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ABSTRACT: The problem of determining the statistics of the transient response of randomly inhomogeneous
beams is formulated. This is based on the use of stochastic dynamic stiffness coefficients in conjunction with
the fast Fourier transform algorithm. The dynamic stiffness coefficients, in turn, are determined using a stochastic
finite-element formulation that employs frequency-dependent shape functions. The approach is illustrated by
analyzing the response of a random rod subject to a boxcar type of axial impact and, also, by considering the
flexural response of a randomly inhomogeneous beam resting on a randomly varying Winkler’s foundation and
subjected to the action of a moving force. A discussion on the treatment of system property random fields as
being non-Gaussian in nature is presented. Also discussed are the methods for handling nonzero initial conditions
within the framework of the frequency domain response analysis employed in the study. Satisfactory comparisons
between the analytical results and simulation results are demonstrated.
INTRODUCTION

Problems of structural dynamics with randomly distributed
spatial inhomogeneities have been receiving wide research at-
tention. Several mathematical and computational issues lie at
the heart of this research; these include random field discret-
ization, characterization of random eigensolutions, random
matrix inversion, solutions of stochastic boundary-value prob-
lems, and description of random matrix products. Recent re-
views on these topics include the works of Ibrahim (1987),
Nakagiri (1987), Benaroya and Rehak (1988), Brenner (1991),
Ghanem and Spanos (1991), Shinozuka (1991), Der Kiuregh-
ian et al. (1991), Liu et al. (1992), Klieber and Hien (1992),
and Schueller (1997). An update on the earlier review by Ib-
rahim (1987) has been recently reported by Manohar and Ib-
rahim (1999). These studies are motivated by the basic need
to improve the rationale of structural reliability assessments
and, also, by an aim to gain insights into phenomenological
features associated with the effect of structural imperfections
on vibration behavior.

Recently, the writers employed frequency-dependent shape
functions to discretize random fields for structural dynamic
applications (Manohar and Adhikari 1998; Adhikari and Ma-
nohar 1999). These studies represent the following:

• The extension of the direct dynamic stiffness method of
vibration analysis to problems of structural dynamics with
parameter uncertainties

• The generalization of the concept of weighted integrals
for discretization of random fields used in static stochastic
finite-element analysis to problems of vibration analysis
(Shinozuka 1987; Takada 1990; Deodatis and Shinozuka
1991; Bucher and Brenner 1992), this being achieved by
the use of frequency-dependent shape functions, which,
in turn, make the weighted integrals functions of fre-
quency

This approach, as it presently stands, is basically applicable to
the analyses of steady-state harmonic response and stationary
random response. A distinguishing feature of the approach is
that it does not employ modal series representation for the
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forced response, and, consequently, the need to perform ran-
dom free vibration analysis is bypassed. Furthermore, the
shape functions used for displacement field discretization are
such that, with changes in values of driving frequencies, the
shape functions adapt themselves to the spatial variations in
waveforms automatically. This provides relief in the selection
of mesh size with respect to the frequency range of external
excitation. In the present study, the writers extend their earlier
work (Manohar and Adhikari 1998; Adhikari and Manohar
1999) to investigate the response of stochastically parametered
beams to distributed transient loads. This calls for extending
the writers’ previous studies from the following two counts:

• The response is represented in time domain in terms of
the Fourier transforms of the frequency response func-
tions; a procedure to include the effects of nonzero initial
conditions is also outlined.

• The distributed transient loads are represented in terms of
equivalent nodal forces using the frequency-dependent
shape functions.

Illustrative examples on the dynamics of a rod subjected to a
boxcar type of axial impact and the vibration of a beam on an
elastic foundation that is traversed by a moving load are pre-
sented. The analytical results are shown to compare favorably
with results from the Monte Carlo simulations. The studies
reported in this paper are relevant to problems involving earth-
quake loads, moving loads, blasts, and impacts. Some of the
earlier works in the existing literature dealing with transient
dynamics of randomly parametered structures include the
study of statistics of impulse response of single- and multi-
degree-of-freedom systems (Chen and Soroka 1973; Prasthofer
and Beadle 1975; Udwadia 1987; Lee and Singh 1994), re-
sponse to seismic inputs (Iwan and Jensen 1993; Katafygiotis
and Papadimitriou 1996), response under moving loads (Fryba
et al. 1993), and studies on nonlinear systems (Liu et al. 1987;
Deodatis and Shinozuka 1988). In these studies, approaches
based on perturbations, direct integrations, and Monte Carlo
simulations have been employed. Many of the studies involv-
ing multi-degree-of-freedom systems employ modal expansion
methods (Igusa and Der Kiureghian 1988; Katafygiotis and
Papadimitriou 1996). Iwan and Jensen (1993) employed ran-
dom shape functions to approximate the solution in the spatial
domain and in the random space. They derived a set of deter-
ministic ordinary differential equations for the unknown co-
efficients using weighted residual method. These equations are
subsequently solved numerically to characterize the response
moments. The study by Liu et al. (1987) employed a mean
centered second-order perturbation method in conjunction with
direct numerical integration in time to study transient dynam-
ics of linear and nonlinear continua. They discretized the ran-
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dom fields using finite-element shape functions and nodal val-
ues of random fields. Deodatis and Shinozuka (1988) studied
the transient dynamics of a transversely loaded stochastically
inhomogeneous plate on a random nonlinear elastic founda-
tion. They employed Monte Carlo simulations in conjunction
with finite-element discretization and time integration tech-
niques. The approach outlined in the present paper represents
an alternative to the linear transient dynamic analysis of ran-
domly parametered continuous systems. This approach avoids
the use of modal expansions thereby bypassing the need to
perform random eigensolution analysis. It should be noted that
the description of structural response to short duration loads
requires high resolution in time domain, which, in turn, de-
mands the evaluation of contributions from short wavelength
modes. In the context of randomly parametered systems, this
requirement demands that the description of joint statistics of
several natural frequencies and mode shapes have to be ob-
tained before forced vibration analysis could be performed.
The study reported in the present paper provides a natural
framework to avoid these complexities.

STOCHASTIC DYNAMIC STIFFNESS MATRIX AND
NODAL FORCE VECTOR

In a recent study, a finite-element-based formulation was
developed to obtain the stochastic dynamic element stiffness
matrix of a general beam element having randomly inhomo-
geneous mass density, flexural and axial rigidities, and elastic
foundation modulus (Manohar and Adhikari 1998). In this sec-
tion the procedures followed for derivation of the dynamic
stiffness matrix is briefly outlined and additional information
on the determination of the equivalent nodal forces is pro-
vided. The beam element considered in this study is shown in
Fig. 1. It is assumed here that the axial forces are small, to
the extent that they do not affect the flexural deformations. It
is also assumed that the behavior of the beam follows the
Euler-Bernoulli hypotheses and that the beam rests on a Wink-
ler’s elastic foundation. First, the system is considered to be
initially at rest; a procedure to treat nonzero initial conditions
is briefly outlined later in the paper. The governing field equa-
tions of motion under these assumptions are given by

2 2 3 2­ ­ Y ­ Y ­ Y ­Y
EI(x) 1 c 1 m(x) 1 c 1 k(x)Y = f (x, t)1 2F G2 2 2 2­x ­x ­x ­t ­t ­t

(1)

2 2­ ­U ­ U ­ U ­U
AE(x) 1 c = m(x) 1 c 1 p(x, t) (2)3 4F G 2­x ­x ­x­t ­t ­t

where Y(x, t) = transverse flexural displacement; U(x, t) = axial
displacement; EI(x) = flexural rigidity; AE(x) = axial rigidity;
m(x) = mass per unit length; k(x) = elastic foundation modulus;
f(x, t) = distributed time varying transverse force; p(x, t) =
distributed time varying axial force; c1 and c3 = strain rate-
dependent viscous damping coefficients; and c2 and c4 = ve-
locity-dependent viscous damping coefficients. The forcing
functions p(x, t) and f (x, t) are taken to be deterministic and
having finite energy. The quantities k(x), EI(x), AE(x), and
m(x) in this study are modeled as jointly homogeneous random
fields and are taken to have the following form:

k(x) = k [1 1 ε f (x)]; m(x) = m [1 1 ε f (x)] (3a,b)0 1 1 0 2 2

EI(x) = EI [1 1 ε f (x)]; AE(x) = AE [1 1 ε f (x)] (3c,d )0 3 3 0 4 4

where the subscript 0 indicates the mean values; 0 < εi << 1
(i = 1, . . . , 4) are deterministic constants; and the random
fields fi(x) are taken to have zero mean, unit standard devia-
tion, and covariance Rij (j). The following additional restric-
tions are taken to apply on the random fields fi (x) (i = 1,
2, 3, 4):
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FIG. 1. Randomly Parametered Beam Element on Winkler’s
Foundation

1. fi(x) (i = 1, 2, 3, 4) are mean square bounded; that is,
^ fi(x)2& < `; here ^? & is the mathematical expectation op-
erator.

2. f3(x) is twice differentiable in a mean square sense; this
requires that ­4R33(x1, must exist for all x1 and2 2x )/­x ­x2 1 2

x2 in the interval (0, L).
3. f4(x) is differentiable in a mean square sense; this requires

that ­2R44(x1, x2)/­x1­x2 must exist for all x1 and x2 in the
interval (0, L).

4. For a specified deterministic function g(x), which is
bounded and continuous in (0, L), integrals of the type

g(x)fi(x) dx exist in a mean square sense; this requiresL*0

that x2)u dx1 dx2 < ` (i = 1, 2,L L* * ug(x )g(x )R (x ,0 0 1 2 ii 1

3, 4).

The terms involved in these assertions are explained in the
book by Soong (1973). The first three conditions ensure that
the sample realizations of the beam have sufficiently smooth
behavior so that the various stress resultants and boundary
conditions (such as those at a free edge) are satisfactorily de-
scribed. The fourth condition is needed in the development of
the procedure used in this study and will be explained later.

In view of the assumed linear system behavior, the solution
of the field equations can be taken to be of the form

Y(x, t) = y(x, v)exp[ivt]; U(x, t) = u(x, v)exp[ivt] (4a,b)

Consequently, the equations governing y(x, v) and u(x, v)
have the form

2 2 2d d y d y 2EI(x) 1 ivc 1 [k(x) 2 m(x)v 1 c iv]y = F(x, v)1 2F G2 2 2dx dx dx
(5)

d du du 2AE(x) 1 ivc 1 [v m(x) 2 ivc ]u = P(x, v) (6)3 4F Gdx dx dx

where

`

F(x, v) = f (x, t)exp[2ivt] dt (7a)E
2`

`

P(x, v) = p(x, t)exp[2ivt] dt (7b)E
2`

The above equations, together with the boundary conditions
on displacements and forces at x = 0 and x = L, constitute a
set of stochastic boundary-value problems. Furthermore, the
presence of the damping terms makes the coefficients in these
equations complex valued, which, consequently, makes the so-
lutions also complex valued. Exact solutions to these types of
problems are currently not available, and finite-element pro-
cedures are employed to arrive at approximate solutions.

Shape Functions

To construct the finite-element approximation, the solutions
of (1) and (2) are taken to be of the form



4

Y(x, t) = d (t)N (x, v) (8)j jO
j=1

6

U(x, t) = d (t)N (x, v) (9)j jO
j=5

where dj(t) ( j = 1, 6) = generalized coordinates representing
the nodal displacements; and Nj (x, v) = shape functions. Given
the well-behaved nature of p(x, t) and f (x, t), and, also, the
smooth nature of the random fields fi(x) (i = 1, 2, 3, 4), the
above series representation is considered as a valid form of
solutions of (1) and (2). The book by Ghanem and Spanos
(1991) provided further details of the mathematical setting un-
der which representations such as those given above are con-
sidered to be valid forms of solution of (1) and (2). Further-
more, the mathematical issues pertaining to finite-element
methods for stochastic media problems have been recently dis-
cussed by Matthies and Bucher (1999) based on recent devel-
opments in the field of stochastic partial differential equations.

In this paper, the shape functions are obtained from the field
equations representing the undamped free vibration [i.e., (5)
and (6) with ci = 0, εi = 0 (i = 1, 4), and F(x, v) and P(x, v)
= 0]. Readers are referred to the papers by Manohar and Ad-
hikari (1998) and Adhikari and Manohar (1999) for further
details regarding the analytical derivation of the shape func-
tions. The array of the shape functions, N(x, v), can be shown
to be given by

N(x, v) = [G(v)]{s(x, v)} (10)

in which
T{s(x, v)} = [{s (x, v)}, {s (x, v)}] (11)f a

21 TG(v) = [R(v) ] (12)

Here (?)T represents the matrix transpose and the matrix

s (0) s (0) s (0) s (0) 0 0f f f f1 2 3 4

ds ds ds dsf f f f1 2 3 4(0) (0) (0) (0) 0 0
dx dx dx dx
s (L) s (L) s (L) s (L) 0 0f f f f1 2 3 4R(v) =

ds ds ds dsf f f f1 2 3 4(L) (L) (L) (L) 0 0
dx dx dx dx

0 0 0 0 s (0) s (0)a a1 2

0 0 0 0 s (L) s (L)a a1 2

(13)

The 4 3 1 array of the basis functions corresponding to the
flexural motion sf(x, v), can be defined by Table 1. The 2 3
1 array of basis functions corresponding to the axial motion
can be obtained as

2m v0T 2{s (x, v)} = [sin ax, cos ax] with a = (14)a
AE0

Beam Element

The assumed displacement fields [(8) and (9)] can now be
used in conjunction with Lagrange’s equation of motion to
derive the equations governing the generalized coordinates
dj(t). Furthermore, to deduce the element dynamic stiffness
matrix one must consider the amplitude of nodal harmonic
displacements dj(v) defined through the relation dj(t) =
dj(v)exp[ivt]. These displacements must be shown to be re-
lated to the nodal equivalent forces through the equation

[D (v)]d(v) = F (v) (15)u nu
TABLE 1. Basis Functions for Flexural Motion [v* 5 k /m ,Ï 0 0

b4 5 (m 0 v2 2 k 0 )/EI0, and b94 5 2b4]

(1)
v > v*

(2)
v = v*

(3)
v < v*

(4)

sf1
sin bx 1 sin b9x sinh b9x

sf2
cos bx x sin b9x cosh b9x

sf3
sinh bx x2 cos b9x sinh b9x

sf4
cosh bx x3 cos b9x cosh b9x

where = frequency-dependent, undamped equivalentF (v)nu

nodal force vector, which is defined as

L

F (v) = N (x, v)F(x, v) dx for j = 1, . . . , 4 (16a)n jEuj

0

L

F (v) = N (x, v)P(x, v) dx for j = 5, 6 (16b)n jEuj

0

In these equations, Du(v) is the undamped stochastic dynamic
element stiffness matrix given by

13

l¯D (v) = D (v) 1 [a (v)]X (v) (17)u u lO
l=1

Here D̄u(v) is the deterministic part, and it can be obtained as
follows:

L4 4

2D̄ (v) = G (v)G (v) {k 2 m v }s (x, v)s (x, v)u ik jr 0 0 k rOO E Fij
k=1 r=1 0

2 2d s (x, v) d s (x, v)k r
1 EI dx for i, j = 1, 40 G2 2dx dx (18a)

L6 6

2D̄ (v) = G (v)G (v) 2m v s (x, v)s (x, v)u ik jr 0 k rOO E Fij
k=5 r=5 0

ds (x, v) ds (x, v)k r
1 AE dx for i, j = 5, 60 Gdx dx (18b)

Also, [al(v)] (l = 1, . . . , 13) are 6 3 6 symmetric matrices
of deterministic functions of v, which are expressed as

la (v) = G (v)G (v) for l = 1, 5, 8, 10, 11, 13;ij ik jr

k = r = 1, . . . , 6 (19a)

la (v) = G (v)G (v) 1 G (v)G (v) for l = 2, 3, 4, 6, 7, 9;ij ik jr ir jk

k ≠ r; k, r = 1, . . . , 4 and l = 12; k, r = 5, 6 (19b)

It may be noted that Xl(v) (l = 1, . . . , 13), appearing in
(17), are random in nature and are given by

X (v) = W (v); X (v) = W (v); X (v) = W (v);1 11 2 12 3 13

X (v) = W (v); X (v) = W (v); X (v) = W (v);4 14 5 22 6 23

X (v) = W (v); X (v) = W (v); X (v) = W (v);7 24 8 33 9 34

X (v) = W (v)10 44 (20)

X (v) = W (v); X (v) = W (v); X (v) = W (v) (21)11 55 12 56 13 66

with

L

2W (v) = {k ε f (x) 2 m v ε f (x)}s (x, v)s (x, v)kr 0 1 1 0 2 2 k rE F
0

2 2d s (x, v) d s (x, v)k r
1 EI ε f (x) dx for i, j = 1, . . . , 40 3 3 G2 2dx dx

(22)
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L

2W (v) = {2m v ε f (x)}s (x, v)s (x, v)kr 0 2 2 k rE F
0

ds (x, v) ds (x, v)k r
1 AE ε f (x) dx for i, j = 5, 60 4 4 Gdx dx (23)

It may also be noted that Xl(v) (l = 1, . . . , 13) are random
processes evolving in the frequency parameter v. Thus, for a
fixed value of driving frequency v, these quantities are random
variables, and herein they are termed as dynamic weighted
integrals, because they arise as ‘‘weighted integrals’’ of the
random fields fi(x) (i = 1, . . . , 4). It may also be pointed out
that, when the above results are specialized to the case of static
behavior (v = 0) of a Euler-Bernoulli beam with no elastic
foundations (k = 0), the dynamic stiffness matrix reduces to
the static stiffness matrix and the weighted integrals listed
above reduce to those reported by Deodatis and Shinozuka
(1991). It may also be noted that Assumption 4 outlined in the
second section guarantees that the weighted integrals exist in
a mean square sense. Furthermore, Xl(v) are linear functions
of the random fields fi(x), and, if fi(x) are modeled as jointly
Gaussian random fields, it follows from the well-known prop-
erties of Gaussian random processes that Xl(x) are also jointly
Gaussian [e.g., Theorem 4.6.4. on p. 112 in the book by Soong
(1973)]. Because the dynamic stiffness coefficients are a linear
function of Xl(v), it follows that these coefficients, in turn, are
also Gaussian distributed. The analytical results presented in
this study are based on the assumption that the dynamic stiff-
ness coefficients are Gaussian distributed. The consequences
of treating fi(x) as being non-Gaussian in nature are discussed
later.

The dynamic stiffness matrix and dynamic equivalent nodal
force vector, derived thus far, are based on the assumption that
the beam element is undamped. Following Manohar and Ad-
hikari (1998), the equation of dynamic equilibrium for a
damped element can be written

[D(v)] d(v) = F (v) (24)636 631 n 631

where, in general, Fn(v) = complex vector; and [D(v)] = sym-
metric matrix with a complex deterministic part and a real
stochastic part. Thus, in line with (17), D̄u(v) can be replaced
by D̄(v), the deterministic part of the damped dynamic stiff-
ness matrix. The elements of D̄(v), however, can be obtained
from (18) with the ‘‘damped values’’ of the following quan-
tities:

2m v 2 k 1 ivc0 0 24 4 4b = ; b9 = 2b (25a,b)
EI 1 ivc0 1

2m v 2 ivc0 42a = (25c)
AE 1 ivc0 3

where i = Similarly, using the above values, the damped21.Ï
dynamic equivalent nodal force vector can also be obtained
from (16).

The stiffness matrix and nodal force vector derived above
can now be used to study the dynamics of skeletal structures.
Here, the assembly of the element stiffness matrix and nodal
force vectors would follow the same rules as those applicable
to the static finite-element analysis. If the interest is focused
on steady-state harmonic or stationary random response, the
analysis would require the inversion of the global dynamic
stiffness matrix. Recently, studies of this type have been car-
ried out, which have involved the development of procedures
for inversion of complex valued symmetric random matrices
(Adhikari and Manohar 1999). In this paper attention is fo-
cused on determining the response when excitations are tran-
sient in nature. This is achieved by considering the Fourier
transform of the frequency domain response descriptions de-
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FIG. 2. Randomly Parametered Axially Vibrating Rod under
Box Input; AE 0 5 50 3 106 N, L 5 2 m, m 0 5 1.95 kg/m, tc 5 12.8
3 1023 s, c3 5 0.0, c4 5 794.67 Ns, and F0 5 1.0 N

rived above. The requisite formulary is illustrated in the fol-
lowing sections by considering two specific examples.

EXAMPLE 1—IMPACT ON AXIALLY VIBRATING ROD

In this section, the problem of determining the second-order
statistics of time evolution of deformation of a randomly pa-
rametered axially vibrating rod subjected to an axial impact is
considered. Fig. 2 illustrates the problem considered. In the
numerical work one takes the nominal value of axial stiffness
AE0 = 50 3 106 N, mass density m0 = 1.95 kg/m, length L =
2 m, and the damping values c3 = 0.0 and c4 = 794.67 Ns.
The mass and axial stiffness along the length are perturbed by
independent, stationary random fields with autocovariances
given, respectively, by

2 2R (j) = s exp{2a j }; i = 2, 4 (26)ii 0i i

It can be shown that the correlation length for this model is
given by It is assumed that ε2 and ε4 = 0.05, s02 =1/2 p a ./ iÏ
s04 = 1, and a2 and a4 = (p/4)/m2. The parameters a2 and a4

are chosen such that the correlation lengths of the random
fields f2(x) and f4(x) are equal to half the rod length. For the
purpose of illustration, the axial thrust f (t) is assumed to be a
box curve with amplitude F0 = 1.0 N and time duration tc =
12.8 3 1023 s (Fig. 2). Thus, f(t) can be expressed as

f (t) = F {8(t) 2 8(t 2 t )}0 0

where 8(t) = unit step function. The rod is assumed to be at
rest before the axial impact is applied. Issues arising out of
nonzero initial conditions are briefly discussed later. Response
quantity of interest is taken in this example to be the displace-
ment at the right end (node 2).

Response Statistics Calculation—
Analytical Methods

Applying (24) to this problem and considering only the ax-
ial motion, the displacement at node 2, Q6(v) can be obtained
as

F (v)6
Q (v) = (27)6

D (v)6,6

Here
`

F0
F (v) = f (t)exp[2ivt] dt = (1 2 exp[2ivt ])6 cE iv2`

and D6,6(v) = D̄6,6(v) 1 V(v), where the deterministic part
D̄6,6(v) = AE0a cot aL, and the random part V(v) = 13(l=11

It is clear that if fi(x) are taken to be Gaussianla (v)X (v).6,6 l

distributed, V(v) will be Gaussian distributed with ^V(v)& = 0
and

13 13

2 l m^V (v)& = a a ^X (v)X (v)& (28)6,6 6,6 l mO O
l=11 m=11



Now, from (27), the time domain response can be obtained by
taking the Fourier transform, and, accordingly, the mean of
u6(t) can be obtained as

` `

1 1
^u (t)& = F (v) p (V; v) dV6 6 VE HE J¯2p D (v) 1 V(v)6,62` 2`

?exp[ivt] dv (29)

where pV(V; v) = probability distribution function of the
Gaussian random variable V(v), which is completely charac-
terized by its mean and standard deviation defined in (28). The
autocorrelation function of u6(t) can similarly be shown to be
given by

` `

1 1
^u (t )u (t )& =6 1 6 2 HE E ¯ ¯ *D (v ) 1 V (v ) D (v ) 1 V (v )6,6 1 1 1 2 2 26,62` 2`

?p (V , V ; v , v ) dV dV exp[i(v t 2 v t )] dv dvV V 1 2 1 2 1 2 1 1 2 2 1 2J1 2

(30)

In the above equation (?)* denotes the complex conjugation;
and V2; v1, v2) is the 2D joint Gaussian probabilityp (V ,V V 11 2

density function of the random variables V(v1) and V(v2). As
is well known, this function can be characterized in terms of
the mean and covariance of the two random variables V(v1)
and V(v2). These moments are further obtainable from (21)
and (23) in terms of the covariance functions of the random
fields fi(x) (i = 2, 4). It thus follows that the determination of
mean and standard deviation of the transient response requires
the evaluation of the joint statistics of weighted integrals at
two distinct frequencies. This feature is in contrast to the sta-
tionary response analysis (Manohar and Adhikari 1998) in
which the knowledge of statistics of weighted integrals at sin-
gle frequencies was sufficient to evaluate the response mean
and standard deviation. Given the approximate nature of the
analysis presented, it is essential that its acceptability must be
verified by using more accurate simulation procedures, and
this is considered in the next section.

Response Statistics Calculation—
Simulation Methods

The simulation strategy adopted in this study is based on
generation of the samples of the spectrum Q6(v) given by (27),
which is then followed by application of the fast Fourier trans-
form (FFT) algorithm to find the sample response in time do-
main. As can be seen from (27), this, in turn, requires gener-
ation of the samples of dynamic stiffness coefficient D6,6(v).
It is to be noted that the nodal force F6(v) remains determin-
istic. The sample solutions for the dynamic stiffness coeffi-
cients can be obtained following the method outlined by Ma-
nohar and Adhikari (1998) for randomly parametered beams.
This study, in turn, is based on an earlier work by Sarkar and
Manohar (1996) on dynamics of extensible cables. The solu-
tion strategy is based on the conversion of the governing
boundary-value problems into a set of equivalent initial-value
problems. These initial-value problems, in turn, are solved nu-
merically using a fourth-order Runge-Kutta algorithm. The de-
tails of these formulations are omitted here, and readers are
referred to the work of Adhikari and Manohar (2000) for the
relevant details. It may be noted that (27) is the starting point
for the approximate analytical study reported in the previous
section and the simulation method being described in this sec-
tion. This equation is exact in a deterministic sense. In the
simulation studies, samples of the dynamic stiffness coeffi-
cients D6,6(v) are obtained using an approach that is exact
within the framework of the accuracy of the Runge-Kutta
method and implementation of the FFT algorithm. Thus these
solutions are valid as a basis for comparing the results from
the approximate analytical procedure described in the previous
section.

Numerical Results

The time history of the mean response estimated using the
analytical procedure is compared with the results from 500
samples of Monte Carlo simulations in Fig. 3. The results for
the deterministic case are also shown in this figure. It is clearly
observed that the mean curve closely follows the deterministic
curve. Fig. 4 shows the comparison of the analytical result
with the simulation results on the variance of the response
quantity. Good agreement is observed to exist between the
analytical and simulation results, which lends credence to the
analysis procedures used in this study. Furthermore, the results
show that, for the frequency ranges and randomness param-
eters considered, the system uncertainties do not affect the
mean solution appreciably. This follows from the close agree-
ment that is found to exist between the deterministic solution
FIG. 3. Mean Displacement at Tip
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FIG. 4. Variance of Displacement at Tip
and the mean solution (Fig. 3). However, this does not mean
that the system uncertainties do not have a significant effect
on system behavior; in fact, the maximum value of the coef-
ficient of variation of the response can be deduced to be about
0.95 (Figs. 3 and 4).

In the numerical work, the computation of the correlation
of the dynamic weighted integrals Xl(v) was carried out using
a 2D, seventh-order Newton-Cotes integration scheme. Re-
duction in computational time in carrying out the 2D Fourier
transform was achieved by noting that =*^Q (v )Q (v )&6 1 26

^Q6(v1)Q6(2v2)&.

EXAMPLE 2—MOVING LOAD ON RANDOM BEAM
RESTING ON RANDOM ELASTIC FOUNDATION

An Euler-Bernoulli beam with random flexural rigidity and
mass density and resting on a randomly inhomogeneous Wink-
ler’s foundation under a moving load is considered in this
section. The example considered is shown in Fig. 5. This ex-
ample serves to illustrate the formulations when the beam is
subjected to spatially distributed forcing f(x, t). The beam is
taken to be fixed at node 1 and hinged at node 2. It is assumed
that EI0 = 10.0, k0 = 5.0, m0 = 0.2, L = 1.0, c1 = 0.0, and c2

= 1.0. The flexural rigidity, mass density, and foundation elas-
tic modulus are taken to be independent, homogeneous ran-
dom fields. It is assumed that εi = 0.05 (i = 1, 2, 3), and the
autocovariance of the processes fi(x) are taken to be of the
form

2 2R (j) = s exp{2a j }; i = 1, 2, 3 (31)ii 0i i

with s0i = 1 per unit length (i = 1, 2, 3); and ai = p/(length)2

so that the correlation lengths of fi(x) (i = 1, 2, 3) are half of
the beam span. The rotation at node 2 denoted by u4(t) is
considered to be the response variable of interest. The moving
load is taken to travel from left to right with a constant ve-
locity v. The resulting forcing function f (x, t) can be given by

¯f (x, t) = Pd(x 2 vt) for 0 < t < L/v (32)

and f (x, t) = 0, otherwise. Here, d(?) is the Dirac delta function,
P̄ is the magnitude of moving load, which in the numerical
work is taken to be unity, and the velocity v is taken to be 5
units. As in the previous example, it is assumed that the beam
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FIG. 5. Randomly Parametered Beam under Moving Force; EI 0

5 10.0, k 0 5 5.0, m 0 5 0.2, L 5 1.0, c1 5 0.0, c2 5 1.0, «i 5 0.05 (i
5 1, 3) v 5 5 m/s, and P̄ 5 1.0

is at rest before the entry of the load. A procedure to evaluate
the effect of nonzero initial conditions is discussed later.

Response Statistics Calculation—
Analytical Methods

We begin by noting that the Fourier transform of the forcing
function in this case is given by

`

P̄ 2ivx
F(x, v) = f (x, t)exp[2ivt] dt = exp (33)E F Gv v2`

Thus, in this example the forcing function is spatially distrib-
uted, which is in contrast to the nodal loading considered in
the previous example. This distributed loading needs to be
converted into an equivalent set of nodal forces as has been
described in the second section. Now applying (24) for this
problem, u4(t), the time history of rotation at node 2, can be
shown to be given by

` `
F (v)1 1 n4u (t) = Q (v)exp[ivt] dv = exp[ivt] dv (34)4 4E E2p 2p D (v)4,42` 2`

where can be evaluated using (16) for the damped case.F (v)n4

Note that, because the definitions of the shape functions used
in this study are different for the three frequency regimes v <
v*, v = v*, and v > v*, the corresponding expressions of
the equivalent nodal forces will also be different for these three
regimes. The dynamic stiffness coefficient D4,4(v) is given by
D4,4(v) = D̄4,4(v) 1 V(v), with the deterministic part D̄4,4(v)
given by



EI(2cosh bL sin bL 1 cos bL sinh bL)b
D̄ (v) =4,4

21 1 cos bL cosh bL

for v > v* (35a)

EI
D̄ (v) = 4 for v = v* (35b)4,4

L

EI(2cosh b9L sinh b9L 1 cos b9L sin b9L)b9
D̄ (v) = 224,4 2 2cosh b9L 2 2 1 cosh b9L

for v < v* (35c)

where b and b9 are as defined in (25). The random part V(v)
is given by V(v) = if uvu > v*, and V(v) =10 l( a (v)X (v),l=1 4,4 l

if uvu = v*. Now the statistics of u4(t) can3 l( a (v)X (v),l=1 4,4 l

be obtained following the procedure that is essentially similar
to the one outlined in the Response Statistics Calculation—
Analytical Methods section above.

Response Statistics Calculation—
Simulation Methods

Samples of response time histories can be simulated follow-
ing the approach that is essentially similar to the one men-
tioned for axially vibrating rods. Additional modifications,
however, would be needed to take into account the distributed
forces over the element domain. This requires the calculation
of the particular integrals. Again, readers are referred to the
report by Adhikari and Manohar (2000) for details. The for-
mulation leads to the determination of the response quantity
of interest, namely, Q4(v). The response in time domain is
subsequently obtained by using the FFT algorithm.

Numerical Results

Fig. 6 shows the comparison of analytical results with those
from 500 samples of Monte Carlo simulations on the mean of
u4(t). It may also be observed from this figure that the mean
curve closely follows the deterministic curve. Fig. 7 shows the
comparison of analytical results with the simulated results on
the variance of u4(t). The agreement between the analytical
and simulation results, again, leads to the conclusion that the
approximate analysis procedure yields acceptable solutions. As
has been observed in the previous example, in this example
the mean values also remain largely unaffected by the system
uncertainties, whereas the maximum coefficient of variation of
the response is found to be about 1.0 (Figs. 6 and 7).

ADDITIONAL CONSIDERATIONS

In this section some additional features of the problem that
have a bearing on the procedures and examples presented in
the preceding sections are briefly discussed.

Non-Gaussian Models for Structural Parameters

The stochastic part of the dynamics stiffness matrix V(v)
arises as a sum of weighted integrals [(17)], and the weighted
integrals themselves are linear functions of the system property
random fields fi(x) (i = 1, . . . , 4). Consequently, as has been
already pointed out, if the system property random fields fi(x)
are modeled as being Gaussian distributed, the weighted in-
tegrals, and, hence, the dynamics stiffness coefficients, become
Gaussian distributed. The analytical results presented in this
study are in fact based on the assumption that V(v) is Gauss-
ian. The choice of Gaussian distributions for system property
random fields, strictly speaking, is not acceptable as the system
properties such as mass and flexural rigidities are strictly pos-
itive. Thus the random fields fi(x) (i = 1, . . . , 4) must satisfy
the condition that P[{1 1 εi fi(x)} < 0] = 0, which is violated
if fi(x) are Gaussian. This drawback is severe if one is inter-
ested in estimating system reliability where accurate modeling
of tails of response probability density functions is essential.
On the other hand, if interest is limited to estimation of mean
and correlation of the response, the Gaussian assumption can
be expected to be acceptable. However, this assumption limits
magnitudes of the variability parameters εi (i = 1, 4) to values
less than about 0.05. To examine these statements, alternative
non-Gaussian models for fi(x) were considered, and these
fields were taken to be distributed uniformly between 2 3Ï
and It must be noted that the random fields fi(x) were3.Ï
taken to possess first- and second-order properties that were
identical to those considered for the Gaussian models used in
previous sections. Monte Carlo simulations using 500 samples
for the response were performed for the two examples consid-
ered in the third and fourth sections. The simulation of the
FIG. 6. Mean Rotation at Node 2
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FIG. 7. Variance of Rotation at Node 2
samples of non-Gaussian random fields was based on the pro-
cedures described by Grigoriu (1995). The results of this sim-
ulation study are also shown in Figs. 3, 4, 6, and 7. As may
be observed, the effect of non-Gaussian modeling of fi(x) has
marginal effect on the mean and standard deviations of the
response variables considered. It must be noted that, if fi(x)
are taken to be non-Gaussian, then the treatment of V(v) as
being Gaussian in the analysis amounts to making a Gaussian
closure assumption on distribution of V(v). This assumption
seems plausible because the stiffness coefficients arise as a
sum of weighted integrals, and such a sum may be approxi-
mated as being Gaussian even when the constituent terms are
non-Gaussian. It should also be noted that there are signifi-
cantly more non-Gaussian distributions (with the same first
and second properties), with different tails, that can serve as
models for the system property random fields. The assessment
of the effects that these non-Gaussian models produce on the
response requires further studies.

Nonzero Initial Conditions

Another assumption that has been made in the numerical
examples presented in this study is that, at t = 0, the system
is in a state of rest. It should be pointed out that this assump-
tion is not restrictive as it is possible to consider the effects
of nonzero initial conditions within the framework of proce-
dures described in the preceding sections. A brief outline of
the steps that need to be taken to achieve this is provided here.
Because the forced response, assuming an initial state of rest,
has already been determined, it would suffice if it is shown
how the free vibration due to nonzero initial conditions can
be evaluated. For purposes of illustration, let one consider the
example of flexural vibration of beam governed by (1) and
take Y(x, 0) = Y0(x) and Ẏ(x, 0) = Ẏ0(x). The requisite solution
is obtained using the following steps:

1. Let one seek the solution in the form Y(x, t) = Y1(x, t)
1 Y2(x, t), where Y1(x, 0) = 0, Ẏ1(x, 0) = Ẏ0(x) and Y2(x,
0) = Y0(x), Ẏ2(x, 0) = 0.

2. The effect of nonzero initial velocity on Y1(x, t) is equiv-
alent to the application of distributed impulsive force
d(t)m(x)Ẏ0(x) with zero initial conditions. This would
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mean that Y1(x, t) is obtainable using the methods already
described in the study.

3. In fact, by taking Ẏ1(x) = d(x 2 j), one can get the system
of Green’s function G(x, j, t) in the time domain.

4. To obtain Y2(x, t) substitute Z2(x, t) = Y2(x, t) 2 Y0(x). It
follows that the function Z2(x, t) is again governed by
the field equation of the form (1) with zero initial con-
ditions and the right-hand side given by

2 2d d
f (x, t) = 2 EI(x) Y (x)0F G2 2dx dx

To obtain Z2(x, t), one can again use the methods outlined
previously. It must be noted that the Fourier transform
of f (x, t) in this case is expressible in terms of the Dirac
delta function. Alternatively, one can also employ
Green’s function derived in the preceding step in con-
junction with the convolution theorem to evaluate the
response.

5. The required solution Y(x, t) is thus given by Y(x, t) =
{Y1(x, t) 1 Z2(x, t)} 1 Y0(x).

It can be shown that the implementation of these steps again
leads to stochastic algebraic equations of the form [D(v)]d(v)
= F(v). This equation is similar to (24) but with one important
difference, which is that the elements of stochastic dynamic
stiffness matrix D(v) are correlated here with the elements of
the force vector F(v). Additionally, the components of the re-
sponse due to nonzero initial conditions and external forcing
also are correlated. The consequent analysis would become
more tedious but, in principle, poses no significant difficulty.
Details of this analysis, however, is not considered in the pres-
ent study.

Built-Up Structures

The beam examples considered in the third and fourth sec-
tions had special boundary conditions, which ensured that the
structure dynamic stiffness matrix in both of the examples had
a single element. Consequently, the task of inverting the struc-
ture dynamic stiffness matrix became trivially simple. This
simplification enabled the applicability of the proposed pro-
cedure to be demonstrated without entering into the issues of



inverting stochastic dynamic stiffness matrices. If different
boundary conditions are used, or, if the transient dynamics of
the built-up structure is considered, an additional step, involv-
ing the inversion of the stochastic dynamic stiffness matrix,
needs to be taken. It may be noted that the stochastic dynamic
stiffness matrix is a complex valued and symmetric matrix and
that inversion of these types of matrices has recently been
studied by the writers (Adhikari and Manohar 1999) in the
context of steady-state dynamics of randomly parametered
skeletal structures. This study also can be extended to cover
the transient response in a reasonably straightforward manner.
To see this, consider the equilibrium equation in the frequency
domain of a system with N 3 N dynamic stiffness matrix
given by K(v)Z(v) = F(v). Here, F(v) is the specified global
force vector of size N 3 1; Z(v) is the N 3 1 displacement
vector to be determined; and K(v) is the global stochastic
dynamics stiffness matrix of size N 3 N. All three quantities
K, Z, and F are complex valued. The matrix K(v) is sym-
metric and can be written as K(v) = 1 10 0[K (v) iK (v)R I

DK(v)]. Here, and are, respectively, real and0 0K (v) K (v)R I

imaginary components of the deterministic part of K(v), and
DK(v) is the stochastic part. The vector Z(v) can be obtained
by inverting the random complex matrix K(v) and can be
written as Z(v) = K(v)21F(v) = ZR 1 iZI(v), where ZR(v)
and ZI(v) are, respectively, the real and imaginary parts of the
response vector Z(v). Adhikari and Manohar (1999) outlined
procedures based on expansions using eigenfunctions of K(v)
and the Neuman expansion method [generalized to account for
the complex nature of K(v)] to approximately characterize
Z(v). When the system property random fields were modeled
as Gaussian random fields, and the strength of the randomness
is taken to be small, it can be shown that ZR(v) and ZI(v) are
jointly Gaussian, and their joint probability density function is
obtainable. Now taking Fourier transform for any jth element
(1 # j # N) of Z(v), one has

`

1 R Iz (t) = {z (v) 1 iz (v)}exp[ivt] dv (36)j j jE2p 2`

Using the knowledge that and are approximatelyR Iz (v) z (v)j j

Gaussian, the quantities ^zj (t)& and ^zj (t1)zj (t2)& can easily be
evaluated. This evaluation would require the joint Gaussian
probability density function of andR I Rz (v ), z (v ), z (v ),j 1 j 1 k 2

Expressions given by Adhikari and Manohar (1999)Iz (v ).k 2

can be directly used to obtain the joint probability density
function with the difference that now they have to be obtained
at two different frequency points. Further studies are needed
to examine the accuracy of the analysis as the system becomes
larger and more complex.

CONCLUSIONS

The transient dynamics of randomly parametered beam el-
ements has been studied using the stochastic dynamic stiffness
approach. This has involved the application of a combination
of a stochastic finite-element method using frequency-depen-
dent shape functions to obtain description of response in fre-
quency domain and an FFT algorithm to obtain response in
time domain. The random field discretization used in this study
involves frequency-dependent weighted integrals. The re-
sponse is described in terms of time evolution of mean and
variance. The illustrative examples presented demonstrate that
the approximate analytical results compare favorably with the
results from the more exact digital simulation results. The use
of a dynamic stiffness matrix approach bypasses the need to
perform random free vibration analysis, thereby eliminating a
difficult step in the vibration response analysis of randomly
parametered systems. This feature is of particular advantage in
the context of dynamic response analysis due to short duration
transient loads. In these types of problems, the response is
expected to consist of contributions from several modes, and
a traditional modal expansion analysis would require an elab-
orate random eigenvalue analysis. This difficulty is avoided in
the present study. Some related issues, which the writers are
currently studying, include studies on structural reliability un-
der dynamic loads, studies on the effects of structural nonlin-
earities, and application of the approach presented here to an-
alyze the transient dynamics of built-up structures.
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