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MODAL ANALYSIS OF LINEAR ASYMMETRIC

NONCONSERVATIVE SYSTEMS

By Sondipon Adhikari,1 Member, ASCE

ABSTRACT: In this work, classical modal analysis has been extended to treat lumped parameter asymmetric
linear dynamic systems. In the presence of general nonconservative forces, the damping matrix is not simulta-
neously diagonalizable with the mass and stiffness matrices. The proposed method utilizes left and right eigen-
vectors of the second-order system and does not require conversion of the equations of motion into the first-
order form. Left and right eigenvectors of the nonconservative system are derived in terms of the left and right
eigenvectors of the corresponding conservative system using a Galerkin error minimization approach in con-
junction with a Neumann expansion method. Transfer functions for the asymmetric nonconservative system are
derived in terms of the left and right eigenvectors of the nonconservative system. Suitable numerical examples
are given to illustrate the proposed method.
INTRODUCTION

Modal analysis plays a central role in the vibrational studies
of linear engineering structures. Since the publication of Ray-
leigh’s classic monograph (1945, originally 1897), extensive
work has been done in this area over the last 11 decades. The
method was originally proposed for undamped structures
whose inertia and stiffness properties can be represented by
symmetric matrices or self-adjoint differential operators. How-
ever, Rayleigh himself noted that the real-life structural sys-
tems are not undamped, but that they possess some kind of
energy dissipation mechanism or damping. While there are
excellent theories in classical mechanics about why inertia and
stiffness properties can be represented by symmetric matrices
or self-joint operators when the system executes a small os-
cillation around a stable equilibrium, no such theory is avail-
able for energy dissipation. To solve this problem, in analogy
with ‘‘potential energy’’ and ‘‘kinetic energy,’’ Rayleigh as-
sumed a ‘‘dissipation function,’’ which is a nonnegative def-
inite functional of instantaneous generalized velocities. This
kind of damping model is known as viscous damping. So that
the modal analysis of undamped systems is applicable to
damped systems, Rayleigh made one more assumption by tak-
ing the viscous damping forces to be proportional to the inertia
and stiffness forces. Since its introduction, this model has been
used extensively and is known as ‘‘classical damping’’ or
‘‘proportional damping.’’

Rayleigh’s argument behind proportional damping was in-
tuitive rather than theoretical, and it was formulated for math-
ematical convenience only. Until Caughey and O’Kelly (1965)
gave necessary and sufficient conditions for a damped system
to have classical normal modes, the nature of proportional
damping was not very clear. This topic is well understood now,
but unfortunately, there is no mathematical theory or sufficient
experimental evidence to show why a physical system should
obey Caughey and O’Kelly’s criterion. In fact, practical ex-
periences show that most of the real-life structures do not sat-
isfy this criterion as they possess complex modes instead of
real normal modes. This leads to the notion of nonproportional
or nonclassical damping. Extending modal analysis to nonpro-
portionally damped systems is still an active area of research.

Currently, there have been efforts to extend the classical
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modal analysis procedure to systems whose inertia, stiffness,
and damping properties cannot be represented by symmetric
matrices or self-adjoint differential operators. These kinds of
problems arise in the dynamics of actively controlled struc-
tures and in many general nonconservative dynamic systems,
for example, a moving vehicle on the road, a missile on its
trajectory, a ship’s motion in seawater, or the study of aircraft
flutter. The asymmetry of damping and stiffness terms are of-
ten addressed in the context of gyroscopic and follower forces
and asymmetry in mass (Soom and Kim 1983). Many authors
have considered this kind of general nonconservative linear
system. Fawzy and Bishop (1976) presented several relation-
ships satisfied by eigenvectors and eigenrows of the second-
order system and they also presented a method to normalize
them. Inman (1983) considered a class of asymmetric systems
that can be transformed into symmetric systems using a linear
transformation. Conditions for the existence of classical nor-
mal modes in this kind of asymmetric systems were given by
Ahmadian and Inman (1984). Later, Caughey and Ma (1993)
gave conditions under which a general asymmetric system can
be decoupled. In a subsequent paper, Ma and Caughey (1995)
used equivalence transform to analyze asymmetric systems.
However, their work was restricted to conservative systems or
to special kinds of nonconservative systems that can be de-
coupled by an equivalence transformation.

In this paper general asymmetric discrete nonconservative
dynamic systems are considered. The method presented does
not require conversion of the equations of motion to the first-
order form. In Section 2, left and right eigenvectors of the
nonconservative system are derived in terms of left and right
eigenvectors of the corresponding conservative system. A
Galerkin error minimization approach in conjunction with a
Neumann expansion method have been used for this purpose.
Transfer functions for the asymmetric system are derived in
Section 3. The derivation method uses the state-space repre-
sentation of equations of motion at the intermediate steps, but
finally relates the transfer functions to the left and right eigen-
vectors of the second-order system so that the first-order eigen-
solutions are not required. Applications of the proposed
method and the related numerical issues are discussed in Sec-
tion 4 using a three-degree-of-freedom asymmetric system. Fi-
nally, Section 5 summarizes the main results of the study re-
ported in this paper.

EIGENVALUES AND EIGENVECTORS OF
NONCONSERVATIVE DYNAMIC SYSTEMS

Background

The equations of motion of a linear damped discrete system
with N degrees of freedom can be written as
t to ASCE license or copyright; see http://pubs.asce.org/copyright



¨ ¨ ¨Mu(t) 1 Cu(t) 1 Ku(t) = f(t) (1)

where M, C, and K [ are mass, damping, and stiffnessN3NR
matrices, respectively. u(t) [ RN is the response vector, t [
R1 denotes time, and f(t) [ RN is the forcing vector. Tradi-
tional restrictions of symmetry and positive definiteness are
not imposed on M, C, and K; however, it is assumed that M21

exist, that is the system is not defective or degenerate. It is
well known that for any linear system, if the forcing function
is harmonic, that is f(t) = f exp[st] with s = iv and amplitude
vector f [ RN, in steady state the response will also be har-
monic at frequency v [ R1. Therefore, we seek a solution of
the form u(t) = exp[st], where [ CN is the response vector˜ ˜u u
in the frequency domain. Substitution of u(t) and f(t) in (1)
results in

2 ˜ ˜ ˜s Mu 1 sCu 1 Ku = f (2)

The right eigenvalue problem associated with the above
equation can be represented by the l-matrix problem (Lan-
caster 1966)

2s Mu 1 s Cu 1 Ku = 0, ;i = 1, . . . , N (3)i i i i i

where si [ C is the ith latent root (eigenvalue); and ui [ CN

is the ith right latent vector (right eigenvector). Similarly, the
left eigenvalue problem can be represented by

2 T T Ts v M 1 s v C 1 v K = 0, ;i = 1, . . . , N (4)i i i i i

where vi [ CN is the ith left latent vector (left eigenvector);
and (?)T denotes the matrix transpose.

When M, C, and K are general asymmetric matrices, the
left and right eigenvectors can easily be obtained from the
first-order formulations, for example, state-space method
(Newland 1989), Duncan forms (Meirovitch 1980), etc. Al-
though exact in nature, the first-order methods require signif-
icant numerical efforts for obtaining the eigensolutions as the
size of the problem doubles. Moreover, these methods also
lack some of the intuitive simplicity of the analysis based on
N-space. For these reasons the determination of eigenvalues
and eigenvectors in N-space for asymmetric nonconservative
systems is very desirable. Ma and Caughey (1995, Theorem
3) have shown that in the special case, when M21C and M21K
commute in product, the linear asymmetric nonconservative
system (1) can be decoupled by an equivalence transforma-
tion, and hence, the N-space method can be used. But in gen-
eral, linear nonconservative systems do not satisfy this con-
dition and some kind of approximate methods must be used
for further analysis. Meirovitch and Ryland (1985) and Malone
et al. (1997) have used a perturbation method to determine the
eigensolutions of gyroscopic systems. The difficulty with these
kinds of perturbation methods is that any kth order (k > 2)
term for eigenvalues or eigenvectors requires the determina-
tion of all (k 2 1) terms of eigenvalues and eigenvectors, and
they are correlated among themselves. It may be noted that
eigenvalue determination is essentially a numerical method
and leads to the solution of

2det(s M 1 s C 1 K) = 0 (5)i i

The above equation is a polynomial of order 2N and yields
2N values of si, which appear in complex conjugate pairs. In
this paper it is assumed that all of the eigenvalues are distinct.
Several efficient numerical methods are available to solve (5),
and so for eigenvalue determination perturbation methods are
most likely not necessary.

Determination of Eigenvectors

Unlike the eigenvalues, the left and right eigenvectors for
general asymmetric nonconservative systems cannot be deter-
Downloaded 02 Apr 2010 to 137.222.10.57. Redistribution subjec
mined by such simple procedures. In this paper we try to de-
termine these quantities in terms of left and right eigenvectors
of the associated asymmetric conservative system. The eigen-
problem of asymmetric conservative systems has been well
studied in the literature (Huseyin 1978; Ma and Caughey
1995). Here we briefly outline the main features for further
reference.

Consider the undamped right eigenvalue problem

2Kx = v Mx , ;i = 1, . . . , N (6)u i ui i

where vi [ R is the ith natural frequency and [ RN is thexu i

ith undamped right eigenvector (mode shape). Similarly, the
undamped left eigenvalue problem can be defined by

T 2 Tx K = v x M, ;i = 1, . . . , N (7)v i vi i

where [ RN is the ith undamped left eigenvector. For dis-xvi

tinct eigenvalues it is easy to show that the left and right ei-
genvectors satisfy the biorthogonality relationship with respect
to M and K (Huseyin 1978). We also normalize the eigenvec-
tors such that

T T 2x Mx = d , x Kx = v d , ;j, i = 1, . . . , N (8)v u ji v u i jij i j i

where dji is the Kroneker’s delta function. Because all of the
undamped eigenvalues are assumed to be distinct, ;i2(v ) x ,i ui

= 1, . . . , N form a complete set of vectors, so that ui can be
expanded as a complex combination of Similarly, vi canx .ui

also be expanded in terms of Thus, an expansion of thex .vi

form

N N

(i) (i)u = a x ; v = b x (9a,b)i j u i j vO Oj j
j =1 j =1

may be considered. Now, without any loss of generality, we
can assume = 1 and = 1 (normalization), which leaves(i) (i)a bi i

us to determine ;j ≠ i. A Galerkin type of error mini-(i) (i)a , b ,j j

mization approach combined with a complex Neumann ex-
pansion method is adopted for this purpose.

Substituting the expansion of ui in (3) and using the usual
definition of natural frequencies in structural dynamics, i.e., li

= si/i, the error vector for the ith mode can be expressed as

N

(i) 2 (i) (i) (i) ND = 2 l a Mx 1 il a Cx 1 a Kx [ C (10)i j u i j u j uO j j j
j =1

Consider the undamped left eigenvectors ;k = 1, . . . , Nx ,vk

as ‘‘weighting functions,’’ and following the Galerkin method
we have = 0 or = 0, where (?, ?) denotes the(i) T (i)(x , D ) x Dv vk k

standard inner product norm in CN. Using the biorthogonality
property of the undamped left and right eigenvectors described
in (8), one obtains

N

2 (i) (i) 2 (i)2l a 1 il a C9 1 v a = 0, ;k = 1, . . . , N (11)i k i j kj k kO
j =1

where = The ith equation of this set obtained byTC9 x Cx .kj v uk j

setting k = i is a trivial case because = 1 has already been(i)ai

assumed. From the above set of equations, excluding this triv-
ial case, one has

N

2 (i) (i) (i) 2 (i)2l a 1 il C9 1 a C9 1 a C9 1 v a = 0,i k i ki k kk j kj k kS O D
j k i≠ ≠

;k = 1, . . . , N ≠ i (12)

which can be written further in matrix form as

(i) (i) (i) (i)[P 2 Q ]â = g (13)u

In the above equation
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2 2v 2 l 1 il C91 i i 11(i)P = diag , . . . , {ith term deleted}, . . . ,F
2ili

2 2v 2 l 1 il C9N i i NN (N21)3(N21)[ CG
2ili (14)

and the traceless matrix

0 C9 ??? {ith term deleted} ??? C921 1N
? ? ?C9 0 ? ? ? C921 2N? ? ?

(i) ? ? ? ? ?Q = ? ? ? {ith term deleted} ? ?? ? ? ? ?F G? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ?
C9 C9 ??? {ith term deleted} ??? 0N1 N2

(N21)3(N21)[ R (15)

(i) T (N21)g = {C9 , C9 , . . . , {ith term deleted}, . . . , C9 } [ Ru 1i 2i Ni

(16)

and
(i) (i) (i) (i) T (N21)â = {a , a , . . . , {ith term deleted}, . . . , a } [ C1 2 N

(17)

is the vector of unknown ;k = 1, . . . , N, ≠ i. From (13),(i)a ,k

must be determined by performing the associated matrix(i)â
inversion, and this is achieved by using the Neumann expan-
sion method. A similar procedure was used by Adhikari and
Manohar (1999) in the context of inversion of the dynamic
stiffness matrix of structures with stochastic properties. Now,
using the Neumann expansion we have

21 21 21(i) (i) (i) (i) (i)â = [I 2 P Q ] {P g }N21

2 3(i) (i) (i) (i)= [I 1 R 1 R 1 R 1 ???]aN21 u u u 0 (18)

where is (N 2 1) 3 (N 2 1) identity matrixIN21

21 21(i) (i) (i) (N21)3(N21) (i) (i) (i) (N21)R = P Q [ C ; a = P g [ C (19a,b)u 0 u

Because is a diagonal matrix, its inversion can be carried(i)P
out analytically, and subsequently, the closed-form expressions
of and can be obtained (see Section 4). This makes(i) (i)R au 0

further calculations involving these quantities simpler. From
(18), can be calculated in an efficient way, as one can write(i)â

(i) (i) (i) (i) (i)â = a 1 a 1 a 1 ??? 1 a 1 ??? (20)0 1 2 k

where
(i) (i) (i) (i) (i) (i) (i) (i) (i)a = R a , a = R a , ? ? ? a = R a (21)1 u 0 2 u 1 k u k21

This implies that all of the can be obtained using succes-(i)ak

sive matrix-vector multiplications only. Now noting that is(i)â
the vector of ;k = 1, . . . , N, ≠ i, the substitution of it in(i)a ,k

(9a) will give the right eigenvectors associated with the non-
conservative system (1). It is easy to see that by taking more
terms in the series represented by (20), one can obtain the right
eigenvectors to any arbitrary precession, provided the complex
matrix power series 1 1 1 1 ??? is con-

2 3(i) (i) (i)I R R RN21 u u u

vergent. The convergence issue of this series is addressed in
the next subsection.

Similarly, the left eigenvectors can be obtained by substi-
tuting the expansion of vi in (4), and letting as weightingxu j

functions while applying the Galerkin method. Following the
procedure employed for the right eigenvectors, one can write

T(i) (i) (i) (i)ˆ[P 2 Q ]b = g (22)v

where
(i) T (N21)g = {C9 , C9 , . . . , {ith term deleted}, . . . , C9 } [ Rv i1 i2 iN

(23)

and
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(i) (i) (i) (i) T (N21)b̂ = {b , b , . . . , {ith term deleted}, . . . , b } [ C1 2 N

is the vector of unknown ;k = 1, . . . , N, ≠ i. Now, using(i)b ,k

the Neumann expansion method and defining
21 T 21(i) (i) (i) (N21)3(N21) (i) (i) (i) (N21)R = P Q [ C ; b = P g [ Cv 0 v

(24a,b)

from (22) one obtains as a series(i)b̂
2 3(i) (i) (i) (i) (i)b̂ = [I 1 R 1 R 1 R 1 ???]bN21 v v v 0

(i) (i) (i) (i)= b 1 b 1 b 1 ??? b 1 ???0 1 2 k (25)

Here

(i) (i) (i) (i) (i) (i) (i) (i) (i)b = R b , b = R b , . . . , b = R b (26)1 v 0 2 v 1 k v k21

The ith eigenvector of the nonconservative system vi can be
obtained by substituting in the second equation of (9). This(i)b̂
method does not require much computational time as closed-
form expressions for and are available (see Section 4).(i) (i)R bv 0

It may be noted that by taking more terms in the series (25),
one can obtain vi to arbitrary precession if the complex matrix
power series 1 1 1 1 ??? is convergent.

2 3(i) (i) (i)I R R RN21 v v v

Convergence

A necessary condition for validity of the series expression
of and in (20) and (25), required for the determination(i) (i)ˆâ b
of the right and left eigenvectors of the nonconservative sys-
tem (1), is that the complex matrix power series

2 3(i) (i) (i)S = I 1 R 1 R 1 R 1 ??? (27)u N21 u u u

and
2 3(i) (i) (i)S = I 1 R 1 R 1 R 1 ??? (28)v N21 v v v

are convergent. Looking at the expression of and in(i) (i)R Ru v

(19) and (24), it may be revealed that they are quite similar,
and it is sufficient to study the convergence property of any
one of the series. Here the series in (27) will be studied.

Condition 1

The complex matrix power series Su converges if, and only
if, for all of the eigenvalues of the matrix the in-(i) (i)s R ,j u

equality < 1 holds.(i)us uj

Proof of this directly follows from Wilkinson (1965). Al-
though the above condition is both necessary and sufficient,
checking convergence for all i = 1, . . . , N is often not feasi-
ble. Therefore, we look for a sufficient condition that is rela-
tively easy to check and that ensures convergence for all i =
1, . . . , N.

Condition 2

The complex matrix power series Su converges for any li,
vi if C9 is a diagonally dominant matrix.

Proof

Because a matrix norm is always greater than or equal to
its maximum eigenvalue, it follows from Condition 1 that,
convergence of the series is guaranteed if < 1. Writing(i)iR iu

the sum of absolute values of entries of (see Section 4)(i)Ru

results in the following inequality as the required sufficient
condition for convergence:

N N
l C9i kj

(1 2 d ) < 1 (29)jkOO U U2 2v 2 l 1 il C9k i i kkk =1 j =1
k i j i≠ ≠
 to ASCE license or copyright; see http://pubs.asce.org/copyright



Dividing the numerator and denominator by li, the above in-
equality can be written as

N N uC9 ukj
< 1 (30)O O 2 2u1/l (v 2 l ) 1 iC9 ui k i kkk =1 j =1

k i j i k≠ ≠ ≠

Taking the maximum for all k ≠ i, this condition can further
be represented as

N

uC9 ukjO
j =1

j i,k≠max < 1 (31)1/2
k i≠ 1 2 2 2 2(ul u 2 v ) 1 C9i k kkF G2ul ui

It is clear that (31) always holds if
N

uC9 u < uC9 u, ;k ≠ i (32)kj kkO
j =1

j i k≠ ≠

which, in turn, implies that for all i = 1, . . . , N, the inequality
< 1 holds if C9 is diagonally dominant. It is important(i)iR iu

to note that the diagonal dominance of C9 is only a sufficient
condition, and that the lack of it does not necessarily preclude
the convergence of Su.

Discussion

Following the procedure outlined in the previous subsection
one can obtain right and left eigenvectors of the nonconser-
vative systems up to any desired level of accuracy without
using first-order formalizms. It may be noted that the expres-
sions developed here are somewhat different from perturbation
solutions [for example, Cronin (1990) for symmetric systems],
because higher-order terms of eigenvectors do not depend on
the higher-order terms of the eigenvalues. The eigenvalues are
determined exactly by solving the polynomial equation (5),
and subsequently, the right and left eigenvectors of the non-
conservative system can be obtained from the series expression
(9). The vector of complex constants and appearing in(i) (i)a bj j

(9) are further obtained from (20) and (25), respectively. For
many engineering problems it is often observed that entries in
the C matrix are not very ‘‘big,’’ and that by retaining only a
few terms in the series, (20) and (25) will result in an ac-
ceptable accuracy. Closed-form approximate expressions of
right and left eigenvectors by retaining one and two terms in
these series are given in Appendix I. These expressions might
be useful whenever we find that the entries of the C matrix
are small compared with that of M and K.

TRANSFER FUNCTIONS

Transfer functions of a system completely define its input-
output relationship. Suppose the forcing vector f in (2) is zero
for all of the entries except the mth, which has an entry p.
Due to this force, if the response at some nth degree of free-
dom is then the transfer function can be de-ũ , H (v)n nm

fined by

ũn
H (v) = (33)nm

p

In principle, one can carry out the associated matrix inver-
sion with (2) and subsequently calculate to obtain How-˜ ˜u u .n

ever, this would be a somewhat expensive numerical exercise
and may not offer much physical insight to the analyst. In-
stead, we seek a solution analogous to the classical modal
series solution of the undamped or proportionally damped
symmetric system (Meirovitch 1967). At this stage it turns out
Downloaded 02 Apr 2010 to 137.222.10.57. Redistribution subject
to be useful to perform the calculations in state-space and then
relate the result to the left and right eigenvectors of the second-
order system determined in the last section.

Eq. (1) can be transformed into first-order (state-space)
form as

ż(t) = Az(t) 1 3(t) (34)

where A [ = system matrix; 3(t) [ R2N = forcing2N32NR
vector; and z(t) [ R2N = response vector in the state-space
given by

0 I u(t)NA = ; z(t) = (35a,b)21 21F G H J˙2M K 2M C u(t)

0
3(t) = (35c)21H JM f(t)

In the above equation 0 is the N 3 N null matrix and IN is
the N 3 N identity matrix. For periodic forcing 3(t) = P
exp[st], assume periodic solution of the form z(t) = exp[st],z̃
and substituting it in (34) we obtain

˜ ˜sz = Az 1 P (36)

In the above equation [ C2N is the frequency domain re-z̃
sponse vector in state-space and can be related to the corre-
sponding vector of the second-order system as

ũ
z̃ = (37)H J˜su

and the amplitude of the forcing vector is P = {0, M21f}T [
R2N. The right eigenvalue problem associated with (36) can be
expressed as

Az = s z , ;i = 1, . . . , 2N (38)i i i

where si [ C is the ith eigenvalue and z i [ C2N is the ith
right eigenvector which is related to the ith right eigenvector
of the second-order system as

uiz = (39)i H Js ui i

The left eigenvector yi [ C2N associated with si is defined
by the equation

T Ty A = s y (40)i i i

For distinct eigenvalues it is easy to show that the right and
left eigenvectors satisfy an orthogonality relationship, that is

Ty z = 0, ;j ≠ i (41)i i

and we also normalize the eigenvectors so that

Ty z = 1 (42)i i

The above two equations imply that the dynamic system de-
fined by (34) possesses a set of biorthogonal eigenvectors with
respect to the system matrix A.

Because it has been already assumed that A has distinct
eigenvalues, the right eigenvectors z i, ;i = 1, . . . , 2N, form
a complete set of vectors. Thus, the solution of (36) can be
expanded as

2N

z̃ = e z (43)j jO
j =1

where ej [ C, ;j = 1, . . . , 2N are set of constants to be
determined. Note that the above equation is a vector equation
with 2N rows: The first N rows are a solution of the second-
order system (2), which we aim to obtain. Substituting inz̃
(36), and premultiplying by the left eigenvector one hasTy ,k
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1999 / 1375
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2N

T Ty (s 2 A)e z = y P (44)k j j kO
j =1

Using the biorthogonality relationship of the left and right
eigenvectors of A, the above equation results in

Ty Pk
e = , ;k = 1, . . . , 2N (45)k

s 2 sk

The ek expressed above is not very useful because it is in terms
of left and right eigenvectors of the first-order system. To ob-
tain a relationship with the eigenvectors of the second-order
system, assume

y1 iy = (46)i H Jy2 i

where [ CN. Substituting yi in (40) and taking they , y1 2i i

transpose, one obtains
TT 21s y = 2K M y (47a)i 1 2i i

T TT 21 T 21s y = y 2 C M y or y = [s I 1 C M ]y (47b)i 2 1 2 1 i N 2i i i i i

Elimination of from the above two equations yieldy1i

T TT 21 T 21s (s y 1 C M y ) = 2K M y ori i 2 2 2i i i

T 21 2(y M ) [s M 1 s C 1 K] = 02 i ii
(48)

By comparing this equation with (4), it can be observed that
the vector is parallel to that is, there exists a non-T 21 Ty M v ,2 ii

zero gi [ C, such that
T 21 T Ty M = g v or y = g M v (49)2 i i 2 i ii i

Substituting and also zi from (39) into the normali-y , y ,1 2i i

zation condition (42), we have the scalar equation
T T T Ty u 1 s y u = 1 or g v [C 1 s M]u 1 g s v Mu = 11 i i 2 i i i i i i i i ii i

(50)

From the above equation, the scalar constant gi can be ob-
tained as

1
g = (51)i Tv [2s M 1 C]ui i i

Now taking the first N rows of (43) and using (49), one
obtains

2N 2NT 21 ( j)y M f pg v2 j mjũ = u = u (52)j jO Os 2 s s 2 sj jj =1 j =1

where represents the mth element of the jth left eigenvector( j)vm

of the second-order system vj.
It is well known that for any system with real coefficient

matrices, the eigenvalues and eigenvectors appear in complex
conjugate pairs. This implies that with the usual definition of
natural frequencies, sj = ilj and = occurs with uj,* *s 2ilj j

vj, and respectively. Here (?)* denotes complex con-* *u , v ,j j

jugation. Now from the definition of the transfer function in
(33) and from (52), writing the terms corresponding to si and

separately, we finally obtain*si

N ( j) ( j) ( j)* ( j)**m v u m v uj m n m nj
H (v) = 2 1 (53)nm O H J*v 2 l v 1 ljj =1 j

where m j = igj = [2ljM 2 iC]uj). This is a generalizationT1/(v j

of the known expression of the transfer function for symmetric
conservative systems to asymmetric nonconservative systems.
Transfer functions for several interesting special cases may be
obtained from (53):

1. Symmetric conservative system (Rayleigh 1897): In this
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case M = MT, K = KT, and C = 0 results in vj = uj =
and mj = 1/2vj, which reduces expression (53) tox ,u j

N ( j) ( j)x xu um nH (v) = (54)nm O 2 2v 2 vjj =1

2. Asymmetric conservation system (Huseyin 1978): In this
case C = 0 results in uj = vj = and mj = 1/2vj,x , x ,u vj j

which reduces expression (53) to
N ( j) ( j)x xv um nH (v) = (55)nm O 2 2v 2 vjj =1

3. Symmetric nonconservative system (Vigneron 1986): In
this case M = MT, K = KT, and C = CT results in vj =
uj and mj = [2ljM 2 iC]uj), which reduces expres-T1/(uj

sion (53) to
N ( j) ( j) ( j)* ( j)**m u u m u uj m n m nj

H (v) = 2 1 (56)nm O H J*v 2 l v 1 ljj =1 j

From the transfer function expression [(53)], the steady-state
response due to harmonic load or response due to broadband
random excitation can be obtained directly. However, response
due to transient loads or that due to initial conditions can also
be obtained by familiar methods using convolution integrals
in the time domain after obtaining the impulse response func-
tion by taking the Fourier transform of (53) (Meirovitch 1967,
section 7.6).

APPLICATIONS AND EXAMPLES

Following the procedure outlined before the frequency do-
main response of an asymmetric nonconservative system can
be obtained using the right and left eigenvectors. The method
presented here is very similar to that of the classical modal
analysis because it appears that only the undamped modes and
frequencies have to be replaced appropriately by right and left
eigenvectors and complex eigenvalues of the asymmetric non-
conservative system. The left and right eigenvectors can be
obtained from that of the corresponding conservative system
using a series expansion in N-space and the eigenvalues can
be obtained directly from the characteristic equation. Transfer
functions are further expressed in terms of these left and right
eigenvectors and complex eigenvalues. Here we briefly sum-
marize the steps to be followed:

1. Obtain the eigenvalues vi, right eigenvectors and leftx ,u i

eigenvectors of the conservative system from =x Kxv ui i

and = for all i = 1, . . . , N. Nor-2 T 2 Tv Mx x K v x Mi u v i vi i i

malize and so that = dji.
Tx x x Mxu v v ui i j i

2. Determine the eigenvalues li of the nonconservative sys-
tem by solving the polynomial equation 1 isiC

2det(s Mi

1 K) = 0. Obtain the complex natural frequencies li

= si/i.
3. Set up the C9 matrix using = ;j, k =TC9 x Cx ,kj v uk j

1, . . . , N. Calculate the matrices and [obtained(i) (i)R Ru v

by simplifying (19) and (24), respectively], using

2il C9 (1 2 d )i kj k j1 1(i )R =u 2 2k j1 1 v 2 l 1 il C9k i i kk

and

2il C9 (1 2 d )i jk k j1 1(i )R = , ;j, k = 1, . . . , N, ≠ iv 2 2k j1 1 v 2 l 1 il C9k i i kk

For keeping the dimension of and to (N 2 1) 3(i) (i)R Ru v

(N 2 1), express k1, and consequently, j1 as k1 = k 2
and ji = j 2 Here the function (and8 8 . 8(k,i) ( j,i) (k,i)

similarly is defined as8 )( j,i)
t to ASCE license or copyright; see http://pubs.asce.org/copyright



0, if k < i
8 = 1, if k > i (57)(k,i ) H

not defined if k = i

Also obtain the vectors and using(i) (i)a b ,0 0

2il C9i ji(i)a =0 2 2j1 v 2 l 1 il C9j i i jj

and

2il C9i ij(i)b = , ;j = 1, . . . , N, ≠ i0 2 2j1 v 2 l 1 il C9j i i jj

4. Select the number of terms, say r, to be retained in the
expansion of the eigenvectors [see (20) and (25) for ref-
erence]. Calculate = and = for(i) (i) (i) (i) (i) (i)a R a b R bk u k21 k v k21

all k = 1, . . . , r, and subsequently obtain =(i)â
and =r (i) (i) r (i)ˆ( a b ( b .k=1 k21 k=1 k21

5. Obtain the right eigenvectors of the nonconservative sys-
tem as

N

(i)u = x 1 â xi u j uOi 1 j1
j =1
j i≠

and left eigenvectors as

N

(i)ˆv = x 1 b xi v j vOi 1 j1
j =1
j i≠

for all i = 1, . . . , N.
6. Finally, calculate the transfer function matrix using these

left and right eigenvectors
N T T** *m u v m u vj j j jj jH(v) = 2 1 ,O H J*v 2 l v 1 ljj =1 j

1
with m =j Tv [2l M 2 iC]uj j j (58)

or alternatively, in the time domain, obtain the impulse
response function matrix

N
*TT il t 2il tj j* * *h(t) = {2m v u e 1 m v u e } (59)j j jO j j j

j =1

Compare to the state-space approach, the procedure outlined
above offers a significant reduction in computational effort be-
cause two eigenvalue problems of size N 3 N have to be
solved (Step 1) instead of solving two eigenvalue problems of
size 2N 3 2N. Moreover, this method provides a better phys-
ical insight because only the familiar N-space eigenvectors are
used. Various efficient numerical algorithms are available
(Press et al. 1992) to solve the characteristic polynomial equa-
tion (Step 2). Many of these algorithms are iterative in nature
and to increase the efficiency of the solution procedure, the
eigenvalues obtained from a first-order perturbation method
given by (76) in Appendix I can be used as an initial guess.
The procedure to be followed later for obtaining the eigen-
vectors of the nonconservative system, i.e., Step 3 to Step 5,
is quite systematic and straightforward and does not involve
intensive computation.

To illustrate the proposed method, a numerical example of
a three-degree-of-freedom system is considered. The M, C,
and K matrices appearing in (1) are defined by

0.5740 1.3858 1.3858
M = 0.7070 0.7070 20.7070 (60)F G

0.4620 20.1914 20.1914
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2.6710 2.9592 2.9651
C = 0.4843 1.2606 20.6119 (61)F G

0.2875 20.5808 1.2272

1.3748 10.9440 25.2975
K = 1.2625 2.8770 217.4195 (62)F G

0.7455 24.1244 0.8625

Numerical values for the entries of M and K matrices are
taken from Ma and Caughey (1995). It may be easily verified
that all of the above matrices are neither symmetric nor pos-
itive definite. The problem of determining the left and right
eigenvectors will be solved by following the steps described
earlier.

Step 1: Solution of the right and left eigenvalue problem of
the associated conservative system given by (6) and (7) and
normalization according to (8) yields the natural frequencies
v1 = 1.3506, v2 = 3.0913, v3 = 4.8527, and the eigenvectors

1.0741 20.6240 0.4421
X = [x , x , x ] = 20.0292 0.9635 20.5428 (63)u u u u F G1 2 3

20.0047 20.0290 0.8731

0.3082 0.4876 0.5167
X = [x , x , x ] = 0.5025 0.3000 20.7973 (64)v v v v F G1 2 3

0.8983 20.9954 0.5915

Step 2: By solving the characteristic determinant, 2det(s Mi

1 isiC 1 K) = 0, the eigenvalues of the nonconservative sys-
tem are obtained; s1 = 20.7725 1 1.1965i, s2 = 20.7251 1
3.0560i, s3 = 21.3949 1 4.3092i, together with the corre-
sponding complex conjugate values. The complex natural fre-
quencies are obtained by li = si/i: l1 = 1.1965 1 0.7725i, l2

= 3.0560 1 0.7251i, l3 = 4.3092 1 1.3949i.
Step 3: The C9 matrix calculated from C9 = asTX CXv u

1.3850 0.1101 1.5220
C9 = 1.1774 1.5858 20.7533 (65)F G

1.2321 20.6323 2.8142

From the C9 matrix we can further obtain i = 1, 2, 3,(i)R ,u

using the closed-form expression described earlier

0 20.0768 1 0.1207i(1)R = (66a)u F G20.0209 1 0.0384i 0

0 20.1235 1 0.5850i(2)R = (66b)u F G20.0244 2 0.2886i 0

0 0.0010 1 0.0280i(3)R = (66c)u F G0.0981 1 0.4920i 0

Similarly i = 1, 2, 3, can also be calculated(i )R ,v

0 20.0645 1 0.1013i(1)R = (67a)v F G20.0250 1 0.0457i 0

0 20.1000 1 0.4735i(2)R = (67b)v F G20.0301 2 0.3565i 0

0 0.0102 1 0.2996i(3)R = (67c)v F G0.0092 1 0.0460i 0

Now obtain i = 1, 2, 3 using the closed-form expres-(i) (i)a , b ,0 0

sion described earlier

0.1201 2 0.1887i(1)a = (68a)0 H J0.0408 2 0.0748i

20.0089 1 0.0423i(2)a = (68b)0 H J0.0125 1 0.1481i
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0.0132 1 0.3872i(3)a = (68c)0 H J20.0627 2 0.3148i

0.0112 2 0.0176i(1)b = (69a)0 H J0.0504 2 0.0924i

20.0955 1 0.4525i(2)b = (69b)0 H J0.0149 1 0.1764i

0.0107 1 0.3135i(3)b = (69c)0 H J20.0527 2 0.2642i

Step 4: Assume the number of terms to be retained r = 7,
in the series expansion (20) and (25). Computing each of the
terms using (21) and (26) and summing them results

0.1247 2 0.1782i(1)â = (70a)H J0.0450 2 0.0663i

20.1181 1 0.0348i(2)â = (70b)H J0.0255 1 0.1812i

0.0205 1 0.3800i(3)â = (70c)H J20.2477 2 0.2674i

0.0173 2 0.0067i(1)b̂ = (71a)H J0.0503 2 0.0914i

20.2312 1 0.5273i(2)b̂ = (71b)H J0.2099 1 0.2429i

0.0872 1 0.2913i(3)b̂ = (71c)H J20.0653 2 0.2575i

Step 5: Using the assumed expansion of ui and vi in (9),
and also noting that and are vectors of and we(i) (i) (i) (i)¯â b a b ,j j

finally obtain the right and left eigenvectors of nonconserva-
tive system

U = [u , u , u ]1 2 3

1.0162 1 0.0819i 20.7395 1 0.1175i 0.6187 1 0.5750i
= 0.0665 2 0.1357i 0.9531 2 0.0994i 20.7821 2 0.2688iF G

0.0310 2 0.0527i 20.0062 1 0.1580i 0.8802 1 0.0060i
(72)

V = [v , v , v ]1 2 3

0.3426 2 0.0505i 0.5248 1 0.2880i 0.5117 2 0.0358i
= 0.4676 1 0.0709i 0.0164 1 0.0714i 20.7731 1 0.0691iF G

0.9109 2 0.0475i 21.0789 1 0.6174i 0.7347 1 0.5180i
(73)

It is useful to check the accuracy of these quantities against
the exact ones obtained from the state-space method. The exact
right and left eigenvectors of nonconservative system are ob-
tained as

Uexact

1.0162 1 0.0819i 20.7395 1 0.1175i 0.6187 1 0.5750i
= 0.0665 2 0.1357i 0.9530 2 0.0994i 20.7821 2 0.2688iF G

0.0310 2 0.0527i 20.0063 1 0.1582i 0.8802 1 0.0060i
(74)

Vexact

0.3426 2 0.0505i 0.5248 1 0.2880i 0.5117 2 0.0358i
= 0.4676 1 0.0709i 0.0162 1 0.0713i 20.7731 1 0.0691iF G

0.9109 2 0.0475i 21.0789 1 0.6182i 0.7347 1 0.5180i
(75)

For comparison, the exact eigenvectors are normalized to
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have the same numerical value in the first element. It is clear
that the results obtained from the method outlined hereby
match the exact solutions to an excellent accuracy. An inter-
esting point to be noted is that the matrix C9 is not diagonally
dominant as < However, all of the eigenvalues (i)uC9 u uC9 u. s11 13 j

of the matrix satisfy < 1, as we have obtained(i) (i)R us uu j

max(s(1)) = 0.0791, max(s(2)) = 0.4161, and max(s(3)) =
0.1186. This demonstrates that the condition established in
(32) is a sufficient condition, and there may be cases when
one can obtain the eigenvectors of the nonconservative system
even if this condition is not satisfied.

CONCLUSIONS

The problem of dynamic analysis of nonconservative linear
multiple degrees-of-freedom systems has been considered. The
central theme of the approach adopted in this paper is to utilize
the left and right eigenvectors of the second-order system so
that conversion of the equations of motion to the first-order
form can be avoided. The analysis is restricted to systems with
nonrepetitive eigenvalues and with a nonsingular mass matrix.
It has been assumed that, in general, the mass, damping, and
stiffness matrices are neither symmetric nor positive definite
and cannot be simultaneously diagonalized by any linear trans-
formation. Complex eigenvalues of the system are obtained
from the characteristic equation. The left and right eigenvec-
tors of the nonconservative system are expressed as a complex
combination of the left and right eigenvectors of the corre-
sponding conservative system. The vectors of these complex
constants for both eigenvectors are further determined from a
series obtained by the Neumann expansion method in con-
junction with a Galerkin-type error minimization. A useful suf-
ficient condition for convergence of this series is established.
Transfer functions of the system considered are derived as a
series involving the left and right eigenvectors and complex
natural frequencies of the nonconservative system. The method
described is quite similar to the classical modal analysis where
undamped natural frequencies and modes must be appropri-
ately replaced by complex natural frequencies and left and
right eigenvectors of the nonconservative system. Compared
with the state-space approach, the procedure outlined herein
offers a reduction in computational effort and provides more
physical insight. The expressions developed for the eigenvec-
tors and transfer functions in this paper are very general in
nature, and most of the familiar linear dynamic systems, for
example, undamped/classically damped symmetric systems,
nonclassically damped symmetric systems, undamped asym-
metric systems, damped/undamped gyroscopic systems, etc.,
can be treated as special cases.

APPENDIX I. APPROXIMATE EXPRESSIONS OF
RIGHT AND LEFT EIGENVECTORS

The expressions of the right and left eigenvectors obtained
by taking one term in the series (20) and (25) produce similar
expressions as those obtained from the first-order perturbation
analysis. The validity of this analysis relies on the fact that the
entries of the C matrix are not very large. Considering the
ith set of (11), and neglecting the second-order terms involv-
ing and ;j ≠ i, and also noting that = 1, one obtains(i) (i)a C9, aj ij i

2 22l 1 il C9 1 v = 0, or l ' 6v 1 iC9/2 (76)i i ii i i i ii

This is the first-order approximate expression for the complex
natural frequencies of system (1). To obtain an approximate
expression of the right and left eigenvectors, one simply con-
siders only the first term of the series (20) and (25) and sub-
stitutes and in (9) to obtain(i) (i)a b
t to ASCE license or copyright; see http://pubs.asce.org/copyright



N
il C9 xi ki uku ' x 1 (77a)i u Oi *(l 2 l )(l 1 l )i k ik =1 k

k i≠

N
il C9 xi ik vkv ' x 1 (77b)i v Oi *(l 2 l )(l 1 l )i k ik =1 k

k i≠

In deriving the above expression, using an approximate ex-
pression of the complex frequencies in (77), we have factor-
ized the denominator as 2 1 ' 2(li 2 lk)(li 12 2v l il C9k i i kk

Using this factorization and retaining the first two terms*l ).k

of the series expression (20) and (25), and substituting and(i)a
in (9), one obtains(i)b

N
il C9 xi ki uku ' x 1i u Oi *(l 2 l )(l 1 l )i k ik =1 k

k i≠

N N 2l C9 C9xi kj ji uk
2 O O * *(l 2 l )(l 1 l )(l 2 l )(l 1 l )i k i i j ik =1 j =1 k j

k i j i k≠ ≠ ≠ (78a)
N

il C9 xi ik vkv ' x 1i v Oi *(l 2 l )(l 1 l )i k ik =1 k
k i≠

N N 2l C9 C9xi jk ij uk
2 O O * *(l 2 l )(l 1 l )(l 2 l )(l 1 l )i k i i j ik =1 j =1 k j

k i j i k≠ ≠ ≠ (78b)

The above are second-order approximate expressions for the
right and left eigenvectors of the nonconservative system (1).
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