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Highly anisotropic microtubules (MTs) immersed in cytosol are a central part of the cytoskeleton in

eukaryotic cells. The dynamic behaviors of an MT–cytosol system are of major interest in biomechanics
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community. Such a solid–fluid system is characterized by a Reynolds number of the order 10�3 and a

slip ionic layer formed at the MT–cytosol interface. In view of these unique features, an orthotropic

shell-Stokes flow model with a slip boundary condition has been developed to explore the distinctive

dynamic behaviors of MTs in cytosol. Three types of motions have been identified, i.e., (a) undamped

and damped torsional vibration, (b) damped longitudinal vibration, and (c) overdamped bending and

radial motions. The exponentially decaying bending motion given by the present model is found to be in

qualitative agreement with the existing experimental observation [Felgner et al., 1996. Flexural rigidity

of microtubules measured with the use of optical tweezers, Journal of Cell Science 109, 509–516 ].

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Microtubules (MTs) (Fig. 1) are principle components of the
cytoskeleton in eukaryotic cells, which play an essential role in
providing mechanical rigidity, maintaining the shape of cells and
facilitating many important physiological processes (Ingber et al.,
1995; Nogales, 2000; Cotterill, 2002; Boal, 2002; Howard and
Hyman, 2003; Stamenovic, 2005; Watanabe et al., 2005). The
mechanics of MTs is a topic of numerous researches (Gittes et al.,
1993; Venier et al., 1994; Kurachi et al., 1995; Felgner et al., 1996;
dePablo et al., 2003), where MT vibration is of major interest
(Sirenko et al., 1996; Pokorny, 2003, 2004; Kasas et al., 2004;
Portet et al., 2005; Wang and Zhang, 2008). In particular, since
MTs are immersed in cytosol, the vibration of MTs in a fluid has
attracted attention in the last decade (Sirenko et al., 1996;
Pokorny, 2003 2004). In studying the longitudinal vibration,
Pokorny (2003, 2004) revealed that an ionic charge layer on the
surfaces of MTs minimizes the viscous effect of the cytosol and
allows slide between MTs and cytosol. The more comprehensive
investigation has been carried out by Sirenko et al. (1996), where
three axisymmetric acoustic modes and an infinite set of non-
axisymmetric modes have been obtained. In this study, an
isotropic membrane shell model is used for MTs and the fluid
around MTs is tacitly assumed to be an ideal fluid with an
infinitely large Reynolds number. However, such a model is
oversimplified for anisotropic MTs with bending resistance.
Furthermore, as will be shown later, the nanoscale radius of MTs
gives a Reynolds number of the surrounding fluid three orders of
ll rights reserved.

: +441792 295676.

(C.Y. Wang).
magnitude smaller than unity. The ideal fluid model is thus not
valid for an MT–fluid system. It follows that a more realistic model
for an MT–cytosol system is needed to give a reliable description
of the dynamic behaviors of MTs immerged in cytosol.

Recently, an orthotropic shell model (Wang et al., 2006a,b;
Wang and Zhang, 2008) has been developed to study the
mechanical behaviors of MTs. A good agreement has been
achieved between this shell model, available discrete models
and experiments. Motivated by its valid applications, the present
paper will further extend the model to the vibration analysis of an
MT–cytosol system. The motion of the cytosol will be modeled as
Stokes flow characterized by a small Reynolds number and the
free slip boundary condition will be specified on the MT surface.

Based on this orthotropic shell-Stokes flow model, the
governing equations for the vibration of MTs in cytosol are
derived in Section 2. In Section 3, the phonon-dispersion relations
are predicted for MTs immersed in cytosol and compared with
those of free MTs. Here the major attention is focused on the
damping effect of cytosol on various MT motions. The major
conclusions are summarized in Section 4.
2. The orthotropic shell-Stokes flow model

In this section, we shall develop an orthotropic shell-Stokes
flow model for the dynamic behaviors of MTs in cytosol.
2.1. Dynamic equations of MTs

An orthotropic shell model developed for the free vibration
(Wang et al., 2006a; Wang and Zhang, 2008) and elastic buckling
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Fig. 1. A schematic picture of an MT immerged in cytosol with a slip ionic layer at

the MT–cytosol interface. a and b are tubulin dimers that form MTs.
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(Wang et al., 2006b) of MTs will be further used to study the
dynamic behaviors of MTs in cytosol. Previous studies (Pokorny,
2003, 2004) indicated that the viscous force on MTs is minimized
by a slip ionic layer formed at the MT–cytosol interface (Fig. 1).
The friction acting on MT surface is thus neglected in the
present study. On the other hand, the inner radial pressure
Prr

i and the outer radial pressure Prr
o of MTs due to cytosol have

to be considered. The dynamic equations of MTs in cytosol
can then be written as follows (Wang et al., 2006a; Wang and
Zhang, 2008):
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where x and y are axial and circumferential angular coordinates
(Fig. 1); u, v and w are axial, circumferential and radial
displacements; t is the time; r is the mass density, h is the
thickness and R is the average radius of MTs. In addition, vx and vy
are Poisson ratios in longitudinal and circumferential directions.
(Kx, Ky) and (Dx, Dy) represent the in-plane and bending stiffnesses
in longitudinal and circumferential directions, and (Kxy, Dxy) are
stiffnesses in shear (Appendix A1). Here we consider MTs usually
of a large length-to-diameter aspect ratio as infinitely long shells.
The solution of Eq. (1) then reads (Sirenko et al., 1996)

uðx; y; tÞ

vðx; y; tÞ

wðx; y; tÞ

2
64

3
75 ¼

U

V

�iW

2
64

3
75 exp ðinyþ ikx x� iotÞ (2)

where U, V and W represent the vibration amplitudes of MTs in
longitudinal, circumferential and radial directions, kx is the wave
vector (nm�1) along the longitudinal direction, n is the circumfer-
ential wave number and the real part of o (Re o) gives the angular
frequency.
2.2. Dynamic equations of cytosol motion

The radius R of MTs is around 10 nm and their free vibration
frequency f with ko0.1 (k ¼ Rkx) is of the order 0.1 GHz (Wang
et al., 2006a). If the displacement amplitude Amp of MT vibration
is 10 times smaller than MT radius, the velocity of the cytosol flow
can be roughly estimated as ~v ¼ 4 Amp� f ¼ 0.4 m/s. Since water
is a major part (70%) of cytosol, its kinematic viscosity
Z ¼ 1.004�10�6 m2/s (at 20 1C) should be close to that of cytosol.
Thus, the Reynolds number of cytosol Re ¼ vR/Z is of the order
4.0�10�3. It follows that the motion of cytosol can be modeled as
Stokes flow, i.e., an incompressible fluid with small Reynolds
number (o1), whose governing equations are as follows (Happel
and Brenner, 1973):

r d ~vf ¼ 0 and rpf ¼ mfr
2 ~vf (3)

where ~vf denotes the velocity, pf the pressure and mf the
dynamical viscosity of cytosol.

The continuity condition requires that cytosol moves radially
with the same velocity as that of MTs at r ¼ R. However, due to the
existence of a very thin slip ionic layer on MT surfaces, MTs and
cytosol move independently along the longitudinal and circum-
ferential directions. In fact, as there is no friction between the MTs
and the thin slip layer with negligible momentum and angular
momentum of inertia, the viscous force between the cytosol and
the slip ionic layer must also be zero. It follows that the tangential
velocities of cytosol should vanish at r ¼ R. Thus, the boundary
conditions of cytosol at r ¼ R are

ð ~vf Þx ¼ 0; ð ~vf Þy ¼ 0 and ð ~vf Þr ¼ �
@w

@t
(4)

By using the governing Equation (3) and boundary condition
(4), the radial pressures Prr

i and Prr
o of cytosol at the inner and

outer surfaces of MTs can be expressed as
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The derivation of Eq. (5) and the form of Ai and A0 can be found
in Appendix B.
2.3. Dynamic analysis of MTs in cytosol

By substituting Eqs. (2) and (5) into (1), the original partial
differential can be transformed into the following three algebraic
equations:

fk2
þ bð1þ gÞn2 �O2

gU þ f�ðanx þ bÞkng

�V þ fanxkþ gðk2
� bn2ÞkgW ¼ 0

fðanx þ bÞkngU þ fan2 þ bð1þ 3gÞk2
�O2

g

�V þ anþ gðavx þ 3bÞk2n
n o

W ¼ 0
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fanxkþ gðk2
� bn2ÞkgU þ fanþ gðanx þ 3bÞk2ng

�V þ fgk4
þ 2gðanx þ 2bÞk2n2 þ agðn2 � 1Þ2

þ a� ðO2
�MnkOÞgW ¼ 0 (6)

where O (O ¼ Ro/SL) is a dimensionless frequency quantity
(SL ¼

ffiffiffiffiffiffiffiffiffiffiffi
Ex=r

p
and Ex is an axial Young’s modulus), Mnk ¼

�imf =h
ffiffiffiffiffiffiffiffi
rEx

p
ðAo
ðn; kÞ � Ai

ðn; kÞÞis the equivalent damping coeffi-
cient of cytosol, a and b (Appendix A2) describe the anisotropic
characters of MTs, and g ¼ Dx/kx. The existence condition of a
nonzero solution of U, V and W is

det Hðn; k; OÞ3�3 ¼ 0 (7)

where H is the coefficient matrix of Eq. (6). Solving Eq. (7), one can
obtain O as a function of n and k for MTs submerged in cytosol.
Substituting the value of O into Eq. (7) yields the amplitude ratio
(U/W, V/W, 1), which defines the associated vibration modes of
MTs.
3. Results and discussions

Proceeding in the way demonstrated in Section 2, we shall
study the dynamic behaviors of MTs immersed in cytosol. The
values of material constants used here are in Appendix A3.
3.1. Axisymmetric vibration of MTs

In this section we shall focus on the axisymmetric vibration of
MTs where the circumferential wave number n ¼ 0. In this case
the displacements of MTs are uniformly distributed along the
circumference independent of y. The phonon-dispersion curves
have been calculated in Fig. 2 for MTs in cytosol (solid lines) and
compared with those of free MTs (dotted lines). In Fig. 2, free MTs
show longitudinal (L) and torsional (T) modes characterized by a
linear dispersion law and a radial (R) mode whose frequency
approaches an asymptotic value when k goes to zero. When
cytosol is introduced, it is seen from Fig. 2 that an MT–cytosol
system only supports L and T modes, whose phonon-dispersion
curves coincide with their counterparts of free MTs. In contrast,
the R mode observed for free MTs vanishes.
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Fig. 2. The phonon-dispersion curves for axisymmetric modes of free MTs (dotted

lines) and MTs in cytosol (solid lines). L: longitudinal mode, T: torsional mode, R:

radial mode. Here, the dotted lines for L and T modes of free MTs coincide with

their solid counterparts obtained for MTs in cytosol.
It is easy to see that at n ¼ 0, the second equation of Eq. (6)
reduces to

fbð1þ 3gÞk2
�O2

gV ¼ 0 (8)

which is decoupled with other two equations of Eq. (6). It thus
gives a pure torsional vibration of MTs with a linear dispersion
relation OE0.032k (see Fig. 2). Obviously, the damping coefficient
Mnk has no effect on such a vibration which is decoupled with a
radial motion. The axisymmetric T mode in cytosol is thus a free
vibration without damping.

The first and third equations of Eq. (6) with n ¼ 0 form Eq. (9),
which describes the vibration modes where longitudinal and
radial displacements are coupled via vx and g

k2
�O2 anxkþ k3g

anxkþ k3g k4gþ aðgþ 1Þ � ðO2
�MnkOÞ

" #
U

W

� �
¼ 0 (9)

Here let us first consider small k, e.g., ko0.1. Bearing in mind
that a, g and k51, the following approximate equation can be
obtained based on Eqs. (9) and (7)

ðO2
� k2
ÞðO2
�MnkO� aÞ ¼ 0 (10)

A linear dispersion relation O ¼ k can be derived, which
corresponds to L mode (Fig. 2) in the limit of small k, i.e.,
extremely large axial wavelength l ( ¼ 2pR/k). In this case, MTs
behave like elastic columns where L mode is almost decoupled
with the radial one. Thus, damping of such an L mode can almost
be neglected. On the other hand, in general case the axisymmetric
L mode of elastic shells is still coupled with a small radial motion.
In this case the exact solution given by condition (7) for Eq. (9) is
O ¼ A�Bi where A and B are positive real numbers. Recall Eq. (2)
and replace o with SLO/R the longitudinal vibration can be
expressed as

uðx; y; tÞ ¼ ðUeð�BSL=RÞtÞ expðinyþ ikxx� i
ASL

R
tÞ (11)

It is clearly seen from Eq. (11) that A gives the frequency
quantity shown in Fig. 2 and –B quantifies the damping effect of
cytosol on the L mode, i.e., the amplitude U of the L mode
decreases exponentially with time t. Thus, in cytosol the
axisymmetric L mode of MTs is generally a free vibration with
significant damping.

Furthermore, at small k, O2
�MnkO�a ¼ 0 can also be obtained

from Eq. (10). In the absence of cytosol, i.e., Mnk ¼ 0, this equation
yields O ¼ Oa which gives the dispersion relation for the
axisymmetric R mode (Fig. 2). In the presence of cytosol the

solution of the equation is O ¼ Mnk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

nk þ 4a
q

=2 ¼ �Bi. Our

numerical results show that such a solution can be obtained for
the R mode throughout the full length of k considered here. Thus,
the axisymmetric radial motion of MTs in cytosol is an
exponentially decreasing function of time t, i.e., e�ðBSL=RÞt , which
corresponds to an overdamped vibration where only non-
oscillatory radial motion is allowed.

3.2. Non-axisymmetric vibrations

In this section we turn to the non-axisymmetric vibration of
MTs in cytosol, which is characterized by nX1. In this case,
coupling always occurs among displacements of MTs in long-
itudinal, circumferential and radial directions. Naturally, the
energy dissipation will take place as a result of the MT–cytosol
interaction in radial direction and the strong viscous force in
cytosol. The phonon-dispersion relations have been derived for
the non-axisymmetric vibrations of MTs in cytosol (solid lines)
and compared with those of free MTs (dotted lines) in Fig. 3.
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As shown in Fig. 3, for each (n,k) there exist three non-
axisymmetrical vibration modes for free MTs. For n ¼ 1 and ko1
the lowest frequency (Fig. 3a) corresponds to the bending (B)
mode where MTs bend in tranverse direction with rigid body
motion of their circular cross-sections. For nX2 and ko1 the
lowest frequency (Fig. 3b and c) is associated with the circumfer-
ential (C) modes where the bending of MTs occurs in circumfer-
ential direction with distorted (non-circular) cross-sections. In
addition, the intermediate frequency gives the C or R mode and
the highest frequency corresponds to the L mode of MTs. For MTs
in cytosol, Fig. 3 shows that the available non-axisymmetric
vibration is limited to L and T modes where longitudinal and
circumferential displacements are much greater than the radial
one. Similar to the axisymmetric L mode, the solution of Eq. (7) for
the non-axisymmetric L and T modes is O ¼ A�Bi (B40) showing
that they are damped vibrations defined by the type of function
shown in Eq. (11). As far as the T mode at k42 and L mode are
concerned, no visible discrepancy can be found in Fig. 3 between
free MTs and those immersed in cytosol. This phenomenon has
also been observed in Fig. 2 for axisymmetric L and T modes. It is
thus concluded that the major influence of cytosol is to demolish
the amplitudes of vibrations that survive in an MT–cytosol
system, instead of altering their frequencies.

Stronger damping occurs for B, R and C modes of MTs, whose
radial displacements are comparable to or even larger than those
in longitudinal and circumferential directions. As shown in Fig. 3,
these vibrations obtained for free MTs have been eliminated in an
MT–cytosol system. The numerical analysis indicates that O
obtained in Eq. (7) for these motions is �Bi, suggesting that the
transverse bending, circumferential bending and radial motions of
MTs are non-oscillating motions defined by e�ðBSL=RÞ�t. In particular,
the exponential decay of transverse bending has been observed
experimentally for MTs in (Felgner et al., 1996), where an MT in a
solution was bent by a laser beam and when switching off the
laser power it went back to its equilibrium with an exponential
decay of its deflection. Such a non-oscillatory bending motion,
however, is in sharp contrast to the undamped bending vibration
predicted by the shell-ideal fluid model (Sirenko et al., 1996).
Thus, the agreement between the present shell-Stokes flow model
and the experiment shows that the present model is more
realistic, which gives a reliable description for the dynamic
behaviours of MTs in cytosol.

As mentioned before, the friction on MT surfaces is small and
thus neglected in the present study. The damping effect of cytosol
is, therefore, attributed primarily to the MT–cytosol interaction in
radial direction, i.e., the motion-induced net pressure Prr

o
�Prr

i

(Eq. (5)) on MTs due to cytosol. This explains why the axiymmetric
T mode of MTs decoupled with radial vibration is free from
damping, the L and non-axisymmetric T modes coupled with
small radial displacements appear as damped free vibrations, and
the bending and radial motions of MTs with large radial
displacements turn out to be non-oscillatory motions. Here, the
relaxation time t ( ¼ R/BSL ln10), i.e., the time it takes to reduce
the vibration amplitude to one-tenth of its initial value is
calculated to measure the damping of L modes and non-
axisymmetric T modes. The results show that t varies from the
order of 0.01 ms (10�8) to 105 s, and is always three–eleven orders
of magnitude greater than the corresponding vibration period.
Thus, even with strong damping the L and non-axisymmetric T

modes could still exert significant impacts on the mechanical
integrity and appropriate functioning of MTs.
4. Conclusion

An orthotropic shell-Stokes flow model has been developed to
study the dynamic behaviors of MTs in cytosol. It is found that
(a)
 Nanoscale MTs give a small Reynolds number (�10�3) for the
surrounding cytosol flow suggesting the predominant effect of
its viscous force. The energy dissipation due to this viscous
force is identified as an origin of damping and the strength of
damping is largely determined by the motion-induced net
radial pressure on MTs.
(b)
 The axisymmetric torsional vibration decoupled with radial
motion leads to zero net pressure on MTs and thus, is free
from the damping effect of cytosol. The longitudinal and non-
axisymmetric torsional vibrations induce a significant net
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pressure on MTs via their small radial components and results
in the damped vibrations decaying exponentially with time.
(c)
 The strongest damping occurs for the transverse or circumfer-
ential bending and radial motions of MTs, which result in a
high net pressure on the MTs. These motions of MTs turn out
to be non-oscillatory motions in cytosol.
The present orthotropic shell-Stokes flow model removes the
substantial defects of the previous study (Sirenko et al., 1996)
where a fluid surrounding MTs is modeled as an ideal fluid.
Specifically, the qualitative agreement between the present model
and the experiment (Felnger et al., 1996) in studying the bending
motion of MTs shows a clear evidence for the relevance of the
present model to the dynamic behaviors of nanoscale tubes
immersed in a fluid.
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