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The inverse problem of estimating time-invariant (static) parameters of a nonlinear
system exhibiting noisy oscillation is considered in this paper. Firstly, a Markov Chain
Monte Carlo (MCMC) simulation is used for the time-invariant parameter estimation
which exploits a non-Gaussian filter, namely the Ensemble Kalman Filter (EnKF) for state

Particle Filter (PF) (that uses the EnKF for its proposal density for the state estimation) has
been adapted for combined state and parameter estimation. Numerical illustrations
highlight the strengths and limitations of the MCMC, EnKF and PF algorithms for time-
invariant parameter estimation. For low measurement noise and dense measurement
data, the performances of the MCMC, EnKF and PF algorithms are comparable. For high
measurement noise and sparse observational data, the EnKF fails to provide accurate
parameter estimates. Hence the adapted PF algorithm becomes necessary in order to
obtain parameter estimates comparable in accuracy to the MCMC simulation with EnKF.
It highlights the fact that the augmented state space model for the combined state and
parameter estimation contains stronger nonlinearity than the original state space model.
Hence the EnKF effectively handles the state estimation of the original state space model,
but it fails for the combined state and parameter estimation using the augmented system.
The effectiveness of the EnKF for the state estimation is therefore leveraged in the MCMC
simulation for the time-invariant parameter estimation. In order to obtain accurate
parameter estimates using the augmented system, the adapted PF becomes necessary to
match the parameter estimates obtained using the MCMC simulation complemented by
EnKF for likelihood function computation.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering systems, noisy oscillation arises in numerous aero-elastic and hydro-elastic problems (e.g. [1–3]). The
noisy oscillation phenomenon received widespread attention in the structural dynamics research community as it may lead
to large amplitude response and fatigue leading to system failure. The state and parameter estimates of systems exhibiting
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noisy oscillation obtained from noisy observational data provide valuable information for assessing the safety and reliability
of the engineering system in its operational state. In this paper, the problem of time-invariant (static) parameter estimation
of a nonlinear system displaying noisy oscillation is considered blending informations contained in the observational data
with the predictive model.

The parameter estimation problem of noisy oscillation falls in the general category of system identification [4]. In the
context of nonlinear structural modelling, one of the earliest attempts of system identification was made by Ibanez [5] and
Masri and Caughey [6]. Various techniques have been subsequently developed to tackle nonlinearity. For a thorough
overview, the reader may refer to the book by Worden and Tomlinson [4] and review article by Kerschen et al. [7]. For a
Duffing oscillator, Aguilar-Ibanez et al. [8] recently utilized an algebraic approach to the identification of the system
parameters. Narayanan et al. [9] applied a hybrid time/frequency-domain-based Fourier series identification method to
estimate the Duffing system parameters. The book by Bendat [10] provides a detailed exposition of Volterra series based
nonlinear system identification techniques. The spectral identification procedures for nonlinear systems are reported by
Zeldin and Spanos [11] and Spanos and Lu [12]. Kougioumtzoglou and Spanos [13] developed identification techniques for
nonlinear systems based on harmonic wavelets. Manohar and Roy [14] estimated the state and nonlinear stiffness
parameter of the Duffing oscillator from noisy observations using the PF with a Gaussian proposal distribution. In this paper,
we continue our previous investigations [15,16] by applying EnKF, and PF for combined state and parameter estimation of a
Duffing system.

Kalman Filter (KF) is generally applied to estimate the mean and covariance of the state based on observational data [17].
KF provides an optimal estimate for linear systems with additive Gaussian noise. For weakly nonlinear systems, KF may still
provide reasonable estimates using linearization techniques leading to the so-called Extended Kalman Filter (EKF) [18–20].
The major limitation of EKF is due to the third- and higher-order moments in the error covariance evolution equation being
discarded, leading to its poor performance [20]. While dealing with strongly nonlinear systems, Monte Carlo based
sequential filtering algorithms have gained popularity due to their superiority over EKF. These sampling-based methods
represent the probability density function (pdf) of the state vector using a finite number of randomly generated states.
Typical examples of Monte Carlo based filters include EnKF [20] and PF [21–23]. EnKF effectively resolves some major
problems encountered in EKF, including poor error covariance evolution [24]. Using a non-parametric approach, the
nonlinear system identification technique is developed by using EnKF in structural dynamics [25]. EnKF has been shown to
perform poorly in some applications involving highly non-Gaussian system behaviour [26,27]. As a remedy to this problem,
a filter has been proposed by Anderson [28] that utilizes a weighted sum of Gaussian pdfs to represent the pdf of the system
state. For time-invariant parameter estimation using PF for real time applications, Storvik [29] developed a methodology to
marginalize the static parameters from the posterior when the pdf of the unknown parameters lies on some low-
dimensional sufficient statistics. Storvik's approach [29] avoids the sample impoverishment in PF while estimating time-
invariant parameters. For static parameter estimation, Vrugt et al. [30] used the Particle Markov Chain Monte Carlo method [31]
which uses PF to design efficient proposal density for MCMC.

PF [21–23] is a Bayesian data assimilation technique that makes neither Gaussian assumption nor linearization of the
model and measurement operators. For highly nonlinear systems, PF may provide better estimates compared to EnKF (e.g.
[15,16]). For joint state and parameter estimation, PF usually requires an extremely large ensemble of particles (or Monte
Carlo samples) compared to EnKF in order to avoid filter divergence in PF [20,32]. The required ensemble size may be
reduced in PF through a resampling step [14,23,33,34] in conjunction with an efficient sampling technique, such as Latin
Hypercube Sampling (LHS) [35,36], as shown in previous investigations by the authors [15,16]. To further alleviate the
requirement of large ensembles, an artificial dynamic model of the unknown parameters is introduced by which the
parameters are modelled as Wiener processes [37,38], but the performance of this approach is rather poor [39]. More
recently, several investigators [40,33,39] have proposed regularization of the distribution of the state vector. However, the
regularization step utilizes convolution kernels which have an effect similar to that caused by the introduction of artificial
dynamics [39,38]. In addition to these proposed strategies, a number of PF algorithms have been proposed that utilize other
nonlinear filters in providing more efficient proposal distributions, leading to the so-called EKF–PF and Unscented Kalman
Filter (UKF)–PF (e.g. [41]) and the EnKF–PF [42,43].

In [42,43], the (non-Gaussian) proposal is obtained with kernel density estimation (KDE) [44] applied to the updated
EnKF ensemble using the distance in Sobolev spaces. More specifically, the norm of the Cameron–Martin space [45,46] is
used for deriving the density estimates. For the joint state and parameter estimation using nonlinear filters, the state vector
is augmented by the unknown parameters to be estimated. The norm associated with the Cameron–Martin space is no
longer applicable to this augmented vector since it can no longer be considered as a discrete representation of smooth
functions. This PF algorithm will be extended in this paper to deal with the estimation of time-invariant parameters. The
authors propose the application of a generalization of Scott's rule for multivariate KDE as in [44,47]. This step consists of
applying a Mahalanobis transformation [48] to the augmented state vector to transform the estimated covariance matrix of
the augmented state vector to identity. KDE will subsequently be performed using this transformed vector using a
generalization of Scott's rule [44,47] for the multivariate case. Finally, the estimated pdf will be transformed back to the
original coordinate. The proposed PF circumvents the need to artificially inflate the variances of the parameters in order to
avoid filter divergence, thus making it well-suited for the time-invariant (i.e. static or fixed) parameter estimation.

For the parameter estimation of dynamical systems using nonlinear filters, the unknown system parameters are
concatenated to the state vector leading to a higher dimensional state space model than the original system. Even if the
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original state space model is linear, the augmented system generally becomes nonlinear. For the filter convergence, the
static parameters are treated as time-varying quantities being perturbed by the artificial noise for the optimal filter
performance (e.g. [15,38,49]). Although an appropriate choice of the joint prior pdf may alleviate this difficulty, it becomes
difficult for high-dimensional parameter spaces.

In this paper, we adopt a MCMC simulation for the time-invariant parameter estimation complemented by a non-
Gaussian filter, namely EnKF for the state estimation. Due to the presence of stronger nonlinearity in the augmented system,
the combined state and parameter estimation method fails to provide accurate estimates using EnKF. Consequently, a
recently proposed PF algorithm by Mandel and Beezley [42,43] has been extended for the combined state and parameter
estimation in order to obtain results which are comparable in accuracy to the MCMC simulation. As alluded to previously,
the augmented state space model, constructed for the combined state and parameter estimation, inherits stronger
nonlinearity than the original state space model used for the state estimation. This fact is exploited in the MCMC based
parameter estimation procedure whereby the state estimation problem is adequately handled by EKF (e.g. [50–53]) as the
conditional pdf of the state is close to Gaussian. In this paper, we consider the cases when the conditional pdf of the state
vector can no longer be approximated to be Gaussian. To this end, the contributions of the paper are as follows:
(1)
 Development of a time-invariant (static) parameter estimation algorithm for strongly nonlinear oscillatory systems
using MCMC simulation whereby the likelihood function in the parameter posterior is computed by EnKF based non-
Gaussian filter. To the authors' best knowledge, such nested two-level sampling (i.e. the first level for EnKF and second
level for MCMC) scheme, that is capable of handling strong nonlinearity in mechanical oscillators, has not been reported
in the literature.
(2)
 We extend the PF algorithm by Mandel and Beezley [37,38], originally proposed for just state estimation in atmospheric
science applications, to handle combined state and parameter estimation of strongly nonlinear oscillatory systems.
(3)
 The application of these algorithms for the time-invariant parameter estimation of a noisy nonlinear oscillatory system
which highlights the merits and limitations of (a) MCMC simulation complemented by EnKF for likelihood function
computation, (b) EnKF and (c) the adapted PF algorithms. Such comparative analysis has not been reported in the
literature. This specific application clearly illustrates the strengths and limitations of these algorithms which is not
apparent from mathematical formulations alone.
In this investigation, we conduct extensive numerical investigations using the Duffing oscillator model to study the effects of
sparsity of observational data and strength of measurement noise on the parameter estimates obtained using MCMC, EnKF
and an extension of the newly developed PF by Mandel and Beezley [42,43]. As the Duffing oscillator model displays a wide
range of dynamical behaviour with small perturbations to the system parameters [54,55], it is chosen for numerical
investigation.

2. Mathematical formulation for parameter estimation

The model and measurement equations for a discrete state-space representation of a nonlinear system are given
by [18–20,22,23,33,38,41,56]

ukþ1 ¼ gkðuk;ϕ; fk;qu
k Þ; (1)

dj ¼ hjðukðjÞ;ϕ; ϵjÞ: (2)

Here uARn is the state vector, gARn is the discrete nonlinear model operator, ϕARnϕ is the static (time-invariant)
parameter vector, fARp is a deterministic input, qu

kARs is a Gaussian random vector with the mean qu
k ARs and covariance

matrix Q uuARs�s respectively and dARm, the measurement vector, maps the true state by the nonlinear measurement
operator hARm; ϵkARr is a Gaussian random vector with the mean ϵk ARr and covariance matrix ΓARr�r respectively.
Here qu

k and ϵk are assumed to be independent. Note that the indexes k and k(j) denote the time steps for the model
integration and the arrival of measurement data (e.g. [20]).

2.1. Nonlinear filtering approach

In the framework of nonlinear filtering, the unknown time-invariant parameter vector ϕ is treated as a time-varying
quantity (e.g. [15,38]). Additionally, the parameter vector is artificially perturbed randomly for filter convergence (e.g.
[15,38]). Therefore, the revised state space model is written as (e.g. [15,38])

ukþ1 ¼ gkðuk;ϕk; fk;q
u
k Þ; (3)

ϕkþ1 ¼ϕkþqϕk ; (4)

dj ¼ hjðukðjÞ;ϕkðjÞ; ϵjÞ (5)
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where qϕk is the artificial random noise vector which may require finetuning for optimal filter performance (e.g. [15,38]).
Next the new state vector is formed by appending the unknown parameter vector to the original state vector leading to the
following augmented state space model:

xkþ1 ¼ gkðxk; fk;qkÞ; (6)

dj ¼ hjðxkðjÞ; ϵjÞ; (7)

where

xk ¼
uk

ϕk

( )
; qk ¼

qu
k

qϕk

( )
(8)

Consequently, any nonlinear filter can be used to tackle the combined state and parameter estimation from which the
relevant parameter vector is easily extracted. In this paper, we use EnKF and PF to obtain the joint state and parameter
estimates. These results are compared to those obtained using MCMC approach as described next.

2.2. Markov chain Monte Carlo simulation approach

In the general Bayesian framework (e.g. [20]) , the joint pdf of the state and parameter vector can be written as [57]

pðu1;…;ukðJÞ;…;uk;ϕjd1;…;dJÞppðϕÞ ∏
kð1Þ

k ¼ 1
pðukjuk�1;ϕÞ

" #
pðd1jukð1Þ;ϕÞ

⋮

∏
kðJÞ

k ¼ kðJ�1Þþ1
pðukjuk�1;ϕÞ

" #
pðdJ jukðJÞ;ϕÞ

∏
K

k ¼ kðJÞþ1
pðukjuk�1;ϕÞ

" #
(9)

Consequently, the marginal posterior of the parameter vector can be obtained as [57]

pðϕjd1;…;dJÞppðϕÞ ∏
kð1Þ�1

k ¼ 1

Z 1

1
pðukjuk�1;ϕÞ duk

" # Z 1

1
pðukð1Þjukð1Þ�1;ϕÞpðd1jukð1Þ;ϕÞ dukð1Þ

� �
⋮

∏
kðJÞ�1

k ¼ kðJ�1Þþ1

Z 1

1
pðukjuk�1;ϕÞ duk

" #" Z 1

1
pðukðJÞjukðJÞ�1;ϕÞpðdJ jukðJÞ;ϕÞ dukðJÞ

#

∏
K

k ¼ kðJÞþ1

Z 1

1
pðukjuk�1;ϕÞ duk

" #
(10)

The above equation can be concisely written as [57]

pðϕjd1;…;dJÞppðϕÞ ∏
J

j ¼ 1

Z 1

1
pðukðjÞjukðjÞ�1;ϕÞpðdjjukðjÞ;ϕÞ dukðjÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood function

(11)

where the computation of pðukðjÞjukðjÞ�1;ϕÞ involves a state estimation problem. In our previous work, the likelihood
function in Eq. (11) is computed semi-analytically using the Extended Kalman Filter (EKF) [51]. The EKF based approach
provides acceptable results when the state vector is close to Gaussian; and this methodology is computationally attractive as
it avoids Monte Carlo sampling for state estimation. As the state becomes non-Gaussian due to nonlinearities in the system,
EKF based likelihood computation becomes highly inaccurate. In the current investigation, EnKF handles the state
estimation for the likelihood computation which involves Monte Carlo sampling, but accurately handles non-Gaussian
state estimation.

MCMC method [58,59] can be used to generate samples of the parameter vector from pðϕjd1;…;dJÞ (known only up to a
proportionality) as detailed in [51,60–62]. In this investigation, a new sample ϕ0 of the parameter vector is generated from
the current sample ϕ using a random-walk Metropolis–Hastings (MH) algorithm [59] as described in [51,60–62]. In this
approach, the acceptance probability αðϕ;ϕ0Þ is (e.g. [58,59])

α ϕ;ϕ0� �¼min 1;
pðϕ0jd1;…;dJÞ qðϕ0

;ϕÞ
pðϕjd1;…;dJÞ qðϕ;ϕ0Þ

 !
(12)

where the proposal density q is assumed to be uniformly distributed in ½�w;w�nϕ [51]. The appropriate choice of the
proposal width w is critical to the efficiency of MH MCMC and chosen to have 25 percent acceptance ratio [51].
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3. Ensemble Kalman filter

In this section, we generalize the analysis step of EnKF for nonlinear measurements, closely following the derivation of
the Unscented Kalman filter (e.g. [63]). For strong nonlinearity, EKF may provide erroneous conditional mean and covariance
estimates due to linearization of the model and measurement operators. In EnKF, proposed by Evensen [20], a finite number
of Monte Carlo samples of the state vector xk are propagated forward in time using the original model operator. One can
estimate the pdf of xk using ensemble averaging. However, EnKF performs a linear analysis step which involves the
linearization of nonlinear measurement operator. Furthermore, the analysis step assumes a Gaussian state and measure-
ment noise which offers computational efficiency but introduces errors in the estimated conditional pdf of xk.

Furthermore the prior pdf of x is assumed to be xk � pðxf
kÞ. A prior pdf is the pdf of the state prior to assimilating the

available data. In the analysis step, EnKF estimates the posterior pdf xkðjÞ � pðxa
kðjÞÞ based on the measurement vector dj.

Considering again the model and measurement equations as described by Eqs. (6)–(7), EnKF provides estimates of the
conditional mean and covariance of the state vector as follows [20]:
(1)
 Create an initial ensemble fxf
0;ig of size N with i¼ 1;…;N, using the prior pdf of x0.
(2)
 Compute perturbed measurements as

dj;i ¼ hj xf
kðjÞ;i; ϵj;i

� �
: (13)
(3)
 Analysis step:

d j ¼
1
N

∑
N

i ¼ 1
dj;i; (14)

x f
kðjÞ ¼

1
N

∑
N

i ¼ 1
xf
kðjÞ;i; (15)

Pxd ¼
1

N�1
∑
N

i ¼ 1
xf
kðjÞ;i�x f

kðjÞ

� �
ðdj;i�djÞT ; (16)

Pdd ¼
1

N�1
∑
N

i ¼ 1
ðdj;i�djÞðdj;i�djÞT ; (17)

KkðjÞ ¼ PxdP
�1
dd ; (18)

ϵj ¼
1
N

∑
N

i ¼ 1
ϵj;i; (19)

Γj ¼
1

N�1
∑
N

i ¼ 1
ϵj;i�ϵj
� �ðϵj;i�ϵj ÞT (20)

xa
kðjÞ;i ¼ xf

kðjÞ;iþKkðjÞ dj;i�hjðxf
kðjÞ;i; ϵj;iÞ

� �
(21)
(4)
 Forecast step:

xf
kþ1;i ¼ gkðxa

k;i; fk;qk;iÞ (22)
Here we generalize the analysis step of EnKF closely following the derivation of the Unscented Kalman filter (e.g. [63]). For
strongly nonlinear models, the analysis step in EnKF is the major limitation due to the implicit Gaussian assumption of the
state vector. For the case of additive measurement noise hkðxk; ϵkÞ ¼ hkðxkÞþϵk, one can however augment the original state
vector with hkðxkÞ for full nonlinear analysis [64]. The perturbation of measurements can be avoided using the square-root
algorithm [20]. In contrast to EKF, EnKF avoids the memory-intensive storage of the covariance matrix Pk [20]. In EnKF, the
statistics of the state vector can be obtained by ensemble averaging which introduces statistical sampling errors [20].

4. Particle filter

In the section, we extend the PF algorithm proposed by Mandel and Beezley [42,43], originally used for the state
estimation, to handle combined state and parameter estimation exploiting a general multivariate kernel density estimator.
PF [21–23,18] can handle the most general forms of nonlinearities in measurement and model operators and non-Gaussian
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model and measurement noise. In contrast to EKF and EnKF, no Gaussian assumption on the state is necessary. Therefore, PF
is superior to EnKF and EKF for strongly non-Gaussian models (e.g. [26,27]). The formulation of PF presented next closely
follows Tanizaki [21] and Ristic et al. [23].

Once again, Eqs. (6) and (7) describe the model and measurement respectively. Let us define the collection of the state
and measurement vectors using the following matrices [21,23]:

Xk ¼ fx1;…; xkð1Þ;…; xkðjÞ;…; xkg; (23)

Dj ¼ fd1;…;djg: (24)

By Bayes' Theorem, we have (e.g. [21–23])

p XkjDj
� �¼ pðDjjXkÞpðXkÞR

pðDjjXkÞpðXkÞdXk
: (25)

Under the assumptions that (1) the successive states of the system form a Markov chain of order one and (2) the
measurement vectors are statistically independent at different time instants are independent, a recursive relationship
between the posterior pdf at time tk and time tk�1 can be obtained as (e.g. [21,23,65,66])

p XkðjÞjDj
� �¼ p XkðjÞ�1jDj�1

� �pðdjjxkðjÞÞpðxkðjÞjxkðjÞ�1Þ
pðdjjDj�1Þ

: (26)

In filtering applications, quantities of interest relating to the conditional state vector, including the conditional mean and
variance, can be estimated as follows:

E½gðXkÞjDj� ¼
Z

gðXkÞpðXkjDjÞ dXk: (27)

Although there are methods for generating samples from an arbitrary distribution, the computational cost is generally
high, especially when the probability density is multidimensional [59,67,68]. Thus, it is assumed that samples can be easily
generated according to another pdf qðXkjDjÞ (i.e. the proposal distribution, or importance density function) and that one
could evaluate pðXkjDjÞ easily. It is then possible to rewrite the integral in Eq. (27) as

E g Xkð ÞjDj
	 
¼ Z

g Xkð ÞpðXkjDjÞ
qðXkjDjÞ

q XkjDj
� �

dXk (28)

which can be approximated using independent samples fXk;ig; i¼ 1;…;N, distributed according to qðXkjDjÞ by (e.g. [21–23])

Ê½gðXkÞjDj� ¼ ∑
N

i ¼ 1
gðXk;iÞwk;i (29)

where the weights are given by

wk;i ¼
pðXk;ijDjÞ
qðXk;ijDjÞ

(30)

In practice one does not know the analytical expression of pðXkjDjÞ as it is precisely the density that one seeks to
approximate. However, the calculation of the weights admits a recursive expression. Using the identity in Eq. (26) and a
proposal distribution that permits the following factorization:

qðXkðjÞjDjÞ ¼ qðxkðjÞjxkðjÞ�1;DjÞ qðXkðjÞ�1jDj�1Þ; (31)

the recursive expression of the weights becomes (e.g. [21,23,65,66])

wkðjÞ;ipwkðjÞ�1;i
pðdjjxkðjÞ;iÞpðxkðjÞ;ijxkðjÞ�1;iÞ

qðxkðjÞ;ijxkðjÞ�1;i;DjÞ
: (32)

In the above expression, qðxk;ijxk�1;i;DjÞ is the proposal density used to sample the kth point of the trajectory, conditional
on the previous states and measurements. The particle filtering algorithm consists of two steps at each iteration:
(1)
 Forecast step: Obtain samples from a proposal distribution

xk;i � qðxk;ijxk�1;i;DjÞ; i¼ 1;…;N (33)
(2)
 Analysis step: Update the weights of all particles based on the observation dj according to

~wkðjÞ;i ¼wkðjÞ�1;i
pðdjjxkðjÞ;iÞpðxkðjÞ;ijxkðjÞ�1;iÞ

qðxkðjÞ;ijxkðjÞ�1;i;DjÞ
(34)
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wkðjÞ;i ¼
~wkðjÞ;i

∑N
i ¼ 1

~wkðjÞ;i
: (35)
4.1. Necessity of a resampling step

In the classical problem of recursive estimation, uncertainty of the state is initially high which gradually decreases with
the sequential assimilation of observations. In most cases, the support of pðxkjDjÞ is initially large and decreases over time.
The particles are scattered across the state space according to some proposal distribution. Depending on the choice of
proposal distribution, in some cases one ends up with the majority of particles being dispersed in areas where pðxkjDjÞ is
very small in value. Therefore, these particles have a very low weight. The severity of this so-called degeneracy phenomenon
depends on the problem and the choice of the proposal distribution.

To alleviate the degeneracy of the particles, a resampling step will be undertaken to remove particles of negligible weight
and duplicate the particles of high weight. There are different methods for resampling including multinomial sampling
[34,69–71]), residual resampling [72,73] and stratified sampling [72]. Resampling can be performed at every step of the
filter, or only performed if degeneracy is detected. The resulting filter is commonly known as a Sampling Importance
Resampling (SIR) filter. The multinomial resampling method used in this investigation is summarized as follows:
(1)
 Draw N independent and identically distributed samples from a uniform distribution on ½0;1�
ui � Uð0;1Þ; i¼ 1;…;N (36)
(2)
 Obtain the cumulative density function v of the weights:

vj ¼ ∑
j

l ¼ 1
wk;l (37)
(3)
 For m¼ 1;…;N, determine n such that vnrumovnþ1 and copy the nth particle xk;n into the new ensemble

(4)
 Reset the particle weights wk;i ¼ 1=N, for i¼ 1;…;N.
An indicator of the presence of degeneracy the effective ensemble size defined by [22,73–75]

Neff ¼
1

∑N
i ¼ 1ðwk;iÞ2

: (38)

Neff is equal to the ensemble size N if all weights are equal and decreases as the extent of degeneracy increases. Thus,
resampling can be performed when the effective ensemble size falls below a certain threshold value, denoted by Nthr

[74,73,22,75]. A common threshold for resampling is Neff ¼N=3 [22], which will be used herein.
It is important to note that although the resampling step is essential to the effective functioning of the particle filter, it

may have adverse effects on the operation of the filter and the quality of the particle representation of the posterior pdf
pðxkjDjÞ. Indeed, particles with relatively high weight are duplicated numerous times leading to loss of diversity among the
ensemble. If the model noise term is relatively weak, the ensemble members will be close to each other during the
subsequent iterations and the space state is insufficiently explored. This is the motivation behind performing the resampling
step when degeneracy is detected.

4.2. Choice of proposal distribution

The resampling step aims at reducing the effect of the degeneracy phenomenon whereby the majority of particles are
clustered in areas where pðxkjDkÞ is very small, due to a poor choice of proposal distribution. Thus the judicious selection of
proposal distribution minimizes the occurrence of degeneracy and reduce the overall number of resampling steps.

Utilizing the prior pdf as the proposal distribution, i.e.

qðxkðjÞjxkðjÞ�1;DjÞ ¼ pðxkðjÞjxkðjÞ�1Þ (39)

leads to the simplest method, often referred to as the bootstrap filter [34]. Such proposal pdf ignores the most recent
observation dk. The particle trajectories are obtained by simply applying the stochastic model equation to update the state
vector of each particle. The most recent observation is used in the weight-update equation which simplifies to [23,34]

~wkðjÞ;i ¼wkðjÞ�1;i pðdjjxkðjÞ;iÞ: (40)

This choice of proposal distribution ignores the most recent observation and thus is not optimal (it does not significantly
minimize the occurrence rate of degeneracy). The optimal proposal distribution (or importance function) is the distribution
that minimizes the variance of the particle weights (and thus also minimizes the occurrence of the degeneracy



M. Khalil et al. / Journal of Sound and Vibration 344 (2015) 81–10088
phenomenon) [22]. The optimal importance function is given by [22]

qðxkðjÞjxkðjÞ�1;DjÞ ¼ pðxkðjÞjxkðjÞ�1;i;djÞ (41)

which would in turn give the following weight update equation [22]:

~wkðjÞ;i ¼wkðjÞ�1;i pðdjjxkðjÞ�1;iÞ: (42)

The optimal proposal suffers from two major drawbacks. It requires the ability to sample from pðxkðjÞjxkðjÞ�1;i;djÞ and to
evaluate pðdjjxkðjÞ�1;iÞ, which cannot be achieved in general cases. On the other hand, a Gaussian proposal distribution of the
form

qðxkðjÞjxkðjÞ�1;DjÞ ¼N ðxkðjÞ; x̂kðjÞ;PkðjÞÞ (43)

could be easily sampled. Furthermore, pðdjjxkðjÞ�1;iÞ would be easy to evaluate. This proposal distribution can take the form
of the posterior or forecast pdf obtained by EKF or UKF. For instance, Van der Merwe andWan [76] developed a particle filter
with importance function given by a bank of unscented Kalman filters. A separate UKF is associated with each particle
providing a unique proposal for each of the particles. Since the proposal distribution is not unique for all particles, this
proposal results in a sub-optimal filter [77].

4.2.1. Proposal distribution as forecast of EnKF
For strongly nonlinear systems, the proposal based on EnKF is perhaps most appropriate as it maintains some non-

Gaussian characteristics in the proposal. Unlike EKF and UKF based proposal, EnKF proposal does not differ from particle to
particle. In other words, a single proposal is used to update the particle weights as explained next. The (non-Gaussian) EnKF
based proposal qðxkðjÞ;ijxkðjÞ�1;i;DjÞ is obtained by the kernel density estimation (KDE) [44]. The forecast pdf pðxkðjÞ;ijxkðjÞ�1;iÞ of
the particle filter is also estimated by KDE. This proposal is proposed by Mandel and Beezley and termed as the predictor–
corrector filter [42,43], in which the following weight update equation was proposed:

~wkðjÞ;i ¼wkðjÞ�1;i
pðdjjxkðjÞ;iÞpðxkðjÞ;ijxkðjÞ�1;iÞ

qðxkðjÞ;ijxkðjÞ�1;i;DjÞ

¼wkðjÞ�1;ip djjxa
kðjÞ;i

� �∑N
l ¼ 1wkðjÞ�1;l1 Jxf

kðjÞ;l �xa
kðjÞ;i JH rhðxa

kðjÞ;iÞ

∑N
l ¼ 1

1
N
1 Jxa

kðjÞ;l �xa
kðjÞ;i JH rhðxa

kðjÞ;iÞ

; (44)

with 1ð�Þ being the indicator function and hðxa
kðjÞ;iÞ the bandwidth, chosen to be the distance to the

ffiffiffiffi
N

p
�th nearest sample

(data point) in the J � JH norm. Mandel and Beezley were concerned with the state (and not parameter) estimation problem
in which the vector x consists of a discrete representation of smooth functions, for which the norm associated with the
so-called Cameron–Martin space is suitable [45,46].

In this investigation, the authors propose to extend this methodology to tackle the problem of joint state and parameter
estimation problem. The augmented state vector can no longer be considered as a discrete representation of smooth
functions, and thus a different approach to KDE must be taken. The general multivariate kernel estimator [78] will be used
resulting in a weight update equation given by [57]

~wkðjÞ;i ¼wkðjÞ�1;i
pðdjjxkðjÞ;iÞpðxkðjÞ;ijxkðjÞ�1;iÞ

qðxkðjÞ;ijxkðjÞ�1;i;DjÞ

¼wkðjÞ�1;ip djjxa
kðjÞ;i

� �∑N
l ¼ 1wkðjÞ�1;l

1
jHf j

K H�1
f xf

kðjÞ;l�xa
kðjÞ;i

� �� �
∑N

l ¼ 1
1
N

1
jHaj

K H�1
a xa

kðjÞ;l�xa
kðjÞ;i

� �� � ; (45)

with a Gaussian kernel K yð Þ ¼ ð2πÞ�n=2 exp �1
2y

Ty
� �

and a bandwidth matrix H proportional to the square root of the
ensemble covariance matrix, as suggested in [47]. The constant of proportionality is obtained by generalizing Scott's rule for
the univariate case to the multivariate one [44], in which case one obtains

Hf ¼N�1=ðnþ4Þ
eff Σ1=2

f

¼ 1
∑N

i ¼ 1ðwkðjÞ;iÞ2

 !�1=ðnþ4Þ

� 1

1�∑N
i ¼ 1w

f
kðjÞ;i

2

0
@

1
A ∑

N

l ¼ 1
wf

kðjÞ;l xf
kðjÞ;l�x f

kðjÞ

� �
xf
kðjÞ;l�x f

kðjÞ

� �T2
4

3
51=2

(46)

Ha ¼N�1=ðnþ4ÞΣ1=2
a
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¼N�1=ðnþ4Þ 1
N�1

� 

∑
N

l ¼ 1
xa
kðjÞ;l�xa

kðjÞ
� �

xa
kðjÞ;l�xa

kðjÞ
� �T" #1=2

(47)

The algorithm of the particle filter with EnKF proposal is summarized next:
(1)
 Using the prior pdf of x0, generate an ensemble fxf
0;ig having size N with i¼ 1;…;N.
(2)
 Analysis step:

dj;i ¼ hj xf
kðjÞ;i; ϵj;i

� �
; (48)

dj ¼ ∑
N

i ¼ 1
wkðjÞ�1;i dj;i; (49)

x f
kðjÞ ¼ ∑

N

i ¼ 1
wkðjÞ�1;i x

f
kðjÞ;i; (50)

Pxd ¼
1

1�∑N
i ¼ 1w

2
kðjÞ�1;i

∑
N

i ¼ 1
wkðjÞ�1;i xf

kðjÞ;i�x f
kðjÞ

� �
ðdj;i�djÞT ; (51)

Pdd ¼
1

1�∑N
i ¼ 1w

2
kðjÞ�1;i

∑
N

i ¼ 1
wkðjÞ�1;i dj;i�dj

� �
ðdj;i�d jÞT ; (52)

KkðjÞ ¼ PxdP
�1
dd ; (53)

xa
kðjÞ;i ¼ xf

kðjÞ;iþKkðjÞ dj�hkðxf
kðjÞ;i;ϵj;iÞ

� �
(54)

Ha ¼N�1=ðnþ4Þ 1
N�1

� 

∑
N

l ¼ 1
xa
kðjÞ;l�xa

kðjÞ
� �

xa
kðjÞ;l�xa

kðjÞ
� �T" #1=2

(55)

Hf ¼
1

∑N
i ¼ 1ðwkðjÞ�1;iÞ2

 !�1=ðnþ4Þ

� 1
1�∑N

i ¼ 1w
2
kðjÞ�1;i

 !
∑
N

l ¼ 1
wkðjÞ�1;l xf

kðjÞ;l�x f
kðjÞ

� �
xf
kðjÞ;l�x f

kðjÞ

� �T" #1=2
(56)

~wkðjÞ;i ¼wkðjÞ�1;ip djjxa
kðjÞ;i

� �∑N
l ¼ 1wkðjÞ�1;l

1
jHf j

K H�1
f xf

kðjÞ;l�xa
kðjÞ;i

� �� �
∑N

l ¼ 1
1
N

1
jHaj

K H�1
a xa

kðjÞ;l�xa
kðjÞ;i

� �� � (57)

wkðjÞ;i ¼
~wkðjÞ;i

∑N
i ¼ 1

~wkðjÞ;i
: (58)
(3)
 Forecast step:

xf
kþ1;i ¼ gkðxa

k;i; fk;qk;iÞ: (59)
5. Noisy oscillation of a Duffing system

In this section, we perform several numerical experiments for joint state and parameter estimation of a Duffing oscillator
[54,55] excited by combined harmonic and random input. For the parameter set chosen in the numerical experiments, the
system exhibits a period-two subharmonic oscillation in the absence of random input [55]. EnKF, PF and MCMC sampling
technique are then used to estimate the stiffness parameters in the presence of both model and measurement noise as
described in detail next.
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5.1. Duffing oscillator model

This section illustrates the usefulness of the aforementioned theoretical formulations using a Duffing oscillator model.
The Duffing system forced by combined harmonic and random inputs is described by the following nonlinear differential
equation (e.g. [54,55]):

m €uðtÞþc _uðtÞþk1uðtÞþk3u3ðtÞ ¼ T cos ðωtÞþσξðtÞ (60)

with m [kg] being the mass, c [N s m�1] is the damping coefficient, k1 ½N m�1� and k3 ½N m�3� are the linear and cubic
stiffness coefficients, respectively, uðtÞ ½m� is the displacement, T ½N� and ω ½rad s�1� denote the amplitude and frequency of
the harmonic excitation, respectively, ξðtÞ represents a Gaussian white noise random input (additive modelling error) and
σ½N� represents its strength. The state-space model of Eq. (60) becomes

_x1 ¼ x2 (61)

_x2 ¼ � 1
m

cx2þk1x1þk3x31
	 
þ 1

m
T cos ωtð Þþ 1

m
σξ tð Þ; (62)

where x1 ¼ u and x2 ¼ _u.
We are interested in estimating the stiffness coefficients k1 and k3 and the damping coefficient c. For joint state and

parameter estimation using EnKF and PF, the original state vector x¼ fx1; x2gT is augmented with the coefficients c, k1, and
k3 as three new state variables x3 ¼ c, x4 ¼ k1 and x5 ¼ k3 which satisfy the following equations:

_x3 ¼ 0; (63)

_x4 ¼ 0; (64)

_x5 ¼ 0; (65)
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Fig. 1. Response of the Duffing oscillator under purely deterministic input with T ¼ 0:3 N, σ ¼ 0 N: (a) two steady-state trajectories, (b) the associated
phase-space diagrams (adapted from [16]).
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Fig. 2. Response of the Duffing oscillator under combined deterministic and random input with T ¼ 0:3 N, σ1 ¼ 0:015 N: (a) steady-state trajectory, (b) the
associated phase-space diagram.
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i.e. they are modelled as time-invariant quantities. In a previous investigation by the authors [15], the unknown system
parameters were modelled as Wiener processes resulting in an artificial inflation the variance of the estimates in order to
avoid filter divergence (e.g. [79]). The need for this artificial perturbation was to provide a range of possible parameter
values and select the best value(s) based on the partial observations of the system state. The use of a good proposal obtained
using an EnKF analysis step circumvents the need to artificially inflate the variances of the unknown parameters for filter
convergence and is thus avoided in this investigation.

The above set of equations have the following Ito Stochastic Differential Equation (SDE) representation

dx1 ¼ x2 dt (66)

dx2 ¼ � 1
m

x3x2þx4x1þx5x31�T cos ωtð Þ	 

dtþ 1

m
σξ tð Þ dt: (67)

dx3 ¼ 0 (68)

dx4 ¼ 0 (69)

dx5 ¼ 0 (70)

where ξðtÞ dt ¼ dW ¼Wðtkþ1Þ�WðtkÞ denotes a Brownian path increment.
The discretization of the above Ito SDEs using the Euler–Maruyama scheme [80–82] with time step Δt leads to

fx1gkþ1 ¼ fx1gkþΔtfx2gk (71)

fx2gkþ1 ¼ fx2gk�
1
m
Δt fx3gkfx2gkþfx4gkfx1gkþfx5gkfx1g3k�T cos ωtkð Þ	 


þ 1
m
σ
ffiffiffiffiffiffi
Δt

p
εk (72)

fx3gkþ1 ¼ fx3gk (73)
Fig. 3. c parameter estimates: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and estimated mean 73 error
standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).
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fx4gkþ1 ¼ fx4gk (74)

fx5gkþ1 ¼ fx5gk (75)

where the variables fεkg denote independent and identically distributed unit standard Gaussian random variables.

5.2. Noisy oscillation of the Duffing oscillator

The following numerical values are chosen [54,55,83]: m¼1 kg, c¼0.3 N s m�1, k1 ¼ �1 N m�1, k3 ¼ 1 N m�3,
ω¼ 1:25 rad s�1 and Δt ¼ 5� 10�3 s. The unforced system has three fixed points: an unstable fixed point at u¼0 m and
two stable fixed points at 71 m. Fig. 1 shows two period-two subharmonic oscillation with period 4π=ω under purely
deterministic loading (σ¼0 N) for T ¼ 0:3 N [55,83]. Each steady-state trajectory presented in the figure arises from two
different initial conditions.

For modelling noise with σ¼0.015 N, a sample of the steady-state noisy oscillation is shown in Fig. 2. Note that the quasi-
periodic behaviour of the phase-space curve arises due to the modelling noise.

5.3. Parameter estimation

In this section, we address the combined state and parameter estimation problem of the Duffing system using EnKF and
PF. We also use MCMC sampling technique to estimate the parameters with EnKF providing the state estimates. In particular,
we are interested in estimating the damping parameter c and stiffness parameters k1 and k3. For simplicity, although the
strength of model noise σ is assumed to be known in this investigation, it can also be estimated along with the system
parameters as described in [51].

We assume that the observational data is modelled as

dk ¼ ukþϵk: (76)

For this experiment, the measurement error is assumed to be Gaussian: ϵk �N ð0;1:3� 10�2Þ. The measurement
arrives at an interval of 0.2 time unit. The measurement error standard deviation is assumed to be 15 percent of the
Fig. 4. k1 parameter estimates: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and estimated mean 73 error
standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).
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root-mean-square (RMS) value of the true displacement of the oscillator. The modelling error amplitude is chosen to be
σ ¼ 0:015 N. Fig. 3a shows the true displacement and the measurement dk. For this parameter estimation experiment, the
initial conditions are u�N ð1;0Þ, _u �N ð0;0Þ, c�N ð0:39;0:002025Þ, k1 �N ð�1:3;0:0225Þ, k3 �N ð1:3;0:0225Þ. An ensemble
size of N¼25,000 is used for EnKF and PF. Furthermore, 450,000 MCMC samples from the joint posterior parameter pdf are
obtained with 5000 EnKF samples used for each MCMC point. The estimates of the pdfs with 450,000 MCMC samples are
smooth. The resampling step is performed in PF at the threshold value Nthr ¼ 0:5 N. From numerical investigations, it turns
out that this threshold value yields the best performance for PF. To minimize sampling errors, an efficient sampling scheme
Fig. 5. k3 parameter estimates: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and estimated mean 73 error
standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).

Fig. 6. Posterior marginal pdfs of parameters: (a) damping coefficient c, (b) linear stiffness coefficient k1, (c) nonlinear stiffness coefficient k3. Dashed
vertical line indicates the true parameter value. Solid curve represents the EnKF estimate. Solid curve with hollow circular markers represents the PF
estimate. Solid curve with solid circular markers represents the MCMC estimate.



Fig. 7. c parameter estimates with stronger measurement noise: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and
estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).

Fig. 8. k1 parameter estimates with stronger measurement noise: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and
estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).
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based on LHS [35,36] is adopted for EnKF and PF. The typical execution times for the algorithms running on a Linux cluster
with 22 nodes, each node having 2 Quad-core 3.0 GHz Intel Xeon processors and 32 GB of memory, are as follows: (a) EnKF
with 25,000 samples: 2 min; (b) PF having EnKF proposal with 25,000 samples: 8 h; and (c) MCMC (having EnKF used for
the likelihood computation) with 450,000 samples using 150 parallel chains: 2 h.

For the joint state and parameter estimation experiments, Figs. 3–5 show the estimates of the damping and stiffness
coefficients c, k1, and k3 using EnKF in subplot (b) and PF in subplot (c). The marginal pdfs of the parameters at the final time
step of simulation are provided in Fig. 6. The marginal pdfs of the parameters using MCMC sampling are also provided in
Fig. 6. All three methods yield parameter estimates of similar accuracy.
Fig. 9. k3 parameter estimates with stronger measurement noise: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with
stars) and estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations
(shaded area).

Fig. 10. Posterior marginal pdfs of parameters with stronger measurement noise: (a) damping coefficient c, (b) linear stiffness coefficient k1, (c) nonlinear
stiffness coefficient k3. Dashed vertical line indicates the true parameter value. Solid curve represents the EnKF estimate. Solid curve with hollow circular
markers represents the PF estimate. Solid curve with solid circular markers represents the MCMC estimate.
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5.3.1. Effect of measurement noise
In this experiment, we study the effect of measurement noise intensity on the filter estimates. The measurement noise is

now taken to be Gaussian given by ϵk �N ð0;7:1� 10�2Þ. In contrast to the previous experiment, the standard deviation of
the measurement error is now assumed to be 35 percent of the RMS value of the true displacement. Similar to the previous
experiment, the time interval between the observational data is taken to be 0.2 time unit. Fig. 7a shows the true
displacement of the system and the associated synthetic observational data dk.

For this joint state and parameter estimation experiment, the same initial conditions, ensemble size (for PF and EnKF)
and number of MCMC samples are used as in the previous experiment.

Figs. 7–9 show the estimates of the damping and stiffness coefficients and Fig. 10 provides the posterior marginal pdfs
once all the data has been assimilated. Evidently, the parameter estimates obtained using PF and MCMC are equivalent in
accuracy. EnKF was only able to estimate the nonlinear stiffness coefficient k3 with reasonable accuracy. The superior
performance of PF over EnKF is attributed to its ability to handle strongly non-Gaussian systems. Although MCMC sampling
techniques relies on EnKF for state estimation, it still provides accurate estimates. In contrast to the extended state vector in
joint state and parameter estimation, the state vector in pure state estimation carries less non-Gaussian characteristics. Thus
EnKF is able to provide accurate state estimates for MCMC sampling, but encounters difficulties in joint state and parameter
estimation. Of course, the error in the estimates is much larger for all three methods compared to the previous experiment
due to the presence of larger measurement error.

5.3.2. Effect of observational data sparsity
In this last experiment, the effect of observational data sparsity is examined. The measurement noise is taken to be

Gaussian given by ϵk �N ð0;1:3� 10�2Þ. The measurement time interval is taken to be 1.0 time unit, instead of 0.2 time unit
used in the first experiment. Fig. 11a plots the true (actual) displacement of the system and the measurement dk. Apart from
the smaller sampling rate for the observations, all experimental parameters are unchanged from the first experiment
(Section 5.3).

The estimates of the damping and stiffness coefficients are plotted in Figs. 11–13 and the marginal posterior pdfs in
Fig. 14. Clearly, the performances of PF and MCMC are superior to EnKF which provides an accurate parameter estimate for
only the nonlinear stiffness parameter. The infrequent assimilation of data allows the augmented state vector to regain its
Fig. 11. c parameter estimates with sparse observational data: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars)
and estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations
(shaded area).



Fig. 12. k1 parameter estimates with sparse observational data: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and
estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).

Fig. 13. k3 parameter estimates with sparse observational data: (a) true (solid line) and measured (circles) displacement, (b) EnKF estimate (line with stars) and
estimated mean 73 error standard deviations (shaded area), (c) PF estimate (line with stars) and estimated mean 73 error standard deviations (shaded area).
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Fig. 14. Posterior marginal pdfs of parameters with sparse observational data: (a) damping coefficient c, (b) linear stiffness coefficient k1, (c) nonlinear
stiffness coefficient k3. Dashed vertical line indicates the true parameter value. Solid curve represents the EnKF estimate. Solid curve with hollow circular
markers represents the PF estimate. Solid curve with solid circular markers represents the MCMC estimate.
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non-Gaussian features due to the nonlinear dynamics, leading to a severe degradation in the performance of EnKF for
combined state and parameter estimation.

6. Conclusion

In the framework of nonlinear filtering, the combined state and time-invariant parameter estimation of a dynamical
system involves appending the unknown parameters to the state vector, leading to an augmented state space model. The
nonlinearity in the augmented system is generally stronger than the original state space model. The weakly non-Gaussian
filter, such as EnKF, may adequately handle the state estimation of the original state space model, but it fails to tackle the
combined state and parameter estimation problem using the augmented state space model. This fact is exploited in this
paper in order to use the MCMC simulation for the time-invariant parameter estimation of nonlinear oscillatory systems.
It is also pointed out that the combined state and parameter estimation approach using EnKF may become highly inaccurate
for the time-invariant parameter estimates. It is demonstrated that the MCMC simulation, complemented by EnKF for just
the state estimation, provides accurate parameter estimates for the Duffing system considered for numerical investigations.
In order to achieve the same level of accuracy of the MCMC method, the PF algorithm by Mandel and Beezley has been
extended for the combined state and parameter estimation. Although some of the results in this paper may be intuitively
obvious, to the authors best knowledge, they are not widely available in the open literature.

In the context of time-invariant parameter estimation, this paper demonstrates the difficulties encountered in the
combined state and parameter estimation using nonlinear filtering as the modified state space model constructed by
augmenting the state by the parameter vector introduces stronger nonlinearities compared to the original state space
model. In order to alleviate these difficulties in estimating time-invariant parameters, the paper then provides basic
mathematical expositions of a two-level (nested and combined) MCMC and EnKF algorithm; and a joint state and parameter
estimation approach using a modified PF based on the proposal density obtained from EnKF. At this initial stage, the primary
objective of this investigation is focussed on highlighting the benefits and limitations of the MCMC, EnKF and PF algorithms
from statistical perspectives (i.e. effects of measurement noise and observational data sparsity) and hence the use of only
noisy period-two subharmonic oscillations of a Duffing oscillator for numerical experiments. Further research is needed to
assess the usefulness of these parameter estimation algorithms for a broad range of dynamical systems. For instance, the
methodologies can be applied to the parameter estimation of low dimensional dynamical systems such as the Duffing
systems, exhibiting different dynamical behaviours ranging from period-one, period-four to chaotic motions. On the other
hand, it will be worthwhile to investigate the performances of the methodologies for time-invariant parameter estimation
of high-dimensional state space models (for instance, arising from the discretization of partial differential equations),
particularly focussing on the parallel implementations of these algorithms to enhance their computational efficiency by
exploiting high performance computing systems. These aspects are the subjects of current investigations.
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