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This paper presents two experimental investigations of uncertainty in natural frequencies of linear structures

estimated frommeasured frequency response function under dynamic loading. Experiments were conducted on 100

nominally identical realizations of two structures: a fixed–fixed beam and a thin plate with one edge fixed and the

remaining three edges free. In the first set of experiments, on a fixed–fixed beam, 12 identical masses were placed at

random spatial locations (generated by a computer) along the length of the beam. Each random arrangement of the

masses constitutes one realization, and 100 such realizations were individually subjected to impulse loading to obtain

frequency response functions. The total randommass is about 2% of the total mass of the beam. In the second set of

experiments, 10 spring-mass oscillator units were attached to the cantilevered plate at random spatial locations

determined from a computer-generated random matrix. Although the beam experiments represent parametric

uncertainty in the mass matrix, the plate experiment pertain to unmodeled dynamics, which in turn results in

randomness in both the mass and stiffness matrices. The results obtained from these experiments may be useful for

the validation of many random eigenvalue analysis and prediction methods currently available to structural

dynamicist. This paper is limited to comparisonswithMonteCarlo simulation of deterministic finite elementsmodels

of the two structures. It is concluded that the method of estimation of natural frequencies from frequency response

functions and the spatial location of the measurements has significant influence upon the first two moments (mean

and standard deviation) of the natural frequency ensemble. Furthermore, although the Monte Carlo simulation

estimates of the mean and standard deviation are in reasonable agreement with experiments at higher frequencies,

the probability density function differ appreciably, within the limits of the sample size investigated in this study.

Nomenclature

K = stiffness matrix
M = mass matrix
N = degrees of freedom of the system
p��� = probability density function of ���
R = space of real numbers
���� = random part of ���
�j = eigenvalues of the system
�j = eigenvectors of the system
��� = nominal (deterministic) part of ���

I. Introduction

T HE characterization of natural frequencies and mode shapes
requires the solution of a linear eigenvalue problem in the

analysis and design of engineering systems subjected to dynamic
loads. This problem could either be a differential eigenvalue problem
or a matrix eigenvalue problem, depending on whether a continuous
model or a discrete model is envisaged. The description of real-life
engineering structural systems is inevitably associated with some
amount of uncertainty. Parametric uncertainty pertains to material
and geometric properties, boundary conditions and applied loads.
When we take account of these parametric uncertainties, it is

imperative to solve random eigenvalue problems to obtain the
dynamic response statistics, such as the mean and standard deviation
of displacement and stress amplitudes. Random eigenvalue problems
also arise in the stability analysis or critical buckling loads
calculation of linear structural systems with random imperfections.
Random eigenvalue problem arising due to parametric uncertainty
can be efficiently formed using the stochastic finite element method
(see, for example, [1–8]). The study of probabilistic characterization
of the eigensolutions of random matrix and differential operators is
now an important research topic in the field of stochastic structural
mechanics. Boyce [9], Scheidt and Purkert [10], Ibrahim [11],
Benaroya [12], Manohar and Ibrahim [13], and Manohar and Gupta
[14] are useful sources of information on early work in this area of
research that also provide a systematic account of different
approaches to random eigenvalue problems.

The majority of the studies reported on random eigenvalue
problems are based on analytical or simulationmethods. Simulation-
based methods are often used to validate approximate but relatively
fast prediction tools (such as perturbation based methods).
Experimental results are rare because of difficulties such as 1) the
cost involved in generating nominally identical samples of a
structural system, 2) the resources and effort involved in testing a
large number of samples, 3) the repetitive nature of the experimental
procedure, and 4) ensuring that different samples are tested in exactly
the same way so that no uncertainty arises due to the measurement
process. In spite of these difficulties some authors have con-
ducted experimental investigations on random dynamical systems.
Kompella and Bernhard [15] measured 57 structure-borne frequency
response functions at driver microphones for different pickup trucks.
Fahy [16] (page 275) reported measurements of FRFs on 41
nominally identical beer cans. Both of these experiments show
variability in nominally identical engineered systems. Friswell et al.
[17] reported two experiments in which random systems were
created in the laboratory for the purpose ofmodel validation. Thefirst
experiment used a randomly moving mass on a free–free beam and
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the second experiment comprised a copper pipe with uncertain
internal pressure. Fifty nominally identical random samples were
created and tested for both experiments.

In contrast with analytical studies, in the present experimental
study, the eigenvalues are deduced from the measured frequency
response functions using system identification techniques. Thus
additional uncertainties may likely to be introduced by themethod of
system identification employed even if other uncertainties, within the
control of the experimenter, were minimized. In a recent work,
Shiryayev et al. [18] discussed the difficulties and uncertainties
associated with the system identification methods in the context of a
bolted joint model. To improve the reliability of the results, two
system identification techniques are contrasted in this regard: rational
fractional polynomial (RFP) method [19], and the nonlinear least-
squares (NLS) technique [19]. Each system identification technique
is applied to the two experimental test cases, described later. The
difference between this data and previous experimental data is that
the tests are closely controlled. This allows one to model uncertainty,
propagate it through dynamical models and compare the results with
experiments.

We beginwith a brief introduction to random eigenvalue problems
in Sec. II. The first experiment, described in Sec. III is on a fixed–
fixed beam with 12 masses placed at random locations. The total
amount of randommasses is about 2% of the total mass of the beam.
This experiment is aimed at simulating random errors in the mass
matrix. The second experiment, described in Sec. IV, considers a
cantilever plate with 10 randomly placed spring-mass oscillators.
This experiment is aimed at simulating unmodeled dynamics, which
in turn leads to randomness in the mass and stiffness matrices. For
both experiments, 100 nominally identical dynamical systems are
created and tested separately. The probabilistic characteristics of the
frequency response function are discussed in the low-, medium-, and
high-frequency ranges. The data presented here are available on the
for research purposes.‡ This data may be useful to validate different
uncertainty quantification and propagation methods in structural
dynamics.

II. Random Eigenvalue Problems

The random eigenvalue problem of undamped or proportionally
damped discrete, or discretized continuous, systems can be
expressed by

K�j � �jM�j (1)

where �j and�j are the eigenvalues (natural frequency squared) and
the eigenvectors (mode shapes) of the dynamical system. It is
assumed that M and K are symmetric and positive definite random
matrices so that all the eigenvalues are real and positive.We consider
randomness of the system matrices of the following form:

M � �M� �M and K� �K� �K (2)

Here, ��� and ���� denote the nominal (deterministic) and random
parts of ���, respectively. Without any loss of generality, it may be
assumed that �M and �K are zero-mean randommatrices.We further
assume that the random parts of the system matrices are small and
that they also preserve the symmetry, and positive definiteness of the
mass matrix, of the perturbed random system. Note that no
assumptions on the type of randomness (for example, Gaussian) is
made at this stage.

The central aim of studying random eigenvalue problems is to
obtain the joint probability density function of the eigenvalues and
the eigenvectors. The current literature on random eigenvalue
problems in engineering systems is dominated by the mean-centered
perturbation methods [20–29]. These methods work well when the
uncertainties are small and the parameter distribution is Gaussian.
Some researchers have proposed methods that are not based on

mean-centered perturbation method. Grigoriu [30] examined the
roots of characteristic polynomials of real symmetric random
matrices. Recall that eigenvalues are the roots of the characteristic
polynomial. Lee and Singh [31] proposed a direct matrix product
(Kronecker product) method to obtain the first two moments of the
eigenvalues of discrete linear systems. Nair andKeane [32] proposed
a stochastic reduced-basis approximation that can be applied to
discrete or discretized continuous dynamic systems.

Hála [33] and Mehlhose et al. [34] used a Ritz method to obtain
closed-form expressions for moments and probability density
functions of the eigenvalues (in terms of Chebyshev–Hermite
polynomials). Szekely and Schuëller [35], Pradlwarter et al. [36], and
Du et al. [37] considered simulation-based methods to obtain
eigensolution statistics of large systems. Ghosh et al. [38] used a
polynomial chaos expansion for random eigenvalue problems.
Adhikari [39] considered complex random eigenvalue problems
associated with nonproportionally damped systems. Verhoosel et al.
[40] proposed an iterative method that can be applied to
nonsymmetric random matrices also. Rahman [41] developed a
dimensional decomposition method for real and complex eigenvalue
problems that does not require the calculation of eigensolution
derivatives. Recently, Adhikari [42,43] and Adhikari and Friswell
[44] have proposed an asymptotic approach to obtain joint and
higher-order statistics of the eigenvalues of randomly parametered
dynamical systems.

Under special circumstances when the matrix
H�M�1=2KM�1=2 2 RN�N is Gaussian unitary ensemble or
Gaussian orthogonal ensemble, an exact closed-form expression can
be obtained for the joint probability density function (pdf) of the
eigenvalues using random matrix theory. See Mehta [45] and
references therein for discussions on randommatrix theory. Random
matrix theory has been extended to other type of randommatrices. If
H hasWishart distribution then the exact joint pdf of the eigenvalues
can be obtained fromMuirhead [46] (Theorem3.2.18). Edelman [47]
obtained the pdf of the minimum eigenvalue (first natural frequency
squared) of aWishart matrix. Amore general casewhen thematrixH
has �-distribution has been obtained by Muirhead [46] (Theorem
3.3.4) and, more recently, by Dumitriu and Edelman [48].
Unfortunately the system matrices of real structures may not always
follow such distributions and consequently some kind of approxi-
mate analysis is required.

In this paper, two experiments are used to study the random
eigenvalue analysis methods available in literature. Uncertainties
introduced in these experiments are not suitable for applying the
stochastic finite element method [2] and related analytical
formulations. This is because the stochastic finite element method
requires distributed and continuous uncertain parameters (such as the
density or Young’s modulus of a material). In the experiments
proposed here, uncertainties introduced are discrete in nature. As a
result, we have used Monte Carlo simulation approach to generate
the ensembles of �M and �K and consequently the eigenvalues.

III. Random Eigenvalues of a Fixed–Fixed Beam

A. System Model and Experimental Setup

A steel beamwith uniform rectangular cross section is used for the
experiment. The details of this experiment have been described
by Adhikari et al. [49]. Here, we give a very brief overview. The
physical and geometrical properties of the steel beam are: length
L� 1200 mm, width b� 40:06 mm, thickness th � 2:05 mm,
mass density �� 7800 kg=m3, and Young’s modulus
E� 2:0 � 105 MPa. A steel ruler of length 1.5 m is used for the
ease of placing masses at predetermined locations. These locations
were generated by a random number generator. The ruler is clamped
between 0.05 and 1.25 m so that the effective length of the vibrating
beam is 1.2m. The overall experimental setup is shown in Fig. 1. The
end clamps are screwed into two heavy steel blocks, which in turn are
fixed to a table with bolts. Twelve equal attachable magnetic masses
are used to simulate a randomly varying mass distribution. The
magnets are cylindrical in shape and 12.0 mm in length and 6.0 mm
in diameter. Some of the attached masses for a sample realization are

‡Data available online at http://engweb.swan.ac.uk/~adhikaris/uq/
[retrieved 30 March 2010].
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shown in Fig. 2. Each of them weighs 2 g so that the total amount of
variable mass is 2.0% of the mass of the beam. The location of the 12
masses are confined to be between 0.2 and 1.0m of the beam. Hence,
a uniform distribution with 100 samples is used to generate the mass
locations.

A32-channel LMSTM system is used to conduct the experiment. In
this experiment we used a shaker to act as an impulse hammer. The
problem with using the usual manual hammer is that it is in general
difficult to hit the beam exactly at the same point with the same
amount of force for every sample run. The shaker generates impulses
at a pulse rate of 20 s and a pulse width of 0.01 s. Using the shaker in
this way we have tried to eliminate any uncertainties arising from the
input forces. This innovative experimental technique is designed to
ensure that the resulting uncertainty in the response arises purely due
to the random locations of the attachedmasses.We have used a small
circular brass plate weighing 2 g to take the impact from the shaker.
This was done to hold the accelerometer in the opposite end of the
beam via screwing it to the brass plate. This enables us to obtain the
driving-point frequency response function. In this experiment three
accelerometers are used as the response sensors. The location of the
sensors are 23 cm (point 1), 50 cm (point 2, also the actuation point)
and 102 cm (point 3) from the left end of the beam. These locations
are selected such that two of them are near the two ends of the beam
and one is near the middle of the beam. The exact locations are
calculated such that the nodal lines of thefirst few bendingmodes can
be avoided. The steel tip used in the experiment gives clean data up to
approximately 4500 Hz. Here, we consider modes up to 1 kHz only.
Figure 3 shows the amplitude of the frequency response function
(FRF) at points 2 and 3 of the beamwithout anymasses (the baseline
model). In the same figure, 100 samples of the amplitude of the FRF
are shown together with the ensemble mean, 5, and 95% probability
lines. The ensemble mean follows the result of the baseline system
closely only in the low-frequency range. The relative variance of the
amplitude of the FRF remains more or less constant.

For the random system, an in-house finite element code was
developed to implement the discretized version of the equation of
motion. Euler–Bernoulli beam element was found to be adequate

(the beam is very thin) so that the element stiffness andmassmatrices
are given by

K e �
EI

l3

12 6l �12 6l
6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

2
664

3
775 and

Me �
�bthl

420

156 22l 54 �13l
22l 4l2 13l �3l2
54 13l 156 �22l
�13l �3l2 �22l 4l2

2
664

3
775

(3)

where l is the length of an element and I � bt3h=12 is the moment of
inertia of the cross section of the beam. For the numerical
calculations 240 elements were used. In the numerical simulation we
have included the mass of three accelerometers (6 g each) and the
mass of the circular brass plate (2 g). The locations of the randomly
attached masses were generated such that they always fall in the
nodes of the FE model. This made the calculation of the mass matrix
easier in the numerical simulation.

B. Modal Parameter Extraction

There are numerous techniques available for extracting modal
parameters from the measured FRF data [19]. In general, these
methods may be classified as single-degree-of-freedom methods or
multiple-degree-of-freedom (MDOF) methods, depending upon
whether one chooses to fit a curve to a single mode or to multiple
modes. Because of the large number of modes observed in the
frequency range of interest, selection of an MDOF technique is
preferred. In the present work, the RFP method and an NLS
technique are used in this paper.

The RFP method is based on writing the FRF as a ratio of two
polynomialsN�!� andD�!�, i.e.,H�!� � N�!�=D�!�. The zeros of
the denominator D�!� give the natural frequencies and damping
factors. The value of the numerator polynomial (N�!�) at the natural
frequency gives the residue for that mode. The mode shapes are

Fig. 1 Test rig for the fixed–fixed beam.

Fig. 2 Attached masses (magnets) at random locations. In total, 12 masses, each weighing 2 g, are used.
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obtained from the fitted residues. A detailed description of this
method can be found in [19,50,51]. In this paper, the MATLABTM

function invfreqs is used to fit a rational fraction polynomial to
the FRF data. The rational fraction polynomial method implemented
here can identify more than one mode from a single FRF mea-
surement. However, this method identifies spurious peaks or
computational modes that do not physically correspond to any
resonant mode. To avoid this, the RFP method was used to fit a
portion of measured FRF data around a single mode. By doing so,
one can ensure that a single, physically meaningful, resonant peak is
fitted. The nonlinear least-squares method is more advantageous
from this perspective.

The problem of estimating complex poles and residues from FRFs
is nonlinear in general [52–54]. However, if the poles are known,
estimating residues can be simplified to a linear least-squares
problem. Based on a Levenberg–Marquardt algorithm described in
[55], the nonlinear least-squares method used herewas developed by
Duffour [56]. The full nonlinear least-squares problem of fitting the
modal parameters to the FRF data is solved based on a set of initial
guesses for natural frequencies and damping factors provided by the
RFP method. The principal advantage of the nonlinear least-squares
method is that several FRFs corresponding to different excitation/
measurement locations on the test structure can be fitted in one stage,
instead of fitting each FRF separately. Thus, the best global estimates
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Fig. 3 Measured amplitudes of the driving-point FRF and a cross FRF of the beam with 12 randomly placed masses: 100 FRFs, together with the
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of the natural frequencies and damping factors can be obtained by
using this method. The above two methods of modal parameter
extraction were used in estimating the natural frequencies and
damping factors from the measured FRF data.

C. Eigenvalue Statistics

The detailed statistical analysis of the natural frequencies and
comparison with analytical method is shown in Figs. 4–7. The
baseline model of the beam does not have any attached masses. As a
result, the natural frequencies of the random systems consisting of 12
masses have lower frequencies compared with the baseline model.
This can be clearly seen in the left shift of the resonance peaks of the
ensemble mean corresponding to the random systems with respect to
the baseline system in Fig. 3. The numerical values behind these plots
are given in Table 1 for the purpose of possible comparisons using
other analyticalmethods not considered in our paper. In thesefigures,
the indicated system identification method was used to extract the
natural frequencies within 2 kHz from the frequency responses
measured at three different spatial points on the beam. The ensemble

statistics for each spatial location and for each identification method
can be compared via Figs. 4 and 5. In Fig. 4 the ensemble mean
calculated from the identified natural frequencies from measured
frequency response functions, are compared with the Monte Carlo
simulations. It is instructive to compare the degree of agreement
obtained by the two methods and the variation in mean with spatial
location of the sensor or response measurement point. Significant
differences in the mean for the three response points can be observed
in the high-frequency regime. It can also be seen that the global
nonlinear least-squares method exhibits significant variability. This
is also reflected in Fig. 5.

The normalized probability density function (pdf) plots shown in
Figs. 6 and 7 compare the Monte Carlo simulation results with
experimental data. Suppose !j is the random variable describing the
jth natural frequency with mean �!j and standard deviation �!j . In

these plots, we have normalized the natural frequencies as

~! j �
!j � �!j
�!j

(4)
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Fig. 7 Comparison of the probability density functions of four selected natural frequencies of the fixed–fixed beam obtained using the direct

Monte Carlo simulation and experimental results extracted using the nonlinear least-squares method.

a) Experimental setup showing the accelerometer locations b) Experimental setup showing a realization of the attached 
oscillators

Fig. 8 Test rig for the cantilever plate: position of the shaker (used as a impact hammer), a sample of the attached oscillators, and the accelerometers.
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The main reason behind considering the normalized pdf plots is to
qualitatively understand whether the experimental pdfs are close to
the Gaussian pdf, an assumption often made in many analytical
approaches. This can be best achieved across different frequencies

when the data is normalized. Such normalization can qualitatively
confirm whether the Gaussian assumption is justified. Recently,
Goyal and Kapania [57] have used a similar nondimensional
approach for stochastic stability analysis of composite beams. The
quantitative values of the means and standard deviations
corresponding to the found natural frequencies selected here can
be seen in Figs. 4 and 5.

The increasing variability is obvious as one proceeds higher in the
mode sequence. The agreement at the level of pdfs is far from
satisfactory. This suggests that even though the first two moments
can be predicted with reasonable accuracy using Monte Carlo
simulations the higher moments may not agree. Although experi-
mentallymeasured normalized pdfs are closer toGaussian ensemble,
albeit with nonzero mean, the Monte Carlo simulations are not.

IV. Random Eigenvalues of a Cantilever Plate

A. System Model and Experimental Setup

We consider the dynamics of a steel cantilever plate with
homogeneous geometric (i.e., uniform thickness) and constitutive
properties (i.e., uniform Young’s modulus and Poisson’s ratio). The
baseline model is perturbed by a set of spring-mass oscillators of
different natural frequencies attached randomly along the plate. The
aim of this experiment is to simulate uncertain unmodeled dynamics.
The details of this experiment has been described by Adhikari et al.
[49,58]. Here, we give a very brief overview. The test rig has been
designed for simplicity and ease of replication and modeling. The
overall arrangement of the test rig is shown in Fig. 8. A rectangular
steel plate with uniform thickness is used for the experiment. The
physical and geometrical properties of the steel plate are assumed to
beE� 200 � 109 N=m2,�� 0:3, �� 7860 kg=m3, th � 3:0 mm,
Lx � 0:998 m, and Ly � 0:59 m. The plate is clamped along one
edge using a clamping device. The clamping device is attached on the
top of a heavy concrete block and the whole assembly is placed on a
steel table. The plateweighs about 12.28 kg and special care has been
taken to ensure its stability and minimizing the vibration
transmission. The plate is divided into 375 elements (25 along the
length and 15 along the width). Assuming one corner on the
cantilevered edge as the origin, we have assigned coordinates to all
the nodes. Oscillators and accelerometers are attached on these
nodes. This has been done to ease finite element modeling. The
bottom surface of the plate is marked with node numbers so that the
oscillators can be hung at the nodal locations. This scheme is aimed at
reducing uncertainly arising from the measurement of the locations
of the oscillators. A discrete random number generator is used to
generate the X and Y coordinates of the oscillators. In total, 10
oscillators are used to simulate random unmodeled dynamics.
The spring is glue-welded with a magnet at the top and a mass at the
bottom. The magnet at the top of the assembly helps to attach the
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oscillators at the bottom of the plate repeatedly without much
difficulty. The stiffness of the 10 springs used in the experiment are
16.800, 09.100, 17.030, 24.000, 15.670, 22.880, 17.030, 22.880,
21.360, and 19:800 kN=m. The oscillating mass of each of the 10
oscillators is 121.4 g. Therefore, the total oscillating mass is
1.214 kg, which is 9.8% of the mass of the plate. The natural
frequencies of the 10 oscillators are obtained as 59.2060 43.5744,
59.6099, 70.7647, 57.1801, 69.0938, 59.6099, 69.0938, 66.7592,
and 64.2752 Hz. The springs are attached to the plate at the
pregenerated nodal locations using the small magnets located at the
top the assembly. The small magnets (weighing 2 g) are found to be
strong enough to hold the 121.4 g mass attached to the spring below
over the frequency range considered. One hundred realizations of
attached oscillators are created (by hanging the oscillators at random
locations) and tested individually in this experiment.

The 32-channel LMSTM system used in the beam experiment is
again employed for this experiment. The shaker is placed so that
it impacts at the (4,6) node of the plate. In this experiment six
accelerometers are used as the response sensors. The locations of the
six sensors are selected such that they cover a broad area of the plate.

The locations of the accelerometers can be seen in Fig. 8. The nodal
locations of the accelerometers are as follows: point 1 is (4,6), point 2
is (6,11), point 3 is (11,3), point 4 is (14,14), point 5 is (18,2), and
point 6 is (21,10). Small holes are drilled into the plate and all of the
six accelerometers are attached by screwing through the holes. We
consider modes up to 600 Hz. Figure 9 shows the amplitude of the
frequency response function (FRF) at points 1, 2, and 3 of the plate
without any masses (the baseline model). The measured FRFs have
frequency resolution of 1 Hz. In the same figure, 100 samples of the
amplitude of the FRF are shown together with the ensemble mean, 5,
and 95% probability lines. The ensemble mean follows the result of
the baseline system closely only in the low-frequency range. The
relative variance of the amplitude of the FRF remains more or less
constant.

For this random system, an in-house finite element code was
developed. We considered a rectangular thin plate element with 3
degrees of freedom per node (rotations in x, y and deflection in z
direction). The 12 � 12 element stiffness and mass matrices were
obtained following the standard finite element method [59].
This simple model neglects the shear deformation and therefore
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Fig. 12 Comparison of the probability density functions of four selected natural frequencies of the fixed–fixed plate obtained using the direct

Monte Carlo simulation and experimental results extracted using the rational fraction polynomial method.
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may not be suitable for very-high-frequency regime. Mass of the
accelerometers are used in the model. The meshing was done in such
a away (in the multiple of a 25 � 15 grid) that the attached oscillators
always fall in the nodes. This makes the assembly of the global
matrices simpler in the in-house code.

B. Eigenvalue Statistics

Weused the samemodal parameter estimation techniques as in the
case of the beam: namely, RFP method and nonlinear least-squares
method. The high modal density, or closely spaced modes, is a
particular feature associated with plate experimental data. The
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Table 1 Mean and standard deviation of identified natural frequencies of the fixed–fixed beam (in hertz) from the measured FRFs

at three spatial locations using two identification methods

Rational fraction polynomial Nonlinear least-squares

Mode FRF 1 FRF 2 FRF 3 FRF 1 FRF 2 FRF 3

1 9:08� 0:33 9:24� 0:17 8:39� 1:03 10:07� 7:25 9:26� 0:18 6:73� 5:79
2 21:03� 0:64 20:89� 0:56 21:01� 0:65 21:04� 0:63 20:92� 0:65 21:08� 1:16
3 38:94� 0:66 38:92� 0:66 38:93� 0:66 38:94� 0:66 38:92� 0:66 38:93� 0:66
4 62:83� 0:70 62:81� 0:71 62:80� 0:71 62:80� 0:71 62:79� 0:71 62:79� 0:71
5 93:79� 0:84 93:47� 0:85 93:65� 0:83 93:68� 0:83 93:58� 0:84 93:64� 0:83
6 128:37� 9:71 129:56� 0:87 129:50� 0:87 125:96� 9:89 129:80� 0:89 129:65� 1:49
7 173:12� 1:03 173:50� 1:01 173:09� 1:03 173:07� 1:04 173:10� 1:04 173:06� 1:04
8 219:27� 0:89 219:08� 0:90 254:58� 6:15 219:15� 0:87 219:13� 0:87 258:00� 4:14
9 273:25� 1:25 273:27� 1:26 273:34� 1:32 273:21� 1:23 273:21� 1:23 273:20� 1:23
10 333:73� 1:35 333:93� 1:33 333:59� 1:28 333:70� 1:28 333:66� 1:28 333:68� 1:28
11 463:00� 9:33 400:79� 3:01 437:50� 19:02 433:38� 61:23 399:88� 6:15 453:62� 31:80
12 547:08� 6:82 547:82� 2:17 536:75� 10:36 547:19� 7:91 548:06� 1:96 546:44� 10:87
13 586:51� 16:17 556:38� 11:69 558:63� 7:99 582:26� 42:03 568:49� 197:38 549:63� 9:04
14 633:64� 3:73 653:19� 11:19 632:86� 2:61 633:24� 2:01 642:32� 27:31 633:09� 2:02
15 723:71� 2:75 736:54� 10:88 793:22� 9:38 725:60� 2:32 723:90� 2:06 816:57� 19:01
16 818:82� 16:02 819:59� 2:08 858:80� 20:83 683:02� 23:78 820:44� 2:06 890:44� 49:07
17 1027:30� 3:11 1026:88� 3:02 1024:12� 3:38 1026:92� 3:09 1026:66� 3:04 1026:59� 3:05
18 1067:56� 25:85 1030:01� 5:37 1053:84� 14:38 1086:05� 58:56 1026:59� 3:02 1037:18� 30:62
19 1147:37� 10:53 1227:66� 18:04 1153:54� 7:22 1142:98� 19:27 1249:20� 10:22 1140:21� 4:01
20 1226:03� 11:72 1247:07� 7:73 1262:04� 6:23 1211:84� 24:22 1251:38� 5:97 1259:83� 6:10
21 1359:68� 31:90 1511:76� 43:04 1645:14� 8:01 1232:35� 13:91 1036:05� 579:58 1648:12� 6:48
22 1688:71� 21:69 1676:45� 10:16 1713:01� 14:35 1695:06� 65:95 1673:54� 10:14 1689:50� 27:14
23 1805:43� 26:70 1799:71� 45:71 1818:78� 19:62 1826:81� 134:14 1800:18� 120:84 1807:81� 15:71
24 1858:83� 38:02 1948:64� 8:67 1884:30� 19:30 1820:68� 73:88 1952:01� 8:05 1886:24� 70:76
25 1933:49� 13:20 1949:28� 8:10 1967:87� 10:65 1932:16� 38:74 1951:21� 7:78 1957:80� 9:30
26 2220:78� 43:82 2315:33� 100:49 2136:00� 14:54 2015:97� 998:14 1854:72� 1114:61 2122:31� 11:61
27 2597:18� 37:01 2585:93� 19:24 2623:51� 14:99 2745:13� 41:36 2592:98� 19:24 2647:11� 11:64
28 2787:48� 72:53 2703:42� 38:82 2774:62� 18:57 2926:50� 125:09 2695:32� 83:54 2790:94� 26:63
29 2744:54� 65:69 2758:39� 30:22 2841:25� 23:53 2765:70� 106:87 2776:99� 56:24 2828:18� 28:11
30 2759:01� 31:72 2819:70� 22:43 2883:49� 27:00 2719:83� 57:31 2806:86� 19:61 2852:38� 42:42
31 3227:53� 54:19 3373:65� 104:31 3099:94� 43:95 2849:03� 175:06 3263:22� 1163:50 3028:99� 25:66
32 3643:10� 33:30 3623:34� 25:36 3554:33� 33:42 3697:44� 49:57 3633:21� 25:76 3598:47� 38:64
33 3689:33� 56:99 3669:52� 43:03 3611:74� 25:31 3722:14� 116:06 3626:82� 26:75 3634:27� 31:89
34 3672:02� 55:41 3698:77� 47:02 3698:47� 43:93 3651:91� 62:85 3655:25� 73:61 3652:49� 25:76
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Table 2 Mean and standard deviation of identified natural frequencies of the cantilevered plate (in hertz) from the measured FRFs at six spatial locations using two identification methods

Rational fraction polynomial Nonlinear least-squares

Mode FRF 1 FRF 2 FRF 3 FRF 4 FRF 5 FRF 6 FRF 1 FRF 2 FRF 3 FRF 4 FRF 5 FRF 6

1 3:19� 1:84 2:00� 0:78 2:10� 0:67 2:15� 0:40 2:14� 0:46 2:19� 0:23 5:20� 9:29 2:06� 1:22 2:17� 1:16 2:21� 0:58 2:12� 0:57 2:21� 0:22
2 3:75� 1:69 6:55� 3:30 7:17� 3:19 7:19� 3:15 5:89� 2:86 4:32� 2:50 2:70� 4:67 7:33� 5:24 8:06� 5:25 7:85� 4:88 5:84� 3:39 4:15� 2:96
3 14:83� 2:45 16:39� 1:94 16:43� 2:68 17:05� 2:62 12:78� 2:51 16:25� 2:49 13:47� 4:16 15:85� 2:70 15:48� 3:01 16:68� 4:54 12:74� 3:88 15:62� 2:71
4 33:64� 6:71 32:52� 7:46 20:29� 4:67 24:02� 5:42 36:01� 4:63 22:35� 6:94 34:63� 7:50 34:47� 7:48 19:59� 6:33 24:21� 8:07 37:03� 4:70 22:29� 7:70
5 38:30� 0:72 38:26� 0:73 35:43� 3:08 36:83� 2:41 38:31� 0:73 35:73� 2:91 38:30� 0:72 38:30� 0:73 34:85� 4:50 36:90� 2:97 38:31� 0:73 35:78� 3:12
6 40:23� 2:95 39:33� 2:50 41:97� 4:68 41:85� 4:20 39:91� 3:06 42:77� 4:41 40:20� 4:16 38:86� 2:58 41:53� 5:08 41:31� 5:66 39:29� 3:09 42:74� 4:47
7 48:08� 3:05 47:67� 4:38 48:45� 2:15 50:04� 3:52 48:65� 3:06 50:07� 2:49 48:02� 3:28 47:23� 5:48 48:20� 2:72 50:25� 3:84 47:75� 4:39 50:12� 2:69
8 54:67� 1:45 54:94� 2:15 56:29� 2:49 55:07� 1:68 54:40� 1:59 54:38� 2:33 54:70� 1:48 54:96� 2:19 56:32� 2:50 55:13� 1:67 54:44� 1:67 54:38� 2:35
9 56:82� 1:39 56:53� 1:61 58:80� 3:55 56:37� 1:62 56:87� 3:03 56:98� 1:80 56:82� 1:41 56:57� 1:65 58:78� 3:57 56:31� 1:72 56:91� 3:08 56:96� 1:85
10 58:64� 1:54 58:29� 1:59 60:59� 3:46 57:76� 1:73 58:86� 2:73 58:70� 2:76 58:61� 1:62 58:26� 1:61 60:61� 3:49 57:74� 1:76 58:82� 2:76 58:70� 2:77
11 60:85� 1:75 60:45� 2:58 62:77� 3:60 59:86� 3:22 60:75� 3:26 60:22� 3:49 60:87� 1:82 60:42� 2:59 62:76� 3:63 59:87� 3:24 60:76� 3:28 60:22� 3:49
12 62:51� 2:02 61:87� 2:39 64:39� 3:13 62:28� 3:06 62:78� 3:56 62:05� 3:99 62:54� 2:09 61:84� 2:42 64:39� 3:32 62:29� 3:08 62:75� 3:57 62:03� 4:00
13 64:81� 1:59 64:42� 2:21 66:21� 2:49 64:62� 2:83 65:58� 3:01 64:96� 5:04 64:83� 1:69 64:46� 2:25 66:20� 2:58 64:68� 2:94 65:57� 3:05 64:94� 5:05
14 67:42� 1:44 67:36� 1:44 67:84� 2:03 67:22� 3:14 67:84� 2:07 67:64� 2:01 67:42� 1:59 67:41� 1:54 67:85� 2:09 67:25� 3:16 67:90� 2:23 67:55� 2:17
15 70:06� 1:81 69:47� 1:94 70:34� 2:07 69:84� 1:99 70:32� 2:06 70:34� 1:89 70:08� 1:93 69:48� 2:13 70:55� 2:59 69:85� 2:10 70:39� 2:17 70:39� 2:07
16 72:72� 1:99 72:75� 1:89 72:84� 2:08 72:60� 1:69 72:60� 1:94 72:70� 1:68 72:92� 2:40 72:75� 2:16 73:01� 2:57 72:66� 1:99 72:71� 2:28 72:69� 1:82
17 82:02� 3:88 81:77� 3:85 82:46� 4:05 81:62� 3:76 82:72� 3:88 82:12� 3:69 82:54� 4:87 82:17� 4:39 84:01� 10:13 81:93� 6:00 83:16� 4:38 82:52� 4:10
18 88:69� 3:13 88:22� 3:36 88:81� 3:16 88:38� 3:23 88:50� 3:19 88:82� 2:92 88:98� 3:70 88:45� 4:02 88:95� 3:55 88:85� 3:72 88:84� 3:59 89:03� 3:21
19 93:78� 2:95 95:53� 2:46 93:77� 2:92 97:21� 3:53 93:80� 2:82 95:42� 2:76 93:55� 3:51 95:74� 3:63 93:31� 3:34 97:33� 4:06 93:10� 3:55 95:06� 4:23
20 96:03� 2:49 98:41� 2:50 96:57� 2:62 101:05� 4:77 97:96� 4:14 98:75� 3:15 95:64� 5:47 98:02� 2:95 95:92� 2:37 99:87� 5:06 97:27� 4:80 98:66� 3:49
21 140:54� 1:22 134:24� 8:22 140:56� 1:25 138:27� 3:84 134:60� 8:14 140:32� 0:94 140:44� 1:36 128:07� 24:26 140:59� 1:24 140:22� 2:40 133:83� 11:95 140:38� 1:01
22 143:52� 2:48 147:48� 2:03 144:30� 2:41 144:15� 2:12 147:54� 1:68 141:92� 1:63 142:70� 3:74 147:62� 2:50 142:18� 3:55 142:28� 3:36 147:49� 1:71 140:70� 1:56
23 148:65� 2:23 149:13� 1:94 153:97� 3:90 152:62� 3:33 149:38� 3:45 156:35� 4:96 146:52� 13:76 148:34� 2:21 156:70� 6:68 152:25� 4:87 149:06� 5:50 161:93� 7:64
24 171:01� 2:26 171:37� 4:38 169:57� 3:95 169:61� 2:67 170:61� 2:07 170:04� 1:99 172:61� 2:65 173:47� 8:18 171:27� 7:50 169:56� 3:19 170:28� 2:39 170:17� 2:31
25 184:50� 0:79 182:59� 2:22 181:63� 2:98 181:74� 2:65 184:44� 1:02 178:17� 5:33 184:73� 1:02 179:06� 18:24 183:58� 2:71 184:01� 2:09 184:88� 1:09 180:94� 6:95
26 187:18� 2:22 192:04� 3:24 196:62� 2:73 188:23� 2:74 187:69� 2:52 195:49� 5:30 185:53� 1:10 193:95� 5:24 198:32� 2:62 186:65� 4:07 186:07� 3:15 197:08� 6:25
27 188:03� 3:01 192:60� 3:44 197:35� 2:62 189:16� 3:15 188:71� 3:15 198:37� 5:99 186:04� 3:48 193:21� 5:62 198:55� 2:36 188:21� 5:98 187:48� 5:44 200:87� 8:90
28 223:25� 3:66 221:21� 4:03 226:86� 3:67 233:25� 1:83 219:26� 3:16 225:52� 2:47 259:90� 97:52 224:38� 54:63 229:32� 10:80 234:28� 1:90 217:08� 2:88 225:54� 3:94
29 238:26� 0:84 238:17� 0:94 238:35� 1:45 237:74� 1:07 237:64� 0:96 236:55� 1:62 238:37� 1:07 238:62� 1:35 238:73� 2:00 238:05� 1:15 237:95� 1:52 237:26� 1:94
30 240:77� 1:36 241:51� 1:17 242:38� 1:33 240:54� 1:38 239:46� 1:47 240:37� 1:41 240:82� 1:92 241:81� 1:22 242:06� 1:33 240:62� 1:96 238:86� 2:61 240:26� 2:12
31 264:14� 12:14 270:95� 8:85 265:03� 14:55 266:92� 9:79 284:52� 3:00 280:42� 11:11 257:26� 20:54 277:81� 13:91 263:77� 23:16 261:86� 20:79 285:15� 2:65 281:45� 15:79
32 290:04� 2:81 283:84� 0:64 289:60� 0:99 284:44� 0:85 287:13� 1:12 292:85� 2:31 284:72� 4:34 283:59� 0:54 288:43� 0:48 283:65� 0:55 287:68� 1:58 292:05� 8:07
33 302:40� 0:65 307:28� 1:36 304:05� 0:88 306:73� 1:18 304:92� 2:44 302:19� 0:55 302:35� 0:61 307:68� 2:77 302:58� 0:87 307:33� 1:97 305:20� 4:84 302:24� 0:53
34 318:38� 1:82 318:40� 0:95 318:69� 0:68 313:88� 3:36 317:95� 0:77 318:09� 1:04 315:37� 11:48 318:58� 1:24 318:74� 0:69 309:40� 4:91 318:46� 1:20 318:36� 1:30
35 319:27� 1:58 318:86� 0:70 318:81� 0:74 323:44� 4:69 318:68� 0:66 322:14� 3:70 318:88� 1:65 318:77� 0:68 318:76� 0:68 327:58� 13:41 318:70� 0:68 324:01� 7:08
36 337:59� 1:92 332:69� 4:19 336:60� 2:73 335:05� 4:12 330:33� 6:25 335:76� 3:73 340:21� 1:67 326:16� 42:05 338:87� 3:56 337:21� 12:24 327:91� 23:58 336:80� 16:89
37 346:13� 0:60 343:81� 0:73 343:84� 0:70 345:31� 0:82 350:00� 4:73 346:32� 0:57 346:56� 0:53 343:75� 0:84 343:74� 0:80 345:82� 1:43 364:38� 10:59 346:58� 0:49
38 348:67� 3:42 353:39� 8:05 344:20� 0:82 347:75� 3:12 383:36� 1:55 346:57� 0:56 346:91� 3:46 351:19� 15:25 343:78� 0:84 346:24� 1:49 384:73� 2:50 346:59� 0:49
39 381:39� 0:57 380:99� 0:62 381:74� 1:50 384:79� 0:33 384:62� 0:93 384:97� 2:36 381:10� 0:52 380:56� 0:69 377:15� 2:70 385:70� 0:40 385:57� 1:72 390:21� 13:08
40 410:08� 1:29 418:03� 1:44 416:60� 0:88 412:82� 3:87 416:36� 8:09 416:76� 0:67 415:09� 0:34 418:46� 1:24 418:04� 0:88 415:72� 10:88 427:26� 12:84 417:17� 0:53
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densely packed resonance peaks in the measured FRFs pose
significant challenges to system identification methods. Every effort
was made to deal with this problem by carefully selecting
appropriate range of the FRF. In Fig. 10 the ensemble mean
calculated from the identified natural frequencies from measured
frequency response functions, are compared with the Monte Carlo
simulations. The experimentally identified values used in these plots
are given in Table 2 for the purpose of possible comparisons using
other analytical methods not considered in our paper. Like the beam
experiment, the mean values obtained from the Monte Carlo
simulation agree reasonably well with the experimental results for
both methods. The standard deviation comparison in Fig. 11 show
that theMonte Carlo estimates are lower than the measured values in
the high- and low-frequency regimes, but not asmuch in themedium-
frequency regime.

The normalized pdf plots shown in Figs. 12 and 13 compare the
Monte Carlo simulation results with experimental data. The
normalization is done according to Eq. (4). The agreement at the level
of pdfs is satisfactory at high frequencies (eigenvalue number 30 in
Fig. 12). The shift in themean to the left of the origin forMonte Carlo
simulation normalized pdfs is explained by Fig. 10. These results
suggest that even when the first two moments can be predicted with
reasonable accuracy using Monte Carlo simulations the higher
moments may not agree. Although experimentally measured
normalized pdfs are closer toGaussian ensemble, albeit with nonzero
mean, the Monte Carlo simulations are not.

These results also highlight an interesting aspect on how the
choice of the FRF (that is the response point) can influence the pdf of
the natural frequencies. The mean and standard deviation of the fifth
natural frequency obtained using all three FRFs are quite similar.
However, as can be seen from Figs. 12 and 13, the pdf of the fifth
natural frequency obtained using the point 3 is significantly different
from those obtained using the other two points. For the other three
natural frequencies, however, the pdf obtained from all three points
are fairly close. This shows the difficulty in comparing the pdf
obtained using the Monte Carlo simulation and experiment. If
response point 1 or 2 is selected, one might concluded that the
Monte Carlo simulation results fit well with the experimental results.
The same conclusion cannot be drawn when point 3 is selected.

V. Conclusions

The statistics of the eigenvalues of discrete linear dynamic systems
with uncertainties have been considered using experimental methods
on two structural systems of different modal densities. The first
experiment is about a fixed–fixed beam with 12 randomly placed
masses, and the second experiment is about a cantilever platewith 10
randomly placed oscillators. One hundred nominally identical beams
and plates are created and individually tested using experimental
modal analysis. Special measures have been taken so that the
uncertainty in the natural frequencies only arises from the
randomness in the mass and oscillator locations and the experiments
are repeatable with minimum changes. Such novel measures include
use of 1) a shaker as an impact hammer to ensure a consistent force
and location for all of the tests, 2) a ruler to minimize the error in
measuring the mass locations in the beam experiment, 3) a grid
system and nodal points to minimize the error in measuring the
oscillator and hammer locations in the plate experiment, 4) magnets
as attachedmasses for the ease of placement in the beam experiment,
and 5) magnets to attach the oscillators in the plate experiment.

Two methods (namely, the rational fraction polynomial method
and a nonlinear least-squares technique) are used to extract the
eigenvalues. These methods are applied to three FRFs for the beam
experiment and six FRFs for the plate experiment. This implies that
each of the two methods was applied to 300 FRFs for the beam
experiment and 600 FRFs for the plate experiment. The following
conclusions emerge from this study:

1) The ensemble statistics such as mean and standard deviation for
natural frequencies vary with the spatial location of the measured
FRFs and the type of the system identification technique chosen to
estimate the natural frequencies.

2) Evenwhen a reasonable prediction for the mean and sometimes
for the standard deviations may be obtained using the Monte Carlo
simulation, higher moments, and hence the pdfs can be significantly
different.

3) In some cases, the differences in pdfs arising from different
points and different identification methods can be more than those
obtained from the Monte Carlo simulation.

It should be recalled that the above conclusions are based on a
sample size of 100. Nevertheless, these results perhaps highlight the
need for new outlook when one considers experimental works on
random eigenvalue problems.
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