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Calculation of Eigensolution Derivatives
for Nonviscously Damped Systems Using Nelson’s Method

S. Adhikari∗ and M. I. Friswell†

University of Bristol, Bristol, England BS8 1TR, United Kingdom

A method to calculate the derivatives of the eigenvalues and eigenvectors of multiple-degree-of-freedom damped
linear dynamic systems with respect to arbitrary design parameters is presented. In contrast to the traditional
viscous damping model, a more general nonviscous damping model is considered. The nonviscous damping model
is such that the damping forces depend on the past history of velocities via convolution integrals over given
kernel functions. Because of the general nature of the damping, eigensolutions are generally complex valued,
and eigenvectors do not satisfy the classical orthogonality relationship. The proposed method to calculate the
eigenvector derivative depends only on the eigenvector concerned. Numerical examples are provided to illustrate
the derived results.

Nomenclature
c j = constant associated with the derivative of u j

D(s) = dynamic stiffness matrix
d j = constant associated with the derivative of v j

G(s) = Laplace transform of GG(t)
GG(t) = nonviscous damping matrix
K = stiffness matrix
L[ ] = Laplace transform of [ ]
M = mass matrix
m = total number of eigenvectors
N = number of degrees of freedom of the system
n = number of relaxation parameters
p = design parameter
rank( ) = rank of a matrix
s = Laplace domain parameter
u j = j th eigenvector
(t) = displacement vector

v j = j th adjoint (left) eigenvector
x j = vector associated with the derivative of u j

yj = vector associated with the derivative of v j

θ j = normalization constant for the j th eigenvector
λ j = j th eigenvalue
μk = relaxation parameters

Subscripts

( )T = matrix transpose
( )′ = derivative with respect to s

I. Introduction

T HE calculation of derivatives of natural frequencies and mode
shapes with respect to model parameters is vital for design

optimization,1 model updating,2 probabilistic structural dynamics,3

and many other applications. The methods to calculate these deriva-
tives are well established for undamped structures. Fox and Kapoor4

calculated the derivative of the eigenvectors by expressing these
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derivatives as a linear combination of the undamped eigenvectors.
The expressions derived in Ref. 4 are valid for symmetric undamped
systems. Many authors5−8 have extended Fox and Kapoor’s4 ap-
proach to determine eigensolution derivatives to more general asym-
metric systems. Nelson9 introduced the approach, extended in this
paper, where only the eigenvector of interest was required.

The works just discussed do not explicitly consider the damping
present in the system. To apply these results to systems with general
nonproportional (viscous) damping, the equations of motion must
be converted into the state-space form (see Ref. 10, for example).
Although exact in nature, the state-space methods require significant
numerical effort as the size of the matrices doubles. Moreover, these
methods also lack some of the intuitive simplicity of the analysis
based on N space. For these reasons some authors have consid-
ered the problem of calculating the derivatives of the eigensolutions
of viscously damped systems in N space. One of the earliest pa-
pers to consider damping was by Cardani and Mantegazza11 in the
context of flutter problems. Note that unlike undamped systems, in
damped systems the eigenvalues and eigenvectors, and consequently
their derivatives, become complex in general. Adhikari12 derived
an exact expression for the derivative of complex eigenvalues and
eigenvectors. The results were expressed in terms of the complex
eigenvalues and eigenvectors of the second-order system, and the
state-space representation of the equation of motion was avoided.
Lee et al.13,14 proposed an approach to determine natural frequency
and mode-shape sensitivities of damped systems. Adhikari15 sug-
gested an approximate method to calculate the derivative of complex
modes using a modal series involving only classical normal modes.
Friswell and Adhikari16 extended Nelson’s method to nonpropor-
tionally damped systems with complex modes. Later Adhikari and
Friswell17 derived the first- and second-order derivatives of complex
eigensolutions for more general asymmetric nonconservative sys-
tems. Recently Choi et al.18 proposed a matrix inversion approach
to determine mode-shape sensitivities of damped systems.

The preceding studies only considered a viscous damping model.
However, it is well known that other damping models exist within the
scope of linear analysis, such as damping in composite materials,19

energy dissipation in structural joints,20,21 and damping mechanisms
in composite beams.22 We consider a class of nonviscous damping
models in which the damping forces depend on the past history of
motion via convolution integrals over some kernel functions. The
equations of motion describing free vibration of a N -degree-of-
freedom linear system with such damping can be expressed by

M ¨(t) +
∫ t

−∞
GG(t − τ) ˙(τ ) dτ + K (t) = 0 (1)

Here M and K ∈ �N × N are the mass and stiffness matrices,
GG(t) ∈ �N × N is the matrix of kernel functions, and 0 is an N × 1
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vector of zeros. In the special case when GG(t − τ) = C δ(t − τ),
Eq. (1) reduces to the case of a viscously damped system. The
damping model of this kind is a further generalization of the fa-
miliar viscous damping. Dynamic analysis of nonviscously damped
systems has been discussed in detail in Refs. 23–26. Dynamic sys-
tems mathematically equivalent to Eq. (1) have been used by several
authors in the context of viscoelasticity damped systems. Examples
include, but are not limited to, the fractional derivative approach,27

the Golla–Hughes–McTavish approach,28,29 and the approach pro-
posed by Lesieutre and Mingori30 and Lesieutre and Bianchini.31

In many of these methods, after some manipulation, the eigenvalue
problem associated with Eq. (1) can be cast in the form of a λ-matrix
problem.32 Derivatives of eigenvalues and eigenvectors for this gen-
eral case have been discussed rigorously in Refs. 33–35. Adhikari36

extended the method of Fox and Kapoor to systems with nonviscous
damping in the form of Eq. (1). In this method the eigenvector deriva-
tive was obtained as a linear combination of all of the eigenvectors.
For large-scale structures with nonviscous damping, obtaining all
of the eigenvectors is a computationally expensive task because the
number of eigenvectors of a nonviscously damped system is much
larger, in general, than the number for a viscously damped system.
This motivates the extension of Nelson’s method to calculate the
derivatives of eigenvectors of nonviscously damped systems. We
begin by considering the self-adjoint case, where the matrices are
symmetric, and in Sec. VI consider the general case.

II. Eigenvalues and Eigenvectors
The determination of eigenvalues and eigenvectors of nonvis-

cously damped systems has been discussed by Adhikari.23 Here we
briefly outline the topics required for further developments. Taking
the Laplace transform of Eq. (1), we have

s2Mū(s) + s G(s)ū(s) + Kū(s) = 0 or D(s)ū(s) = 0 (2)

where the dynamic stiffness matrix is

D(s) = [s2M + s G(s) + K] ∈ CN × N (3)

Here ū(s) =L[ (t)] ∈ CN , G(s) =L[GG(t)] ∈ CN × N and L[ ] de-
notes the Laplace transform. In the context of structural dynam-
ics, s = iω, where ω ∈ �+ denotes the frequency. We consider the
damping to be nonproportional (Adhikari37 derived conditions for
proportionality for structures with nonviscous damping), so that the
mass and stiffness matrices, and also the matrix of kernel func-
tions, cannot be simultaneously diagonalized by any linear trans-
formation. However, it is assumed that M−1 exists and G(s) is such
that the motion is dissipative. Conditions that G(s) must satisfy
in order to produce dissipative motion were given by Golla and
Hughes.28

The eigenvalue problem associated with Eq. (1) can be defined
from Eq. (2) as [

λ2
j M + λ j G(λ j ) + K

]
u j = 0 (4)

or

D(λ j )u j = 0 (5)

where u j ∈ CN is the j th eigenvector. The eigenvalues λ j are roots
of the characteristic equation

det[s2M + s G(s) + K] = 0 (6)

For the linear viscoelastic case it can be shown that,38,39 in general,
the elements of G(s) can be represented by

G jk(s) = p jk(s)

q jk(s)
(7)

where p jk(s) and q jk(s) are finite-order polynomials in s and the
degree of p jk(s) is not more than that of q jk(s). Under such assump-
tions the order of the characteristic equation m is usually more than

2N . Thus, although the system has N degrees of freedom, the num-
ber of eigenvalues is more than 2N . This is a major difference be-
tween nonviscously damped systems and viscously damped systems
where the number of eigenvalues is exactly 2N , including any mul-
tiplicities. A recent study on a single-degree-of-freedom system40

has explored the nature of the eigenvalues in detail. For multiple-
degree-of-freedom systems, one can group the eigenvectors23 as
1) elastic modes (corresponding to N complex conjugate pairs of
eigenvalues) and 2) nonviscous modes (corresponding to the addi-
tional m − 2N eigenvalues). The elastic modes are related to the N
modes of vibration of the structural system. In this paper we assume
that all m eigenvalues are distinct.

Adhikari24 discussed the orthogonality and the normalization re-
lationships of the eigenvectors. Noting the symmetry of D(s) and
using Eq. (5), we can obtain

uT
j [D(λk) − D(λ j )]uk = 0 (8)

This equation can be regarded as the orthogonality relationship of
the eigenvectors. It is easy to verify that, in the undamped limit,
Eq. (8) degenerates to the familiar mass orthogonality relationship
of the undamped eigenvectors.

There are many approaches to the normalization of the eigenvec-
tors. A convenient approach is to normalize u j such that

uT
j

∂D(s)

∂s

∣∣∣∣
s = λ j

u j = θ j (9)

or

uT
j D′(λ j )u j = θ j , ∀ j = 1, . . . , m (10)

where

D′(s) = ∂D(s)

∂s
= [2sM + G(s) + sG′(s)] ∈ CN × N (11)

and θ j ∈ C is some nonzero constant. Equation (10) reduces to the
corresponding normalization relationship for viscously damped sys-
tems (for example, see Refs. 41 and 42) when G(s) is constant
with respect to s. Numerical values of θ j can be selected in var-
ious ways. For example, one can choose θ j = 2λ j , ∀ j , which re-
duces to uT

j Mu j = 1 when the damping is zero. This is consistent
with the familiar unity modal mass convention. Alternatively,
one can choose θ j = 1, ∀ j , and any theoretical analysis is easi-
est with this normalization. Alternatively, one can choose other
kinds of normalization, for example, max(u j ) = 1 or |u j | = 1. In
such cases one simply calculates the numerical values of θ j from
Eq. (10) and uses them subsequently. Further discussions on the
normalization of complex eigenvectors can be found in Refs. 24
and 43.

III. Eigenvalue Derivatives
The derivatives of the eigenvalues were obtained by Adhikari,36

and we provide a brief review here for completeness. Suppose the
system matrices in Eq. (1) are functions of some design parameter
p. In this section we intend to obtain an expression for the deriva-
tive of the j th eigenvalue with respect to the design parameter p.
Differentiating Eq. (4) with respect to p, one obtains[

2λ j
∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
G(λ j ) + λ j

∂[G(λ j )]

∂p
+ ∂K

∂p

]
u j

+ [
λ2

j M + λ j G(λ j ) + K
]∂u j

∂p
= 0 (12)

The term ∂[G(λ j )]/∂p in the preceding equation can be expressed
as

∂[G(λ j )]

∂p
= ∂λ j

∂p

∂G(s)

∂s

∣∣∣∣
s = λ j

+ ∂G(s)

∂p

∣∣∣∣
s = λ j

(13)
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Premultiplying Eq. (12) by uT
j and using the symmetry property of

the system matrices, it can be observed that the second term vanishes
as a result of Eq. (4). Substituting Eq. (13) into Eq. (12), we obtain

uT
j

[
λ2

j

∂M
∂p

+ λ j
∂G(s)

∂p

∣∣∣∣
s = λ j

+ ∂K
∂p

]
u j + uT

j

[
2λ j

∂λ j

∂p
M +

+ ∂λ j

∂p
G(λ j ) + λ j

∂λ j

∂p

∂G(s)

∂s

∣∣∣∣
s = λ j

]
u j = 0 (14)

Rearranging this equation gives the derivative of the eigenvalues as

∂λ j

∂p
= −uT

j

[
λ2

j

∂M
∂p

+ λ j
∂G(s)

∂p

∣∣∣∣
s = λ j

+ ∂K
∂p

]
u j

/

uT
j

[
2λ j M + G(λ j ) + λ j

∂G(s)

∂s

∣∣∣∣
s = λ j

]
u j (15)

The denominator of Eq. (15) is exactly the normalization relation-
ship given by Eq. (10). Using the expression of the dynamic stiffness
matrix in Eq. (3), one can easily deduce that

∂D(s)

∂p

∣∣∣∣
s = λ j

=
[
λ2

j

∂M
∂p

+ λ j
∂G(s)

∂p

∣∣∣∣
s = λ j

+ ∂K
∂p

]
(16)

Using these relationships, Eq. (15) can be expressed in a concise
form as

∂λ j

∂p
= −uT

j

∂D(s)

∂p

∣∣∣∣
s = λ j

u j

/
uT

j

∂D(s)

∂s

∣∣∣∣
s = λ j

u j

or

∂λ j

∂p
= − 1

θ j

[
uT

j

∂D(s)

∂p

∣∣∣∣
s = λ j

u j

]
(17)

This is the most general expression for the derivative of the eigenval-
ues of linear dynamic systems. Some special cases of this expression
are given in Sec. V. The derivatives of the associated eigenvectors
are considered in the next section.

IV. Eigenvector Derivatives
Adhikari36 has shown that the derivative of the eigenvectors can

be expressed by a linear combination of all of the eigenvectors as

∂u j

∂p
= − 1

2θ j

(
uT

j

∂D′(s)
∂p

∣∣∣∣
s = λ j

u j

)
u j

−
m∑

k = 1
k �= j

[
uT

k

∂D(s)

∂p

∣∣∣∣
s = λ j

u j

/
θk(λ j − λk)

]
uk (18)

where

∂D′(s)
∂p

∣∣∣∣
s = λ j

= 2λ j
∂M
∂p

+ ∂G(s)

∂p

∣∣∣∣
s = λ j

+ λ j
∂G′(s)

∂p

∣∣∣∣
s = λ j

(19)

For complex nonviscously damped systems the total number of
eigenvectors m can be very large (m 	 2N ). The calculation of
all eigenvectors to obtain the derivatives of only few eigenvectors
can be computationally expensive. In this section Nelson’s method
is extended to nonviscously damped systems, which does not suffer
from this drawback.

Differentiating Eq. (5) with respect to the design parameter p, we
have

D(λ j )
∂u j

∂p
= h j (20)

where

h j = −∂D(λ j )

∂p
u j = −

{
2λ j

∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
G(λ j )

+ λ j
∂[G(λ j )]

∂p
+ ∂K

∂p

}
u j (21)

is known. Equation (20) cannot be solved to obtain the eigenvector
derivative because the matrix is singular. For distinct eigenvalues
this matrix has a null space of dimension one. Following Nelson’s
approach, the eigenvector derivative is written as

∂u j

∂p
= x j + c j u j (22)

where x j and c j have to be determined. These quantities are not
unique because any multiple of the eigenvector can be added to
x j . A convenient choice is to identify the element of maximum
magnitude in u j and make the corresponding element in x j equal to
zero. Although other elements of x j could be set to zero, this choice
is most likely to produce a numerically well-conditioned problem.
Because D(λ j )u j = 0 as a result of Eq. (5), substituting Eq. (22)
into Eq. (20) gives

D j x j = h j (23)

where

D j = D(λ j ) = [
λ2

j M + λ j G(λ j ) + K
]∈ CN × N (24)

This can be solved, including the constraint on the zero element of
x j by solving the equivalent problem,⎡⎣D j11 0 D j31

0 1 0

D j31 0 D j33

⎤⎦ ⎧⎨⎩
x j1

x j2(=0)

x j3

⎫⎬⎭ =

⎧⎨⎩
h j1

0

h j3

⎫⎬⎭ (25)

where the D j is defined in Eq. (24), and has the row and column
corresponding to the zeroed element of x j replaced with the cor-
responding row and column of the identity matrix. This approach
maintains the banded nature of the structural matrices and hence is
computationally efficient.

It only remains to compute the scalar constant c j to obtain the
eigenvector derivative. For this the normalization equation (10) must
be used. Differentiating Eq. (10) and using the symmetry property
of D′(s), we have

uT
j

∂D′(λ j )

∂p
u j + 2uT

j D′(λ j )
∂u j

∂p
= 0 (26)

Substituting ∂u j/∂p from Eq. (22), one has

1

2
uT

j

∂D′(λ j )

∂p
u j + xT

j D′(λ j )u j + c j uT
j D′(λ j )u j = 0 (27)

Noticing that the coefficient associated with c j is the normalization
constant given by Eq. (10), we have

c j = − 1

θ j

{
1

2
uT

j

∂D′(λ j )

∂p
u j + uT

j D′(λ j )x j

}
(28)

The first term on the right-hand side can be obtained by substituting
s = λ j into Eq. (11) and differentiating

∂D′(λ j )

∂p
= 2

∂λ j

∂p
M + 2λ j

∂M
∂p

+ ∂[G(λ j )]

∂p

+ ∂λ j

∂p
G′(λ j ) + λ j

∂[G′(λ j )]

∂p
(29)
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where ∂[G(λ j )]/∂p is given in Eq. (13) and

∂[G′(λ j )]

∂p
= ∂λ j

∂p

∂G′(s)
∂s

∣∣∣∣
s = λ j

+ ∂G′(s)
∂p

∣∣∣∣
s = λ j

= ∂λ j

∂p

∂2G(s)
∂s2

∣∣∣∣
s = λ j

+ ∂2G(s)

∂p ∂s

∣∣∣∣
s = λ j

(30)

Equation (22) combined with x j obtained by solving Eq. (25) and
c j obtained from Eq. (28) completely defines the derivative of the
eigenvectors.

V. Special Cases
The expressions for the derivative of the eigenvalues and eigen-

vectors proposed in this paper are quite general in their scope. In
this section some special cases of these expressions are derived to
relate them to the published literature.

A. Undamped Systems
The derivatives of undamped eigensolutions have been consid-

ered, for example, by Fox and Kapoor4 and Nelson.9 In this case
G(s) = 0, ∀ s, from which it follows that

D(s) = s2M + K (31)

D′(s) = 2sM (32)

For undamped systems all of the eigenvectors are real, that is,

u j ∈ �N
, ∀ j . The number of modes, that is, the order of the char-

acteristic polynomial, m = 2N . Because λ j is purely imaginary,
considering λ j = iω j , where ω j ∈ � is the j th undamped natural
frequency, one obtains

θ j = uT
j D′(λ j )u j = 2iω j uT

j Mu j (33)

∂D(s)

∂p

∣∣∣∣
s = iω j

=
[

∂K
∂p

− ω2
j

∂M
∂p

]
(34)

∂[D(λ j )]

∂p
=

[
2λ j

∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂K
∂p

]

=
[
−2ω j

∂ω j

∂p
M − ω2

j

∂M
∂p

+ ∂K
∂p

]
(35)

∂[D′(λ j )]

∂p
= 2

∂λ j

∂p
M + 2λ j

∂M
∂p

= 2i

[
∂ω j

∂p
M + 2ω j

∂M
∂p

]
(36)

From Eq. (17) the eigenvalue derivative becomes

∂ω j

∂p
= uT

j

[
∂K/∂p − ω2

j (∂M/∂p)
]
u j

2ω j uT
j Mu j

(37)

which is a well-known result. The eigenvector derivative is given
by Eq. (22). The vector h j and the constant c j can be obtained from
Eqs. (21) and (28) as

h j =
[

2ω j
∂ω j

∂p
M + ω2

j

∂M
∂p

− ∂K
∂p

]
u j (38)

c j = − 1

uT
j Mu j

{
1

2
uT

j

[
1

ω j

∂ω j

∂p
M + ∂M

∂p

]
u j + uT

j Mx j

}
(39)

B. Viscously Damped Systems
Derivatives of eigensolutions of nonproportional viscous damped

systems have been considered in Refs. 12–18. In this case
G(s) = C, ∀ s, from which it follows that

D(s) = [s2M + sC + K] (40)

D′(s) = [2sM + C] (41)

For viscously damped systems, the number of modes, that is, the or-
der of the characteristic polynomial, is m = 2N . All of the eigenval-
ues and the eigenvectors appear in complex conjugate pairs. Using
Eqs. (40) and (41), we obtain

θ j = uT
j D′(λ j )u j = uT

j [2λ j M + C]u j (42)

∂D(s)

∂p

∣∣∣∣
s = λ j

=
[
λ2

j

∂M
∂p

+ λ j
∂C
∂p

+ ∂K
∂p

]
(43)

∂[D(λ j )]

∂p
=

[
2λ j

∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
C + λ j

∂C
∂p

+ ∂K
∂p

]
(44)

∂[D′(λ j )]

∂p
=

[
2
∂λ j

∂p
M + 2λ j

∂M
∂p

+ ∂C
∂p

]
(45)

From Eq. (17) the eigenvalue derivative becomes

∂λ j

∂p
= −uT

j

[
λ2

j

∂M
∂p

+ λ j
∂C
∂p

+ ∂K
∂p

]
u j

/
uT

j [2λ j M + C]u j (46)

The eigenvector derivative is given by Eq. (22). The vector h j and
the constant c j can be obtained from Eqs. (21) and (28) as

h j = −
[

2λ j
∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
C + λ j

∂C
∂p

+ ∂K
∂p

]
u j (47)

c j = − 1

uT
j D′(λ j )u j

{
1

2
uT

j

[
2
∂λ j

∂p
M + 2λ j

∂M
∂p

+ ∂C
∂p

]
u j

+ uT
j [2λM + C]x j

}
(48)

C. Systems with Exponentially Decaying Damping Kernels
In this case the matrix of the damping kernel functions is ex-

pressed as

GG(t) =
n∑

k = 1

μke−μk t Ck (49)

or in the Laplace domain

G(s) =
n∑

k = 1

μk

s + μk
Ck (50)

The constants μk ∈ �+ are known as the relaxation parameters, and
n denotes the number relaxation parameters used to describe the
damping behavior. Several authors, for example, Muravyov and
Hutton,44 Muravyov,45 Wagner and Adhikari,25 and Adhikari and
Wagner26 have considered the dynamic analysis of such systems.
From Eq. (6) observe that in the limit when μk → ∞, ∀ k, the ex-
ponential model reduces to the viscous damping model with an
equivalent viscous damping matrix

C =
n∑

k = 1

Ck (51)
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Therefore the exponential kernel model is more general than the
viscous damping model. Using G(s) in Eq. (50), it follows that

D(s) =
[

s2M + s
n∑

k = 1

Ck

(
1 + s

μk

)−1

+ K

]
(52)

D′(s) =
[

2sM +
n∑

k = 1

Ck

(
1 + s

μk

)−2]
(53)

For this type of nonviscously damped system, the number of eigen-
values (see Refs. 25 and 26 for details) is m = 2N + R, where

R =
n∑

k = 1

rank(Ck) (54)

If all of the Ck matrices are of full rank, then R = nN . Among the
m eigensolutions, 2N appear in complex conjugate pairs, and the
other R eigensolutions are purely real. Using Eqs. (40) and (41), we
obtain

θ j = uT
j D′(λ j )u j = uT

j

[
2sM +

n∑
k = 1

Ck

(
1 + s

μk

)−2]
u j (55)

∂D(s)

∂p

∣∣∣∣
s = λ j

= λ2
j

∂M
∂p

+ λ j

n∑
k = 1

[
∂Ck

∂p

(
1 + λ j

μk

)−1

+ λ j

μ2
k

Ck
∂μk

∂p

(
1 + λ j

μk

)−2]
+ ∂K

∂p
(56)

∂[D(λ j )]

∂p
= 2λ j

∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
G(λ j )

+ λ j

n∑
k = 1

[
∂Ck

∂p

(
1 + λ j

μk

)−1

+ Ck

(
λ j

μ2
k

∂μk

∂p
− 1

μk

∂λ j

∂p

)(
1 + λ j

μk

)−2]
+ ∂K

∂p
(57)

∂[D′(λ j )]

∂p
= 2

∂λ j

∂p
M + 2λ j

∂M
∂p

+
n∑

k = 1

[
∂Ck

∂p

(
1 + λ j

μk

)−2

+ 2Ck

(
λ j

μ2
k

∂μk

∂p
− 1

μk

∂λ j

∂p

)(
1 + λ j

μk

)−3]
(58)

Using these expressions, the derivative of the eigenvalue can be
obtained from Eq. (17). The eigenvector derivative is given by
Eq. (22). The vector h j and the constant c j can be obtained using
Eqs. (55–58).

The expressions in Eqs. (55–58) are quite general. In many practi-
cal application the damping coefficient matrices Ck can be indepen-
dent of the relaxation parameter μk . In such cases either ∂Ck/∂p or
∂μk/∂p can be zero for a given design parameter p. This particular
case will simplify the analytical expressions derived in Eqs. (56–58).

VI. Eigensolution Derivatives
for the Non-Self-Adjoint Case

In this section we consider a more general case when M, GG(t),
and K are not restricted to symmetric matrices. For such asymmetric

systems the adjoint eigenvalue problem or left eigenvalue problem
is defined as

vT
j

[
λ2

j M + λ j G(λ j ) + K
] = 0 or vT

j D(λ j ) = 0 (59)

where v j ∈ CN is the j th left eigenvector. Following the approach
outlined in Ref. 17, Adhikari36 obtained the derivative of eigenvalues
of nonviscously damped asymmetric systems as

∂λ j

∂p
= − 1

θ j

[
vT

j

∂D(s)

∂p

∣∣∣∣
s = λ j

u j

]
(60)

where the normalization constants are

θ j = vT
j

∂D(s)

∂s

∣∣∣∣
s = λ j

u j (61)

For the eigenvector derivatives, two problems arise in the non-
self-adjoint case; the left and right eigenvector derivatives must be
calculated simultaneously, and extra constraints must be introduced
for the relative scaling of the left and right eigenvectors. The fact
that the scaling given by Eq. (61) is insufficient to give unique
eigenvectors can be demonstrated by multiplying the left eigenvector
by any scalar and dividing the right eigenvector by the same scalar.
The derivatives of the right eigenvectors are written as in Eq. (22),
and the vector x j is calculated as before. The derivatives of the left
eigenvectors are written as

∂v j

∂p
= y j + d j v j (62)

The vector y j is obtained in a similar manner to x j . Equation (59)
is differentiated, and Eq. (62) is used to obtain

yT
j

[
λ2

j M + λ j G(λ j ) + K
] = yT

j D j = g j (63)

where

g j = −vT
j

∂D(λ j )

∂p
= −vT

j

[
2λ j

∂λ j

∂p
M + λ2

j

∂M
∂p

+ ∂λ j

∂p
G(λ j ) + λ j

∂[G(λ j )]

∂p
+ ∂K

∂p

]
(64)

As for the right eigenvectors, the vector and scalar in Eq. (62) are
not unique, but the same procedure of setting one of the elements
of v j to zero can be used.

It remains to compute the scalars c j and d j , using the eigenvector
normalization. Differentiating Eq. (61) with respect to the parameter
p and substituting the expressions for the eigenvector derivatives,
Eqs. (22) and (62), produce

c j + d j = − 1

θ j

{
vT

j

∂D′(λ j )

∂p
u j + vT

j D′(λ j )x j + yT
j D′(λ j )u j

}
(65)

The matrix derivatives in Eq. (65) have already been discussed in
detail for the self-adjoint case.

It remains to impose a constraint on the relative magnitudes of
the eigenvectors. The best approach is to set one element in both
eigenvectors to be equal. This element is arbitrary, but should be
chosen so that this element has a large magnitude in both the left and
the right eigenvectors. One possibility is to multiply the magnitudes
of the corresponding elements of both eigenvectors and choose the
largest product. Suppose that vector element number e is chosen.
Then

{u j }e = {v j }e,

{
∂u j

∂p

}
e

=
{

∂v j

∂p

}
e

(66)

This leads to a second simultaneous equation for c j and d j . If the
same vector element number e is chosen for the normalization in
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Table 1 Eigenvalues and eigenvectors for the example

Quantity Elastic mode 1 Elastic mode 2 Nonviscous mode 1 Nonviscous mode 2

λ j −0.0387 ± 38.3232i −1.5450 ± 97.5639i −2.8403 −5.9923

u j

{−0.7500 ± 0.0043i
−0.6616 ∓ 0.0041i

} {
0.6622 ∓ 0.0035i

−0.7501 ± 0.0075i

} {−0.0165
0.0083

} {
0.0055

−0.0028

}

Table 2 Derivative of eigenvalues and eigenvectors with respect to the stiffness parameter k1

Quantity Elastic mode 1 Elastic mode 2 Nonviscous mode 1 Nonviscous mode 2

∂λ j /∂k1 0.0001 ± 0.0073i 0.0001 ± 0.0022i −2.7106 × 10−4 −2.9837 × 10−5

∂u j /∂k1 × 103

{
0.1130 ∓ 0.0066i
0.0169 ± 0.0041i

} {
0.0385 ∓ 0.0015i
0.0494 ∓ 0.0026i

} {
0.0072
0.0046

} {−0.0018
−0.0018

}

Fig. 1 Two-degree-of-freedom spring-mass system with nonviscous
damping: m = 1 kg, k1 = 1000 N/m, k2 = 2000 N/m, k3 = 1600 N/m,
g(t) = c(μ1 e−μ1t + μ2e−μ2t), c = 200 Ns/m,μ1 = 5.0 s−1, andμ2 = 7.0 s−1.

Eq. (66), and also as the zero element in x j and y j , then Eq. (66)
reduces to

c j = d j (67)

which together with Eq. (65) yields the required solution for c j and
d j .

VII. Numerical Example
We consider a two-degree-of-freedom system36 shown in Fig. 1

to illustrate the use of the expressions derived in this paper.
Here the dissipative element connected between the two masses

is not a simple viscous dashpot but a nonviscous damper. The equa-
tions of motion describing the free vibration of the system can be
expressed by Eq. (1), with

M =
[

m 0

0 m

]
, K =

[
k1 + k3 −k3

−k3 k2 + k3

]
(68)

GG(t) = g(t)Î, where Î =
[

1 −1

−1 1

]
(69)

The damping function g(t) is assumed to be a double exponential
model, with

g(t) = c
(
μ1e−μ1t + μ2e−μ2t

)
, c, μ1, μ2 ≥ 0 (70)

where c is a constant and μ1 and μ2 are known as the relaxation
parameters. In Eq. (70) if the function associated with c was a delta
function, c would be the familiar viscous damping constant. Taking
the Laplace transform of Eq. (69), one obtains

G(s) = cÎ
{
(1 + s/μ1)

−1 + (1 + s/μ2)
−1

}
(71)

Substituting Eqs. (68) and (71) into Eq. (6) shows that the system has
six eigenvalues: four of which occur in complex conjugate pairs and
correspond to the two elastic modes. The other two eigenvalues are
real and negative, and they correspond to the two nonviscous modes.
The eigenvalues and the eigenvectors of the system are shown in
Table 1.

The normalization constants θ j are selected such that θ j = 2λ j

for the elastic modes and θ j = 1 for the nonviscous modes.
We consider the derivative of eigenvalues with respect to the stiff-

ness parameter k1 and the relaxation parameter μ1. The derivative
of the relevant system matrices with respect to k1 can be obtained
as

∂M
∂k1

= O,
∂G(s)

∂k1

∣∣∣∣
s = λ j

= O,
∂K
∂k1

=
[

1 0

0 0

]
(72)

∂[D(λ j )]

∂k1

=
{

2λ j M + G(λ j ) − cλ j Î

[
μ−1

1

(
1 + λ j

μ1

)−2

+ μ−1
2

(
1 + λ j

μ2

)−2]}
∂λ j

∂k1

+ ∂K
∂k1

(73)

∂[D′(λ j )]

∂k1

=
{

2M − 2cÎ

[
μ−1

1

(
1 + λ j

μ1

)−3

+ μ−1
2

(
1 + λ j

μ2

)−3]}
∂λ j

∂k1

(74)

Using these expressions, the derivative of the eigenvalues and eigen-
vectors is obtained from Eqs. (17) and (22) and shown in Table 2.

The derivatives of the eigensolutions with respect to the relaxation
parameter μ1 can be obtained using similar manner. The derivative
of the relevant system matrices with respect to μ1 can be obtained
as

∂M
∂μ1

= O,
∂K
∂μ1

= O,
∂G(s)

∂μ1

∣∣∣∣
s = λ j

= cÎ λ jμ
−2
1

(
1 + λ j

μ1

)−2

(75)

∂[D(λ j )]

∂μ1

=
{

2λ j M + G(λ j ) − cλ j Î

[
μ−1

1

(
1 + λ j

μ1

)−2

+ μ−1
2

(
1 + λ j

μ2

)−2]}
∂λ j

∂μ1

+ cÎλ2
jμ

−2
1

(
1 + λ j

μ1

)−2

(76)

∂[D′(λ j )]

∂μ1

=
{

2M − 2cÎ

[
μ−1

1

(
1 + λ j

μ1

)−3

+ μ−1
2

(
1 + λ j

μ2

)−3]}
∂λ j

∂μ1

+ 2cÎ λ jμ
−2
1

(
1 + λ j

μ1

)−3

(77)

Using these expressions, the derivative of the eigenvalues and eigen-
vectors is obtained from Eqs. (17) and (22) and shown in Table 3.



ADHIKARI AND FRISWELL 1805

Table 3 Derivative of eigenvalues and eigenvectors with respect to the relaxation parameter μ1

Quantity Elastic mode 1 Elastic mode 2 Nonviscous mode 1 Nonviscous mode 2

∂λ j /∂μ1 −0.0034 ± 0.0196i −0.2279 ± 2.0255i −0.0570 −0.4804

∂u j /∂μ1 × 103

{
0.0022 ± 0.0004i

−0.0021 ∓ 0.0003i

} {−0.0045 ∓ 0.0012i
0.0098 ± 0.0015i

} {−0.0002
0.0001

} {
0.0022

−0.0011

}

VIII. Conclusions
This paper has outlined a method to calculate the derivatives

of eigenvalues and eigenvectors for systems with nonproportional
and nonviscous damping. Nelson’s method is used, which has
the advantage that only the eigenvectors of interest are required.
Undamped systems and nonproportionally damped viscous sys-
tems appear as special cases of this general derivation. For self-
adjoint systems the usual eigenvector scaling is sufficient to ob-
tain the eigenvector derivatives. For non-self-adjoint systems a
further constraint is required to fix the relative magnitude of the
left and right eigenvectors. Using this constraint the left and right
eigenvector derivatives are calculated simultaneously. The method
has been demonstrated on a simple example with an exponen-
tial damping kernel. However the same approach can be used for
more complex models and for other models of nonviscous damp-
ing, such as the fractional derivative model. The derivatives can
then be used for structural optimization, model updating, or other
applications.
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