directly evaluating gi1i2...ikðxi1 ; xi2 ; . . . ; xikÞ.

With an aim to improve the accuracy in approximating gðxÞ for subsequent
reliability and sensitivity analysis application, at same time without increasing
exorbitantly the effort required in evaluating the higher-order component functions of
HDMR, the present work restricts to an approximation to first-order HDMR terms.
Therefore, considering l ¼ 1 and k ¼ 2, in equations (16)-(27) leads to, respectively:

r1ðxÞ ¼ gðxÞ � g0 �
XN

i¼1

giðxiÞ ð28Þ

I ¼ fi1; i2g � f1; 2; . . . ;Ng ð29Þ

and,

xI ¼ fxi1 ; xi2g ð30Þ

Considering k ¼ 2 in equation (24) results in:
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bI ¼ fbi1 ; bi2g ð31Þ

Therefore, the first-order approximation of rlðxI ; c
I Þ at reference point b ¼ fb1;

b2; . . . ; bNg is given by:

r1ðxI ; �xxI Þ ¼ }0 þ
Xk

s¼1

}is ð32Þ

where,

}0 ¼
Yk

s¼1

ðxis � �xxisÞ
ðbis � �xxisÞ

r1ðbI ; �xxI Þ ð33Þ

}is ¼
Yk

r¼1;ir 6¼is

ðxir � �xxirÞ
ðbir � �xxirÞ

r1ðxis ;b
is
I ; �xxI Þ �

Yk

r¼1

ðxir � �xxirÞ
ðbir � �xxirÞ

r1ðbI ; �xxI Þ ð34Þ

and,

r1ðbI ; �xxI Þ ¼ gðbi1 ; bi2 ; �xx i1i2Þ � gðbi1 ; �xx i1Þ � gðbi2 ; �xx i2Þ þ gð�xxÞ ð35Þ

r1ðxi1 ;b
i1
I ; �xxI Þ ¼ gðxi1 ; bi2 ; �xx i1i2Þ � gðxi1 ; �xx i1Þ � gðxi2 ; �xx i2Þ þ gð�xxÞ ð36Þ

Hence, eHDMR approximation of the function gðxÞ is obtained as follows:

~ggðxÞ ¼ g0 þ
XN

i¼1

giðxiÞ þ
X

I

½r1ðxI ; �xxI Þ� ð37Þ

which can be rewritten as:

~ggðxÞ ¼ g0 þ
XN

i¼1

giðxiÞ þ
X

I

}0 þ
Xk

s¼1

}is

" #
ð38Þ

6. Generation of eHDMR approximation
HDMR in equation (9) is exact along any of the cuts, and the approximation of the
response function gðxÞ using eHDMR at a point x can be obtained by following the
procedure in Steps 1 to 3 below:

(1) Step 1. Interpolate each of the low-dimensional HDMR expansion terms with
respect to the input values of the point x. For example, consider the first-order
component function gðxi; �xx iÞ ¼ gð�xx1; �xx2; . . . ; �xxi�1; xi; �xxiþ1; . . . ; �xxN Þ. If for xi ¼ xj

i;
n function values:

gðxj
i; �xx iÞ ¼ gð�xx1; . . . ; �xxi�1; x

j
i; �xxiþ1; . . . ; �xxN Þ; j ¼ 1; 2; . . . ; n ð39Þ
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are given at nð¼ 3; 5; 7 or 9Þ regularly spaced sample points, the function value for
arbitrary xi can be obtained by the moving least square (MLS) interpolation as
(Lancaster and Salkauskas, 1986):

gðxi; �xx iÞ ¼
Xn

j¼1

�jðxiÞ gð�xx1; . . . ; �xxi�1; x
j
i; �xxiþ1; . . . ; �xxN Þ ð40Þ

where �jðxiÞ is the MLS interpolation function.
By using equation (40), giðxiÞcan be generated if n function values are given at

corresponding sample points. The same procedure shall be repeated for all the first-
order component functions, i.e.:

giðxiÞ; i ¼ 1; 2; . . . ;N

(2) Step 2. Sum the interpolated values of HDMR expansion terms calculated in Step 1.
This leads to first-order HDMR approximation of the function gðxÞ as:

~ggðxÞ ¼
XN

i¼1

Xn

j¼1

�jðxiÞgð�xx1; . . . ; �xxi�1; x
j
i; �xxiþ1; . . . ; �xxN Þ � ðN � 1Þgð�xxÞ ð41Þ

(3) Step 3. Compute first-order approximation of rlðxI ; �xxI Þ using equation (32) and
subsequently add to first-order HDMR approximation (calculated in Step 2), which
leads to eHDMR approximation of the function gðxÞ as:

~ggðxÞ ¼
XN

i¼1

Xn

j¼1

�jðxiÞgð�xx1; . . . ; �xxi�1; x
j
i; �xxiþ1; . . . ; �xxN Þ � ðN � 1Þgð�xxÞ

þ
X

I

Qk
s¼1

ðxis � �xxisÞ
ðbis � �xxisÞ

r1ðbI ; �xxI Þ þ
Qk

r¼1;ir 6¼is

ðxir � �xxirÞ
ðbir � �xxirÞ

r1ðxis ;b
is
I ; �xxI Þ

�
Qk
r¼1

ðxir � �xxirÞ
ðbir � �xxirÞ

r1ðbI ; �xxI Þ

2
6664

3
7775

ð42Þ

6.1 Computational effort
If n is the number of sample points taken along each of the variable axis and s
is the order of the component function considered, starting from zeroth-order
to k-th order, then the total number of function evaluation for HDMR
approximation is given by

Pk
s¼0 ðN !ðn� 1ÞsÞ=ððN � sÞ!s!Þ, which grows polynomially

with n and s.
When new component functions of the kth order eHDMR are added to the kth order

HDMR, the increase in the number of function evaluation for different k is given by
Table I, where:

kCk
N ¼ k

N !

k!ðN � kÞ! ð43Þ
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The significance of this table can be understood by considering a case when N ¼ 3. If

we add the error function rlðxI ; c
I Þ in the first-order HDMR (equation (41)) to generate

eHDMR approximation (equation (42)), then there are total 3þ 2C2
3 ¼ 9 one variable

functions, gðxi; c
iÞ for all possible combinations of I. These additional component

functions composed new lines passing through N ¼ 3 dimensional space upon which

the function gðxÞ is exactly represented. Thus, the accuracy of eHDMR approximation

can be dramatically improved over the first-order HDMR approximation. Now suppose

that, each variable is sampled at n sample points. Then the total number of function

evaluation for kth order component functions of HDMR is Ck
N nk, but kth order eHDMR

approximation component functions only need Ck
N ðknþ C2

k n2Þ function evaluations.

The ratio is:

R ¼ Function evaluation of k-th order eHDMR

Function evaluation of k-th order HDMR

¼ Ck
N ðknþ C2

kn2Þ
Ck

N nk
¼ kþ C2

kn

nk�1

ð44Þ

For k ¼ 2 and n ¼ 10, R � 1. For k ¼ 3 and n ¼ 10, R � 1/3. For k ¼ 5 and n ¼ 10,

R � 1/100. Therefore, the saving in computational cost is obvious. As a few low-order

component functions of eHDMR are used, the sample savings due to eHDMR are

significant compared to traditional sampling. Hence the reliability and subsequent

sensitivity analysis using eHDMR relies on an accurate reduced model being generated

with a small number of model simulations.

7. Estimation of failure probability and sensitivity

Recall that ~ggðxÞ is the approximate function of the original limit state/performance

function. Based on this approximation, let �̂�FS ¼ fx : ~ggðxÞ < 0g define the

approximate failure set in a reliability analysis. Therefore, the Monte Carlo method

estimates of the failure probability PFðuÞ and its sensitivity @PFðuÞ=@�i, employing

HDMR and eHDMR approximation, are given by:

PFðuÞ ffi E�½J�̂�FS
ðxÞ� ¼ lim

Ns!1

1

NS

XNS

i¼1

J�̂�FS
ðx iÞ ð45Þ

and,

Table I.
Increasing numbers of

one-dimensional function
evaluation

K gðxis ;b
is
I ; c

I Þ

2 2C2
N

3 3C3
N

K kCk
N
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@PFðuÞ
@�i

ffi E�½J�̂�FS
ðxÞKð1Þ� ðx; uÞ� ¼ lim

Ns!1

1

NS

XNS

i¼1

J�̂�FS
ðx iÞKð1Þ� ðx

i; uÞ ð46Þ

respectively. Here x i is ith realization of x , NS is the sample size, J�̂�FS
ðx iÞ is an indicator

of fail or safe state such that:

J�̂�FS
ðx iÞ ¼ 1; x i 2 �̂�FS

0; x i 2 �n�̂�FS

�
ð47Þ

The Monte Carlo estimate of the moments of HDMR and eHDMR approximation can be
found as:

mqðuÞ ffi E�½~ggqðxÞ� ¼ lim
Ns!1

1

NS

XNS

i¼1

~ggqðx iÞ ð48Þ

and its sensitivity:

@mqðuÞ
@�i

ffi E�½~ggqðxÞKð1Þ� ðx; uÞ� ¼ lim
Ns!1

1

NS

XNS

i¼1

~ggqðx iÞKð1Þ� ðx i; uÞ ð49Þ

8. Numerical examples
Two numerical examples are presented to illustrate the proposed approach, for obtaining
the sensitivity of the moment and reliability. Whenever possible, the finite-difference
method and the direct MCS are employed to evaluate the accuracy and computational
efficiency of the present method. The sample sizes for the direct MCS and the MCS in
conjunction with HDMR approximation vary from 104 to 106, depending on the
examples, but they are identical for a specific problem. A flow diagram for eHDMR
approximation and the uncertainty analysis by MCS is shown in Figure 1. For first-order
HDMR, n regularly spaced sample points are deployed along the variable axis through
the reference point �xx . Sampling scheme for the reduced-order modelling of a function
having one variable (x) and two variables (x1 and x2) using the first-order HDMR is
shown in Figures 2(a) and (b), respectively. For the eHDMR, reference point b is
arbitrarily chosen from within the domain of the problem. It is documented (Li et al.,
2001b) that, interchanging the �xx and b does not change the tendency of improvement in
approximation. A recent study (Rao and Chowdhury, 2009) concludes that the
approximation of eHDMR is almost unchanged irrespective of reference point b. Due to
these facts, reference point b is selected arbitrarily within the problem domain.

8.1 Example 1: cubic function with two variables
Consider a cubic limit state/performance function (Grandhi and Wang, 1999) of the
following form:

gðxÞ ¼ 2:2257� 0:025
ffiffiffi
2
p

27
ðx1 þ x2 � 20Þ3 þ 33

140
ðx1 � x2Þ ð50Þ

with two independent normal variables. The mean and standard deviation of the
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random variables are 10 and 3, respectively. For evaluating the failure probability PF

and subsequent sensitivity analysis, HDMR/eHDMR approximation is constructed by
deploying five equally spaced sample points (n ¼ 5) along each of the variable axis.
The reference point �xx is chosen as ð10; 10Þ and the reference point b is arbitrarily
chosen as ð5; 13Þ. Table II compares the results obtained by the present method using
HDMR and eHDMR approximation with direct MCS. A sampling size NS ¼ 106 is
considered in direct MCS to evaluate the failure probability PF. Table II also contains
the computational effort in terms of number of function evaluations, associated with

Figure 1.
Flowchart of sensitivity
analysis using eHDMR

approximation
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each of the methods. Compared with the failure probability obtained using the direct

MCS ðPF ¼ 0:01907Þ, the first-order HDMR and eHDMR approximation

underestimates the failure probability by 16.99 percent ðPF ¼ 0:01583Þ and 0.68

percent ðPF ¼ 0:01894Þ, respectively. Table III lists the first-order sensitivities of

failure probability with respect to mean and standard deviation of the random

variables @PF=@�i and @PF=@�i for i ¼ 1; 2. Similarly, Table IV presents first

three moments mq and their first-order sensitivities @mqðuÞ=@� and @mqðuÞ=@� for

q ¼ 1; 2; 3. The agreement between the results of the proposed approach using

simulation and the exact solution is excellent.

Figure 2.
Sampling scheme for
first-order HDMR

Table II.
Estimation of failure
probability for
Example 1

Method Failure probability
Number of

function evaluationa

FORM 0.01302 21
SORM (Adhikari, 2005) 0.01302 204
HORM (Grandhi and Wang, 1999) 0.01818 Not reported
First-order HDMR 0.01583 9b

eHDMR 0.01894 35c

Direct MCS 0.01907 106

Notes: aTotal number of times the original performance function is calculated;
bðn� 1Þ 	 N þ 1 ¼ ð5� 1Þ 	 2þ 1 ¼ 9;

c N !

k!ðN � kÞ! k	 nþ k!

2!ðk� 2Þ! n2

� �
¼ 2!

2!ð2� 2Þ! 2	 5þ 2!

2!ð2� 2Þ! 52

� �
¼ 35
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8.2 Example 2: 6-DOF dynamical system

This example considers a four-story building excited by a single period sinusoidal

pulse of ground motion, studied by Gavin and Yau (2008). Figure 3(a) shows the four-

story building with isolation systems and Figure 3(b) presents the acceleration history.

The building contains isolated equipment resting on the second floor. The motion of

the ground floor is resisted mainly by base isolation bearings (Wen, 1976) and if its

displacement exceeds Dc ð¼0:50 mÞ then an additional stiffness force contributes to the

resistance. Mass, stiffness and damping coefficient mf , kf and cf , respectively, at each

floor are assumed to be same.

There are two isolated masses, representing isolated, shock-sensitive equipment

resting on the second floor. The larger mass m1ð¼500 kgÞ is connected to the floor

by a relatively flexible spring, k1ð¼2500 N=mÞ, and a damper, c1ð¼350 N=m=sÞ,
representing the isolation system. The smaller mass ðm2 ¼ 100 kgÞ is connected to the

larger mass by a relatively stiff spring, k2ð¼105 N=mÞ, and a damper, c2ð¼200 N=m=sÞ,
representing the equipment itself. All variables are assumed to be lognormal and

independent. Probabilistic descriptions of the random variables are listed in Table V.

The limit state/performance function is defined by the combination of three failure

modes leading to system failure and is the following form:

Table III.
Sensitivities of failure

probability (Example 1)

First-order HDMR eHDMR Direct MCSa

@PF=@�1 �5.56	 10�3 �5.06	 10�3 �5.07	 10�3

@PF=@�2 4.38	 10�3 1.38	 10�2 1.36	 10�2

@PF=@�1 1.19	 10�2 2.63	 10�2 2.67	 10�2

@PF=@�2 2.32	 10�2 2.45	 10�2 2.48	 10�2

Note: aFor sensitivity estimation, finite difference with 1 percent perturbation is used

Table IV.
Moments and

sensitivities of moments
(Example 1)

First-order HDMR eHDMR Direct MCSa

m1 2.2270 2.2245 2.2245
m2 6.0002 6.1110 6.1088
m3 17.9941 18.7497 18.7502
@m1=@�1 0.2008 0.1630 0.1632
@m2=@�1 0.8918 0.7214 0.7215
@m3=@�1 3.5453 2.7451 2.7448
@m1=@�2 �0.2725 �0.3082 �0.3082
@m2=@�2 �1.2125 �1.3826 �1.3827
@m3=@�2 �5.0903 �5.9408 �5.9410
@m1=@�1 0.0004 0.0002 0.0002
@m2=@�1 0.1713 �0.2911 �0.2912
@m3=@�1 1.1388 �1.9266 �1.9267
@m1=@�2 �8.3321	 10�4 0.0002 0.0002
@m2=@�2 0.5792 �0.7211 �0.7210
@m3=@�2 3.8612 �4.8141 �4.8140

Note: aFor sensitivity estimation, finite difference with 1 percent perturbation is used
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gðxÞ ¼ 12:50ð0:04�max
t
jxfi
ðtÞ � xfi�1

ðtÞjÞi¼2;3;4

þð0:50�max
t
j€uugðtÞ þ €xxm2

ðtÞjÞ

þ 2:0ð0:25�max
t
jxf2
ðtÞ � xm1

ðtÞjÞ

ð51Þ

where xfi
ðtÞ refers to the displacement of ith floor and ðxfi

ðtÞ � xfi�1
ðtÞÞ is the inter story

Figure 3.
Problem statement
(Example 2)
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drift. €uugðtÞ is the ground acceleration and €xxm2
ðtÞ is the acceleration smaller mass block.

The displacement xm1
ðtÞ is of the larger mass block, and represents the displacement of

the equipment isolation system. The limit state/performance function in equation (51)
is the overall representation of three failure modes. The first term describes the damage
to the structural system due to excessive deformation. The second term represents the
damage to equipment caused by excessive acceleration. The last term represents the
damage of the isolation system. The weighing factors, multiplied with each term in
equation (51), are mainly to emphasize the equal contribution of the individual failure
modes to the overall failure of system. It is desirable that

(1) inter story drift is limited to 0.04 m;

(2) the peak acceleration of the equipment is less than 0:5 m=s2; and

(3) the displacement across the equipment isolation system is less than 0.25 m.

Equation (51) signifies overall system failure, which does not necessarily occur when
above-mentioned one or two failure criteria satisfies. For estimating sensitivity and
failure probability PF, first-order HDMR and eHDMR approximation is constructed by
deploying five regularly spaced sample points (n ¼ 5) along each of the variable axis.
The reference point �xx is chosen as mean values of variables and the reference point b is
arbitrarily chosen as some point within the domain. Table VI compares the results
obtained using first-order HDMR and eHDMR approximation with first- and second-
order reliability method (FORM/SORM), direct MCS and other existing results. Table VI

Table V.
Properties of the random
variables for Example 2

Random variable Units Description Mean COV

mf kg Floor mass 6000 0.10
kf N=m Floor stiffness 3	 107 0.10
cf N=m=s Floor damping coefficient 6	 104 0.20
fy N Isolation yield force 2	 104 0.20
dy m Isolation yield displacement 0.05 0.20
kc N=m Isolation contact stiffness 3	 107 0.30
T s Force period 1.0 0.20
A m=m=s Force amplitude 1.0 0.50

Table VI.
Estimation of failure

probability
for Example 2

Method Failure probability Number of function evaluationa

FORM 0.22549 86
SORM (Adhikari, 2005) 0.21410 357
First-order HDMR 0.19968 33b

eHDMR 0.19576 980c

SRSM (Gavin and Yau, 2008) 0.19355 6561
HO-SRSM (Gavin and Yau, 2008) 0.19643 2106
Direct MCS 0.19599 105

Notes: aTotal number of times the original performance function is calculated;
bðn� 1Þ 	 N þ 1 ¼ ð5� 1Þ	 8þ 1 ¼ 33;

c N !

k!ðN � kÞ! k	 nþ k!

2!ðk� 2Þ! n2

� �
¼ 8!

2!ð8� 2Þ! 2	 5þ 2!

2!ð2� 2Þ! 52

� �
¼ 980
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also presents the computational effort in terms of number of function evaluations,
associated with each of the methods. The benchmark solution of the failure probability
is obtained by direct MCS with NS ¼ 105. Compared with the benchmark solution
ðPF ¼ 0:19599Þ, FORM and SORM overestimate the failure probability by around
15.05 percent ðPF ¼ 0:22549Þ and 8.46 percent ðPF ¼ 0:21410Þ, respectively. First-
order HDMR approximation (Chowdhury et al., 2009) overestimates the failure
probability by about 1.88 percent ðPF ¼ 0:19968Þ and it needs only 33 function
evaluations. eHDMR approximation underestimates the failure probability by about
0.16 percent ðPF ¼ 0:19567Þ and it needs 980 function evaluations, while FORM,
SORM and direct MCS requires 86, 356 and 105 number of original function
evaluations, respectively. This shows the accuracy and the efficiency (in terms of
original function calculations) of the first-order HDMR approximation, over FORM,
SORM and direct MCS. Compared to the first-order HDMR, the error in the estimated
failure probability reduces from þ1.88 to �0.16 percent, and the number of function
evaluations increases from 33 to 980, using eHDMR approximation.

Tables VII and VIII present the first-order sensitivities of failure probability with
respect to mean and standard deviation of random variables @PF=@�i and @PF=@�i for
i ¼ 1; . . . ; 8, respectively. Table IX lists the first three moments mq and their first-
order sensitivities @m1ðuÞ=@�i and @m1ðuÞ=@�i for i ¼ 1; . . . ; 8. The agreement
between the results of the proposed approach and the exact solution demonstrates that

Table VII.
Sensitivities of failure
probability with respect
to mean (Example 2)

First-order HDMR eHDMR Direct MCSa

@PF=@�1 �7.8376	 10�6 �8.1671	 10�6 �8.2371	 10�6

@PF=@�2 �5.9548	 10�10 �6.1203	 10�10 �6.1242	 10�10

@PF=@�3 9.1605	 10�8 8.9812	 10�8 8.9905	 10�8

@PF=@�4 5.4109 5.4267 5.4309
@PF=@�5 5.2208	 10�6 5.6898	 10�6 5.7218	 10�6

@PF=@�6 6.5064	 10�11 6.9064	 10�11 6.9064	 10�11

@PF=@�7 0.9655 0.9788 0.9834
@PF=@�8 0.3705 0.4226 0.4215

Note: aFor sensitivity estimation, finite difference with 1 percent perturbation is used

Table VIII.
Sensitivities of failure
probability with respect
to standard deviation
(Example 2)

First-order HDMR eHDMR Direct MCSa

@PF=@�1 �5.0739	 10�6 �5.1684	 10�6 �5.1702	 10�6

@PF=@�2 �1.9825	 10�10 �1.9961	 10�10 �1.9965	 10�10

@PF=@�3 1.2518	 10�7 1.3109	 10�7 1.3117	 10�7

@PF=@�4 �0.7237 �0.7346 �0.7342
@PF=@�5 �4.4779	 10�6 �4.4888	 10�6 �4.4878	 10�6

@PF=@�6 1.3931	 10�10 1.3941	 10�10 1.3942	 10�10

@PF=@�7 0.4060 0.4110 0.4106
@PF=@�8 �6.4636	 10�3 �6.4741	 10�3 �6.4737	 10�3

Note: aFor sensitivity estimation, finite difference with 1 percent perturbation is used
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the proposed approach can indeed account high nonlinearity and large input
uncertainties.

9. Conclusions and outlook
This paper addressed a new computational method for estimating stochastic
sensitivities of structural/mechanical systems with respect to probability distribution
parameters. The methods are based on eHDMR and score functions associated with the
probability distribution of a random input. Following are the concluding remarks of the
present approach:

. Both the probabilistic response and its sensitivities can be estimated from a
single stochastic analysis, without requiring limit state/performance function
gradients. The effort in obtaining probabilistic sensitivities can be viewed as
calculating the conditional response at a selected deterministic input, defined by
sample points. Therefore, the methods can be easily adapted for solving
stochastic problems involving third-party, commercial FE codes.

. First-order and eHDMR approximation are employed to solve two numerical
problems, where the performance functions are linear or nonlinear, include
Gaussian and/or non-Gaussian random variables, and are described by simple
mathematical functions or mechanical responses from FE analysis.

. The results indicate that HDMR approximation, in particular the eHDMR,
provide very accurate estimates of sensitivities of statistical moments or
reliability.

. EHDMR approximation, which generally outperforms first-order HDMR
approximation, demands a higher cost scaling, making it more expensive than

Table IX.
Moments and

sensitivities of first-
moment (Example 2)

First-order HDMR eHDMR Direct MCSa

m1 0.3741 0.3718 0.3722
m2 0.3358 0.3351 0.3354
m3 0.2615 0.2615 0.2613
@m1=@�1 1.3873	 10�5 1.4617	 10�5 1.4621	 10�5

@m1=@�2 2.9342	 10�10 1.3488	 10�9 1.3476	 10�9

@m1=@�3 �6.0250	 10�8 �1.2108	 10�7 �1.2107	 10�7

@m1=@�4 �9.4181 �9.7684 �9.7682
@m1=@�5 �9.1614	 10�6 �8.9295	 10�6 �8.9308	 10�6

@m1=@�6 �2.2457	 10�11 �1.7345	 10�10 �1.7385	 10�10

@m1=@�7 �1.5725 �1.5691 �1.5708
@m1=@�8 �0.7712 �0.7722 �0.7735
@m1=@�1 8.9684	 10�6 9.5182	 10�6 9.5198	 10�6

@m1=@�2 �4.9191	 10�11 �1.3693	 10�9 �1.3716	 10�9

@m1=@�3 �1.1677	 10�7 1.3160	 10�7 1.3271	 10�7

@m1=@�4 2.5100 2.9262 2.9269
@m1=@�5 8.1566	 10�6 8.8669	 10�6 8.8689	 10�6

@m1=@�6 �1.7508	 10�10 �4.1083	 10�10 �4.1108	 10�10

@m1=@�7 0.1116 0.1022 0.1027
@m1=@�8 0.2909 0.2968 0.2974

Note: aFor sensitivity estimation, finite difference with 1 percent perturbation is used



EC
27,7

860

first-order approximation. Nonetheless, both approaches are far less expensive
than the finite-difference method or the existing score function method entailing
direct MCS.

. In contrast to the direct differentiation method, which can calculate sensitivities
with respect to both distribution as well as limit state/performance function
parameters, the proposed approach is limited to sensitivity analysis with respect
to the distribution parameters only. Therefore, future effort in extending the
present approaches to account for the performance function parameters will be
undertaken.

The method proposed here is applied to structural/mechanical systems as examples.
However, as shown in the paper, the method has the potential for application in other
scientific disciples and multiphysics problems. Further, work is, however, needed to
realize this potential.
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