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Structural parameter estimation is affected not only by measurement noise but also by
unknown uncertainties which are present in the system. Deterministic structural model
updating methods minimise the difference between experimentally measured data and
computational prediction. Sensitivity-based methods are very efficient in solving structural
model updating problems. Material and geometrical parameters of the structure such as
Poisson’s ratio, Young’s modulus, mass density, modal damping, etc. are usually considered
deterministic and homogeneous. In this paper, the distributed and non-homogeneous
characteristics of these parameters are considered in the model updating. The parameters
are taken as spatially correlated random fields and are expanded in a spectral Karhunen-
Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix
of the beam is expanded as a series in terms of discretized parameters, which can be esti-
mated using sensitivity-based model updating techniques. Numerical and experimental
tests involving a beam with distributed bending rigidity and mass density are used to ver-
ify the proposed method. This extension of standard model updating procedures can
enhance the dynamic description of structural dynamic models.

� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantifying uncertainty in numerically simulated results is not recent. However, during the last few years, this research
area has undergone remarkable development, in special for dynamic systems. The method most used is Monte Carlo (MC)
simulation [1]. Otherwise, non-sampling approaches such as the Perturbation Method may be used. It consists of expanding
a random field in a truncated Taylor series around its mean [2]. The Direct Method consists in applying the moment equa-
tions to obtain the random solutions. The unknowns are the moments and their equations are derived by taking averages
over the original stochastic governing equations. A powerful method in computational stochastic problems is the Stochastic
Finite Element Method (SFEM) [3]. SFEM is an extension of the classical deterministic FE approach to the stochastic frame-
work, i.e., to solve static and dynamic problems with stochastic mechanical, geometric, or loading properties [4]. Adhikari [5]
presented a doubly Spectral Stochastic Finite Element Method, where the Spectral Element Method is given a stochastic
treatment.

The spectral element method (SEM) [6,7] is based on the analytical solution of the displacement wave equation, written
in the frequency domain. The element is tailored with the matrix ideas of FEM, but in SEM the interpolation function is the
exact solution of the wave equation [8–20]. Both techniques, SFEM and doubly Spectral SFEM, are formulated in a context of
random fields. A method with a wide application when considering random fields is the Karhunen-Loève (KL) expansion
[3,21,2]. The KL expansion can be used to discretize the random field by representing it by scalar independent random vari-
ables and continuous deterministic functions. By truncating the expansion, the number of random variables becomes finite
and numerically treatable. Many authors use the KL expansion to model Gaussian random processes, but it is possible to
extend the KL expansion to non-Gaussian processes [22–25].

Model updating methods in dynamic structural analysis are basically a process of minimizing the differences between the
numerical model predictions and measured responses obtained in experimental tests using a parameter estimation proce-
dure [26,27]. The model updating procedure starts with the parameter choice (parametrisation), followed by a correction
procedure based on the available measured data. The parametrisation is an important topic in model updating which
requires considerable physical knowledge regarding the system. More details can be found in references [28–32]. In the field
of structural dynamics, some authors traditionally use modal parameters (natural frequencies and mode shapes) for updat-
ing the model due to the facility in estimating the modal parameters using modal analysis [33,34] and also to the freedom in
the choice of the updating parameters and the applicability of the method [35]. Examples of theoretical and practical appli-
cations can be found in references [36,27,37,38,32]. However, in a structural dynamic test, it is a common practice to mea-
sure the data in the form of Frequency Response Functions (FRF), which requires an additional modal parameter estimation
[33,39] to extract the modal parameters. Natke [40] presented a model updating procedure using measured FRFs instead of
modal parameters. After that, a growing number of researchers focused on model updating algorithms using the measured
data directly [41–47]. In the practical applications of model updating, the measured data are often incomplete and include
randomness. Based on the system variability, some authors proposed stochastic model updating techniques [48–51]. The
main advantage of this approach is to add randomness in the model updating process. Statistical techniques combined with
model updating can improve the parameter estimation. The first works that incorporated statistical methods for the treat-
ment of measurement noise in model updating were presented by Collins et al.[52] and later by Friswell [53]. Differences
between measure data and model predictions may arise due to randomness present in the system, e.g. manufacturing vari-
ability as well as to variations in the material properties of the structure components. In Friswell’s paper [53], errors in the
analytical model and in the measurements (e.g. caused by noise [27]) are associated to a weighting matrix and it is shown
how to estimate the variance in the updated parameters. This technique is called the minimum variance estimator. Other
techniques for model updating in the presence of uncertainty are the Bayesian probabilistic framework presented by Beck,
Katafygiotis, and Mares [54–56], model updating based on an inverse approach, and fuzzy arithmetic [57]. Soize [58] pre-
sented a methodology for robust model updating using a non-parametric probabilistic approach. Uncertainty in structural
properties, such as Poisson’s ratio, Young’s modulus, mass density, modal damping, etc., are considered irreducible uncer-
tainty and require different mathematical approaches for the updating procedure. The distributions of the updated param-
eters are then modified in order to improve the correlation between model-predicted distributions and measured data
distributions. This is a technique developed by Mottershead et al., and Mare et al. [59,56] and it is called stochastic model
updating or uncertainty identification. The stochastic model updating is efficient, not only because it includes variability data
due to measurement noise, for example, but also because it includes the variability already existing in the structural property
[59,56,48–50]. Govers and Link [60] presented an approach for stochastic model updating with covariance matrix adjust-
ment from uncertain experimental modal data. Further, researchers have investigated different problems using stochastic
model updating [52,53,61–63]. The majority of those methods can include and estimate of the global model randomness
or uncertainties that are assumed to be spatially homogeneous along the structure. By considering that structure parameter
values can be spatially distributed in nature, Adhikari and Friswell [64] estimated distributed parameters modelled as real-
izations of a random field using modal parameters.
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The main goal of this paper is to investigate the use of sensitivity-based model updating with measured FRFs to estimate
spatially distributed parameters. The distributed parameters are assumed to be realizations of a random process, which is
more realistic for simulating the variability caused by the manufacturing process. The study uses a beam structure where
the uncertainty is included in the flexural bending and mass per unit of length modelled by SEM. Such distributed deviations
are unknown a priori and therefore can be considered to be samples from a random field, which is discretized into random
variables using the KL expansion. The implemented technique is validated in a numerical simulation and then applied to
experimental data for a polymer beam manufactured by 3D printing.

2. Spectral element method for stochastic systems

By supposing a linear damped distributed parameter dynamic system governed by a linear differential equation [65]
q0
@2Uðr; tÞ

@t2
þ L10

@Uðr; tÞ
@t

þ L20Uðr; tÞ ¼ 0 ð1Þ
where Uðr; tÞ is the time dependent displacement variable, r 2 R is the spatial position vector, and t is time specified in some
domain D. In the frequency domain we can write Eq. (1) as:
�x2q0uðr;xÞ þ ixL10fuðr;xÞg þ L20fuðr;xÞg ¼ 0 ð2Þ
Similar to FEM, the frequency-dependent displacement within an element can be interpolated from the nodal displacements
ueðr;xÞ ¼ gðr;xÞT ûeðxÞ, where ûeðxÞ is the nodal displacement vector and gðr;xÞ is the vector of frequency-dependent
shape functions represented by
gðr;xÞ ¼ CðxÞsðr;xÞ ð3Þ
where CðxÞ is a complex matrix that depends on the boundary conditions and sðr;xÞ is a vector containing exponential
functions ½e�ikðxÞx�. One of the advantages using SEM is that only one element is required for a homogeneous structural mem-
ber. The global dynamic spectral matrix for a undamped deterministic system can be described as
D0ðxÞ ¼ �x2MðxÞ þ KðxÞ ð4Þ

In a weak form, frequency-dependent n� n complex stiffness and mass matrices can be expressed as
KðxÞ ¼
Z
D
ksðrÞL20fgðr;xÞgL20fgðr;xÞgTdr ð5Þ
and
MðxÞ ¼
Z
D
qðrÞgðr;xÞgðr;xÞTdr ð6Þ
In this present work a spectral element for a straight homogeneous beam is used [6,7,5] and expanded for a stochastic
treatment.

2.1. Spectral beam element

The fundamental equations for the flexural motion of a beam structure are briefly described. A more extensive formula-
tion can be found in [6,7]. Fig. 1 shows an elastic two-node beam element with an uniform rectangular cross-section sub-
jected to dynamic forces at both ends. In this section all parameters are assumed to be deterministic variables.
Fig. 1. Two-node beam spectral element.
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The equation of motion of a damped Euler-Bernoulli beam under bending vibration may be written as [5],
@2

@x2
EIðxÞ @

2vðx; tÞ
@x2

" #
þ qAðxÞ @

2vðx; tÞ
@t2

¼ 0 ð7Þ
where EI is the bending stiffness, qA is the mass per unit length, vðx; tÞ is the transverse flexural displacement, E is the
Young’s modulus, A is the cross-section area, q is the mass density, and I is the inertia moment. A hysteretic structural damp-
ing is assumed and introduced into the model formulation by adding an imaginary part proportional to the loss factor g to
the Young’s modulus. In the deterministic case a complex value given E ¼ E0ð1þ igÞ, where E0 is the Young’s modulus mean
value, g is the loss factor and i ¼

ffiffiffiffiffiffiffi
�1

p
[6]. In the stochastic case, the complex random variable EðhÞ will follow the complex

random variable rules [21]. It is given by EðhÞ ¼ bEðhÞ þ E0ig, where the random part of the Young’s modulus is a real value,bEðhÞ, and the imaginary part is taken as deterministic E0ig.
By considering the homogeneous differential equation with constant properties along the beam length, the spectral form

becomes:
d4v̂
dx4

� b4v̂ ¼ 0 ð8Þ
Eq. (8) can be split into a product of two terms which must vanish. A solution of the type vðxÞeixt ¼ ekxeixt , where k
(wavenumber) is given by:
k4 � b4 ¼ 0 ) k ¼ �ib or � b ð9Þ

for
b4 ¼ qAx2

EI
ð10Þ
where x is the circular frequency. For the spectral Euler-Bernoulli beam element of length L, the general solution of
vðxÞeixt ¼ ekxeixt can be then obtained in the form of
vðx;xÞ ¼ a1e�ikx þ a2e�kx þ a3e�ikðL�xÞ þ a4e�kðL�xÞ ¼ sðx;xÞa ð11Þ

where
sðx;xÞ ¼ e�ikx; e�kx; e�ikðL�xÞ; e�kðL�xÞ� �
aðx;xÞ ¼ a1; a2; a3; a4f gT ð12Þ
The spectral nodal displacements and slopes of the beam element
d ¼

v1

H1

v2

H2

26664
37775 ¼

vð0Þ
v 0ð0Þ
vðLÞ
v 0ðLÞ

26664
37775 ð13Þ
can be related to the displacement field at the two nodes (x ¼ 0 and x ¼ L),X by
d ¼

sð0;xÞ
s0ð0;xÞ
sðL;xÞ
s0ðL;xÞ

26664
37775a ¼ CðxÞa ð14Þ
where
CðxÞ ¼

1 1 e�ikL e�kL

�ik �k ie�ikLk e�kLk

e�ikL e�kL 1 1
�ie�ikLk �e�kLk ik k

26664
37775 ð15Þ
The frequency-dependent displacement within an element is interpolated from the nodal displacement vector d by elim-
inating the constant vector a from Eq. (13) and using Eq. (14) it can be expressed as
vðx;xÞ ¼ gðx;xÞd ð16Þ

where the shape function can be expressed as
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gðx;xÞ ¼ sðx;xÞC�1ðxÞ ¼

g1ðxÞ
g2ðxÞ
g3ðxÞ
g4ðxÞ

8>>><>>>:
9>>>=>>>;

T

ð17Þ

¼

�2cosðkxÞ � 2coshðkxÞ þ ð1� iÞðcosðkðð1þ iÞL� xÞÞ þ icosðkðð1þ iÞL� ixÞÞ þ coshðkðð1þ iÞL� xÞÞ þ icoshðkðð1þ iÞL� ixÞÞÞ
4cosðkLÞcoshðkLÞ

�2sinðkxÞ þ 2sinhðkxÞ þ ð1þ iÞðsinðkðð1þ iÞL� xÞÞ � sinðkðð1þ iÞL� ixÞÞ þ sinhðkðð1þ iÞL� xÞÞ � sinhðkðð1þ iÞL� ixÞÞÞ
4kðcosðkLÞcoshðkLÞ � 1Þ

cosðkðL� xÞÞ � cosðkxÞcoshðkLÞ þ coshðkðL� xÞÞ � cosðkLÞcoshðkxÞ þ sinðkxÞ sinhðkLÞ � sinðkLÞ sinhðkxÞ
2� 2cosðkLÞcoshðkLÞ

sinðkðL� xÞÞ � cosðkxÞ sinhðkLÞ þ coshðkxÞðsinhðkLÞ � sinðkLÞÞ þ coshðkLÞðsinðkxÞ � sinhðkxÞÞ þ cosðkLÞ sinhðkxÞ
2kðcosðkLÞcoshðkLÞ � 1Þ

8>>>>>>>>>>>><>>>>>>>>>>>>:

9>>>>>>>>>>>>=>>>>>>>>>>>>;

T

In the case of the Euler-Bernoulli beam, a generalized transverse displacement at an arbitrary point can be expressed as
(Eq. (16)),
vðxÞ ¼ g1ðxÞv1 þ g2ðxÞH1 þ g3ðxÞv2 þ g4ðxÞH2
The damping is assumed hysteric and for this reason only the (4 � 4) mass and (4 � 4) stiffness matrices will be deter-
mined in a weak form:
K0ðxÞ ¼
Z L

0
EI0ðxÞg00ðxÞg00TðxÞdx ð18Þ
and
M0ðxÞ ¼
Z L

0
qA0ðxÞgðxÞgTðxÞdx ð19Þ
where 0 express the spatial partial derivative. The stochastic beam spectral element is formulated as a random process
expanded in a spectral KL decomposition.

2.2. Karhunen-Loève expansion

Since the equations of motion for the beam spectral element are written as partial differential equations, it would be very
difficult to apply random fields directly to them. To overcome this difficulty the random field is discretized in terms of ran-
dom variables. By doing this, many mathematical procedures can be used to solve the resulting discrete stochastic differen-
tial equations. The procedure applied here is a random field spectral decomposition using the KL expansion. Assuming that
the spectral covariance function is finite, symmetric and positive definite, it can be represented by a spectral decomposition,
similar to a Fourier series expansion. By using this concept a random field can be expressed as a generalized Fourier series,
-ðr; hÞ ¼ -0ðrÞ þ
X1
j¼1

njðhÞ
ffiffiffiffi
kj

p
ujðrÞ ð20Þ
where-ðr; hÞ is a random field with covariance function C-ðr1; r2Þ; h denotes an element of the sample space X, so that h 2 X,
and njðhÞ are uncorrelated random variables. The subscript 0, in-0ðrÞ implies the corresponding deterministic part. The con-
stants kj and functions ujðrÞ are, respectively, eigenvalues and eigenfunctions satisfying the integral equation:
Z

D
C-ðr1; r2Þujðr1Þdr1 ¼ kjujðr2Þ 8j ¼ 1;2; . . . : ð21Þ
In this paper one dimensional spaces are considered. Since a Gaussian random field is representative of many physical sys-
tems and closed form expressions for the KL expansion exist, a Gaussian autocorrelation function with exponential decay
will be assumed here. It can be expressed as,
Cðx1; x2Þ ¼ e�jx1�x2 j=b ð22Þ

where b is the correlation length, which is an important parameter to describe the random field. A random field can be
expanded in a finite basis of deterministic functions and random variables if the correlation length is large compared with
the domain under consideration; for more details, see [3]. An analytical solution in the interval �a < x < a where it is
assumed that the mean is zero, produces a random field as,
-1ðx; hÞ ¼
X1
j¼1

njðhÞ
ffiffiffiffi
kj

p
ujðxÞ ð23Þ
Defining c ¼ 1=b, the corresponding eigenvalues and eigenfunctions for odd j are given by [3],
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kj ¼ 2c
x2

j þ c2
; ujðxÞ ¼

cos xj
L
2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ sinð2xjaÞ

2xj

q where tanðxjaÞ ¼ c

xj
ð24Þ
and for even j are given by,
kj ¼ 2c
x2

j þ c2
; ujðxÞ ¼

sin xj
L
2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sinð2xjaÞ

2xj

q where tanðxjaÞ ¼ xj

�c
ð25Þ
These eigenvalues and eigenfunctions will be used to obtain the stochastic dynamic stiffness matrices for beam spectral
elements.

For practical applications, Eq. (23) is truncated with M terms, which can be selected based on the amount of information
to be kept. Its value is also related with the correlation length and the number of eigenvalues kept, provided that they are
arranged in decreasing order.

2.3. Stochastic beam spectral element

In this work the flexural bending (EIðxÞ) and mass per unit length (qAðxÞ) are considered as spatially distributed random
variables. Therefore, the flexural bending is assumed as a random field of the form:
EIðx; hÞ ¼ EI0½1þ e1-1ðx; hÞ� ð26Þ
and the mass per unit of length is assumed a random field as
qAðx; hÞ ¼ qA0½1þ e2-2ðx; hÞ� ð27Þ
The subscript 0 indicates the mean value, 0 < ei � 1ði ¼ 1;2; . . .Þ are deterministic constants and the random field-iðx; hÞ is
taken to have zero mean, unit standard deviation and covariance RijðnÞ. Since, EIðx; hÞ and qAðx; hÞ are strictly positive,
-iðx; hÞði ¼ 1;2; . . .Þ is rigorously required to satisfy the probability condition P½1þ ei-iðx; hÞ 6 0� ¼ 0. This requirement
would exclude the use of Gaussian models for these random fields. However, for small ei, it is expected that Gaussian models
can still be used if the primary interest of the analysis is to estimate the first few response moments and not the response
behaviour near tails of the probability distributions. Expanding the random fields -1ðx; hÞ and -2ðx; hÞ in a KL spectral
decomposition one obtains the (4 � 4) stochastic dynamic stiffness matrix written as,
Dðx; hÞ ¼ D0ðxÞ þ DDðx; hÞ
¼ �x2 M0ðxÞ þ DMðx; hÞ½ � þ K0ðxÞ þ DKðx; hÞ½ � ð28Þ
where the deterministic part is given by Eqs. (18) and (19), and the random part DDðx; hÞ is related to the stiffness and mass
coefficients DKðx; hÞ and DMðx; hÞ, respectively, expanded in a KL decomposition of the form
DKðx; hÞ ¼ e1
XNK

j¼1

nKjðhÞ
ffiffiffiffiffiffi
kKj

p
KjðxÞ ð29Þ
and
DMðx; hÞ ¼ e2
XNM

j¼1

nMjðhÞ
ffiffiffiffiffiffiffi
kMj

p
MjðxÞ ð30Þ
where Nk and NM are the numbers of terms kept in the KL expansion; nKjðhÞ and nMjðhÞ are uncorrelated Gaussian random
variables with zero mean and unit standard deviation. The constant (4 � 4) matrices KjðxÞ and MjðxÞ can be expressed as
KjðxÞ ¼ EI0

Z L

0
uKjðxe þ xÞg00ðxÞg00TðxÞdx ð31Þ

MjðxÞ ¼ qA0

Z L

0
uKjðxe þ xÞgðxÞgTðxÞdx ð32Þ
where xe the local coordinate. Substituting Eqs. (24) and (25) in Eqs. (31) and (32), the closed-form expressions for the ran-
dom part of the stiffness and mass matrices for the beam spectral element in odd j can be expressed as
KjðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ sinð2xjaÞ

2xj

q Z L

0
cosðxjðxe þ xÞÞg00ðxÞg00TðxÞdx

� �
ð33Þ
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MjðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ sinð2xjaÞ

2xj

q Z L

0
cosðxjðxe þ xÞÞgðxÞgTðxÞdx

� �
ð34Þ
and for even j it is given by
KjðxÞ ¼ EI0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sinð2xjaÞ

2xj

q Z L

0
sinðxjðxe þ xÞÞg00ðxÞg00TðxÞdx

� �
ð35Þ

MjðxÞ ¼ qA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� sinð2xjaÞ

2xj

q Z L

0
sinðxjðxe þ xÞÞgðxÞgTðxÞdx

� �
ð36Þ
3. Sensitivity-based updating method using FRFs

The objective of sensitivity based parameter estimation methods is to improve the correlation between the measured and
predicted responses. The correlation is determined by an objective function involving modal or dynamic response data. In
general, they are non-linear functions with respect to the model parameters, and so an iterative procedure is required with
the possible associated convergence problems [27]. The non-linear least squares method uses a truncated Taylor series
expansion of the dynamic response in terms of the unknown parameters, often limited to the first two series terms, yielding
the linear approximation:
dH ¼ Sjdn; ð37Þ

where dH ¼ Hm �Hj is the residual of the measured output, dn ¼ n� nj is the perturbation in the parameters, and Sj is the
sensitivity matrix. It contains the derivatives of the frequency response functions with respect to the chosen parameters
to be varied, nj. The iteration is initialized with n0 equal to 0 and it is assumed that there are more measured data than
unknown parameters. Then, Eq. (37) provides an over-determined set of simultaneous equations that can be solved using
a least squares solution. Adopting the weighted objective function:
JðdnÞ ¼ eTWee; ð38Þ

where e ¼ dH� Sjdn is the error in the predicted measurements based on the updated parameters and We is a positive def-
inite weighting matrix. Substituting e in Eq. (38) leads to
JðdnÞ ¼ WedHdHT �WeðSjdHTdnþ STj dHdnTÞ þ dnSjWeS
T
j dn

T : ð39Þ

Minimizing J with respect to dn is equivalent to:
rJðdnÞ ¼ 0 ¼ �SjWedH
T þ SjS

T
j Wedn; ð40Þ
and solving Eq. (40) for dn results,
dn ¼ ½ST
j WeSj�

�1
STj WedH: ð41Þ
Thus, the updated parameter can be obtained from:
njþ1 ¼ nj þ ½STj WeSj��1
STj WeðHm �HjÞ: ð42Þ
The solution of Eq. (42) can be ill-conditioned, which might be a central problem in this kind of method. The treatment of ill-
conditioning is explained in [66–69,32]. Titurus and Friswell [70] presented a regularization treatment within the context of
sensitivity-based FE model updating, which is used in this paper. The method gives the updated parameter vector as:
njþ1 ¼ nj þ ½STj WeSj þ c2Wp��1fSTj WeðHm �HjÞg: ð43Þ

The regularization parameter c 2 ½01� determines the relative weight between the regularized solution ðknjþ1 � njkÞ versus

the corresponding residual norm ðkxjðnjþ1 � njÞ � ðHm �HjÞkÞ. The size of the regularisation parameter cwill provides the bal-
ance between the residual (kHm �Hjk) and the parameter change (njþ1 � nj). For c too small the problem will be too close to
the original ill-posed problem, while c too large the problem solved will have little connection with the original problem
[67]. Link [71] suggested the regularisation parameter c2 lies between 0 and 0.3. Accordingly, in this paper the regularization
parameter was assumed as 0.3. The updated parameter is evaluated in an iterative process until convergence, which is deter-
mined when the change in parameters, knjþ1 � njk or the FRF kHm �Hjk is sufficiently small.

The choice of the weighting matrices is a difficult subject, and estimated statistical properties can be employed [27]. Here,
we use a solution procedure presented by Grafe [47] where no explicit statistical calculations of the weighting factors are
required and the correlation coefficient ðXsðxÞÞ is used directly as
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½diag Weð Þ� ¼ ½diag XsðxÞð Þ� ð44Þ

The correlation coefficient is based on the Modal Assurance Criterion (MAC) theory [72,73]. For any measured frequency the
correlation coefficient is a correlation between the measured and predicted response vectors, given by
XsðxÞ ¼
fHmðxÞgHfHaðxÞg
			 			2

ðfHmðxÞgHfHmðxÞgÞðfHaðxÞgHfHaðxÞgÞ ð45Þ
where HmðxÞ and HaðxÞ are the measured and predicted FRF vectors at matching excitation/response locations, respectively.
XsðxÞ assumes a value between zero (XsðxÞ ¼ 0) that indicates no correlation exists and unity (XsðxÞ ¼ 1) which signifies
perfect correlation. The correlation coefficient is sensitive to discrepancies in the global deflection shape of the structure.
However analogous to the MAC, it is unable to detect scaling errors. A definition of parameter weighing matrix ðWpÞ was
proposed by Link [74] and later by Mottershead and Foster [69]. Similar to the approach of Link[74], the parameter weighing
matrix used here is expressed as
½nWpn� ¼ k½we�k2
maxðdiagð½we�ÞÞ ½

ndiagð½we�Þn� ð46Þ
where ½we� ¼ ½½S�½nWen�½S�T �
�1
.

3.1. Stochastic sensitivity of the FRF

The sensitivity method is based on the linearisation of the non-linear relationship between measurable outputs (modal
data or frequency response functions) and the model parameters to be estimated [32]. By considering that in practice the
measured raw data obtained from the experimental test are the FRF, in this paper the sensitivity of the FRF will be used.
The coefficients of the KL expansion are assumed as uncertain parameters and will be estimated by Eq. (42). By following
[40,42,46,47] the deterministic FRF sensitivity related to a general parameter u can be written as:
@HðxÞ
@u

¼ �HðxÞ @DðxÞ
@u

HðxÞ ð47Þ
where HðxÞ ¼ D�1ðxÞ is the inverse of the deterministic dynamic stiffness matrix. In the stochastic context, two techniques
can be applied. The fist one estimates a random variable, uðhÞ. The second one is associated with the parameter nKj of the KL
expansion, which are the uncorrelated random variables of the random field. With the first approach Eq. (47) becomes:
@Hðx; hÞ
@uðhÞ ¼ �Hðx; hÞ @Dðx; hÞ

@uðhÞ Hðx; hÞ ð48Þ
where Hðx; hÞ ¼ D�1ðx; hÞ, which is inverse of the stochastic dynamic stiffness matrix (Eq. (28)). In the second approach,
used in this paper, Eq. (47) is described by:
@Hðx; hÞ
@n

¼ �Hðx; hÞ @Kðx; hÞ
@nKj

�x2 @Mðx; hÞ
@nMj

� �
Hðx; hÞ ð49Þ
the derivative of Kðx; hÞ and Mðx; hÞ related to the parameter nKj produces:
@Kðx; hÞ
@nKjðhÞ

¼ e1
ffiffiffiffiffiffi
kKj

p
KjðxÞ ð50Þ
and
@Mðx; hÞ
@nMjðhÞ

¼ e2
ffiffiffiffiffiffiffi
kMj

p
MjðxÞ ð51Þ
Substituting Eqs. (50) and (51) in (49),
@Hðx; hÞ
@nðhÞ ¼ sij ¼ �HðxÞ e1

ffiffiffiffiffiffi
kKj

p
KjðxÞ �x2e2

ffiffiffiffiffiffiffi
kMj

p
MjðxÞ

h i
HðxÞ ð52Þ
In this paper the sensitivities of the receptance FRFs ðHðx; hÞÞ were taken in dB scale [75] with 1 m/N reference. It can be
shown that [75]
@ð20log10Þ Hðx; hÞj j
@nðhÞ � 8:6859

RðHðx; hÞÞ @ðHðx;hÞÞ
@nðhÞ þ IðHðx; hÞÞ @ðHðx;hÞÞ

@nðhÞ

RðHðx; hÞÞ2 þ IðHðx; hÞÞ2
 !

ð53Þ
The elements of the sensitivity matrix sij are given by Eq. (53) and the NK þ NM dimensional vector of updating parameters n
is
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n ¼ ½nK1
; nK2

. . . ; nKNK
nM1

; nM2
. . . ; nMNM

�T ð54Þ
The elements of the vector n are sampled from independent and identically distributed standard Gaussian random variables
(i.e., with zero-mean and unit standard deviation) from the KL expansion. The parameter vector nwill be estimated from the
measured FRF and used to reconstruct the EIðx; hÞ and qAðx; hÞ random field realizations. Once the parameters n are obtained,
the estimated FRF can be calculated as HðnÞ.
4. Numerical and experimental tests

The objective is to show the efficiency of the developed technique. A free-free beam structure is considered and modelled
by a two-node beam spectral element with variabilities considered for the beam flexural rigidity EI and for the mass per unit
of length qA. The measured FRF simulates the receptance FRF with an impact force excitation at node 1 and displacement
response measured at some points along the beam. The nominal physical properties and geometrical parameters of the beam
are: L ¼ 0:33 m, h ¼ 0:006 m, b ¼ 0:018 m, g ¼ 0:1; E ¼ 1:198 GPa, and q ¼ 1140 kg/m3. It is assumed that a variation of the
value of EI and qA can be modelled by a homogeneous Gaussian random field. For the numerical calculations we considered
�1 ¼ �2 = 20% of variation with a correlation length of b ¼ L=3.
4.1. Numerical cases

Two initial cases were carried out with noise-free simulated FRFs which are referred to as synthetic measured FRF. In the
first case, an investigation of how the number of FRFs considered can increase the amount of information and yield more
accurate parameter estimates. A random field estimation of the beam flexural rigidity and mass per unit of length was per-
formed. The data was generated using 4 terms in the KL expansion, simulating a physically realistic property. We use the
FRFs obtained at beam length positions (0 � L), (0:25 � L), (0:70 � L), and (L) of the perturbed beam element. In this case,
the objective is to reconstruct the distributed flexural rigidity (EI) function and mass per unit of length (qA) from the syn-
thetic measured FRFs obtained with a sample of the stochastic beam model.

The flexural rigidity random field sample estimated with 1, 2, 3 and 4 FRFs, and 4 terms in the KL expansion is shown in
Fig. 2. In all cases, the reconstructed functions are close to the simulated functions which generated the synthetic measured
data. Analogously, the mass random field sample estimated is shown in Fig. 3. Both reconstructed random field samples
using only one FRF showed the least effective estimation. By including FRFs in the updating procedure one can improve
the information and a better estimation can be achieved. In this numerical example, two FRFs are suitable for the analysis,
given that the estimation using more than two FRFs did not present major improvements. Because of the increased informa-
tion when more FRFs are included in the updating procedure, better estimation for the reconstructed random field samples
were obtained.

The reconstructed random field samples are used to calculate the FRF of the stochastic beam at each iteration in the opti-
misation procedure. The comparison between the synthetic measured, initial and updated FRF is shown in Figs. 4–7. In all
cases of this first test (estimation with 1, 2, 3 and 4 FRFs), the initial FRFs are calculated assuming deterministic homoge-
neous EI and qA, in the end of the iteration procedure the FRFs calculated with the estimated parameters is closer to the syn-
thetic measured FRF. The FRFs exhibit a high level of correlation as it can be seen in the correlation coefficients plotted in
Fig. 8. The high correlation indicates no errors because of its immunity to scaling, i.e., each predicted frequency point can
be scaled to match its measured counterpart. For all cases, similar correlation results were obtained.

The iteration convergence stop criterion was the change in the response, kHm �Hjk or change in parameter knjþ1 � njk
below 1% and 0,1% of relative error, respectively. Fig. 9(a-d) shows the convergence of the FRFs and updating parameters
estimated using 1, 2, 3, and 4 FRFs.
2. Baseline, sample and reconstructed random field sample of the flexural rigidity along the length using 1, 2, 3, and 4 FRFs in the estimation.



Fig. 3. Baseline, sample and reconstructed random field sample of the mass per unit of length using 1, 2, 3, and 4 FRFs in the estimation.

Fig. 4. Comparison between the FRF obtained with an initial value, and updated value, and the synthetic measured FRF using one FRF at node 1(0 � L).

Fig. 5. Comparison between an initial value, updated and the synthetic measured using two FRFs (a) at 0 � L and (b) at 0:25 � L.

Fig. 6. Comparison between an initial value, updated and the synthetic measured using three FRFs (a) at 0 � L, (b) at 0:25 � L, and (c) at 0:70 � L.
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Fig. 7. Comparison between an initial value, updated and the synthetic measured using four FRFs (a) at 0 � L, (b) 0:25 � L, (c) 0:70 � L, and (d) L.

Fig. 8. FRF correlation coefficient (XsðxÞ).
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In the second case, it was fixed in two the number of FRFs used in the estimation and varied the number of terms in the KL
expansion. The FRFs used were measured at node 1 and 2. Two other samples of random field data were generated with 12
terms in the KL expansion. The estimation of distributed parameters, EI and qA, was performed with 4, 8 and 12 terms in the
expansion, and similar stop criteria was assumed. As in the last test, the objective is to reconstruct the distributed flexural
rigidity and mass from the synthetic measured FRFs obtained with a sample of the stochastic model. However, the random
field samples are estimated with a different number of terms.

Figs. 10 and 11 show the flexural rigidity and mass random field sample estimations, respectively. As mentioned, the sam-
ples were simulated with 12 modes in the KL expansion and the estimation performed using 4 (shown in Fig. 11 on the left
had side, 8 (shown in the middle), and 12 (shown in the right hand side) parameters (n). Although the terms in the KL expan-
sion cannot be precisely estimated from the data, note that both reconstructed distributed random parameters presented a
good approximation of the sample distributed parameters. Obviously, the random field samples reconstructed with the same
number as the actual sample can better represent the distributed parameter. However, the reconstruction performed with 4
and 8 modes was reasonable.

Next, the reconstructed flexural rigidity EI and mass per unit of length qA were used to calculate the frequency response
function of the stochastic beam at each iteration of the optimisation procedure. The responses used 4, 8 and 12 terms in KL
expansion, are shown in Figs. 12–14, respectively. They show the comparison between initial, synthetic measured, and esti-
mated FRFs. In all cases, the comparison between the updated and synthetic measured FRFs showed a suitable approxima-
tion. Fig. 15 shows that the correlation function ðXsðxÞÞ is unity across the full spectrum. The major part of the corrections
was introduced by the first iterations and subsequent iterations introduced only minor adjustments. In Fig. 16 the graphics
show the evolution of the iteration process until the change in the FRFs or change in the updating parameters with 4, 8, and
12 terms in KL expansion falls under a determined threshold value. In this case, similar to the first case, the stop criterion was
assumed 0.5% for both.

4.2. Experimental results

A beam made of polyamide (PA) with uniform rectangular cross-section was used in the experimental tests. The beam is
18 mm wide, 6 mm thick, with a mass per unit length of approximately 0:02343 kg/m. The average flexural rigidity ðEIÞ was
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Fig. 9. Convergence of the FRF residual (kHm �Hjk) and parameters (knjþ1 � njk) using (a) 1 FRF, (b) 2 FRFs, (c) 3 FRFs, and (d) 4 FRFs.
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Fig. 10. Baseline, sample and reconstructed random field sample of the flexural rigidity along the length using 4 (LHS), 8 (middle) and 12 (RHS) modes.
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obtained experimentally. The beam was manufactured using the Selective Laser Sintering (SLS) technology. As a conse-
quence of the manufacturing process, a variability of the beam properties along its length can be expected. In order to verify
the efficiency of the proposed method it was applied to a measured FRF and results were compared with measurements of
the flexural rigidity at many points along the beam measured using an ultrasound apparatus. The Young’s modulus ðEÞ was
measured at 22 points along the beam with an ultrasonic pulse-echo device. The experimental setup is shown in Fig. 17. In
this experiment a shear wave transducer ðOlympusU8403072=U8403071Þwas used. The signals were measured and analysed
using an Olympus Parametrics NDT EPOCH 4 Ultrasonic Flaw Detector. The measured Young’s modulus E along the beam is
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Fig. 11. Baseline, sample and reconstructed random field sample of the mass along the length using 4 (LHS), 8 (middle) and 12 (RHS) modes.
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Fig. 12. Comparison among an initial, updated and the synthetic measured FRF at node 1 (LHS) and node 2 (RHS). Updated FRFs calculated with the random
field sample reconstructed with 4 modes.
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Fig. 13. Comparison among an initial, updated and the synthetic measured FRF at node 1 (LHS) and node 2 (RHS). Updated FRFs calculated with the random
field sample reconstructed with 8 modes.
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Fig. 14. Comparison among an initial, updated and the measured FRF at node 1 (LHS) and node 2 (RHS). Updated FRFs calculated with the random field
sample reconstructed with 12 modes.

Fig. 15. FRF correlation coefficient (XsðxÞ).

192 M.R. Machado et al. /Mechanical Systems and Signal Processing 102 (2018) 180–197



Fig. 16. Convergence of the FRF (kHm �Hjk) and parameters (knjþ1 � njk) using 4 (LHS), 8 (middle) and 12 (RHS) terms in the KL expansion.

Fig. 17. Procedure for experimental measurement of polyamide beam properties.
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shown in Fig. 19, where it is compared with the predicted values using the KL expansion with 4 and 6 estimated parameters.
The number of terms in KL expansion was chosen based on the shape sample characteristics.

Fig. 18 shows the second experimental test setup, used to measure the FRFs. The signals were acquired and analysed
using LMS Test Lab. The FRFs were estimated with a bandwidth of 1024 Hz and 1024 spectral lines. An impact hammer
was used to excite the structure and a micro accelerometer Kistler series 8614A was used to measure the response. The
experimental FRFs were obtained by impact force excitation at node 1 and acceleration response at node 1 and node 2.
The micro accelerometer mass is considerably small and lightweight compared with the beam so that the accelerometer
mass was neglected. To simulate the free-free boundary condition we supported the beam by using a soft polyurethane foam
edges.

The initial, measured sample of EI and reconstructed distributed sample with 4 and 6 terms in KL expansion are shown in
Fig. 19. The random field experimental sample could not be reconstructed accurately; nevertheless, an acceptable difference
between updated and measured FRFs can be observed. Experimental, initial and updated FRFs using 4 and 6 terms in KL
expansion are illustrated in Figs. 20 and 21, respectively. Similar stop criteria of the numerical case were applied. Examining
both cases, it can be observed that the reconstruction using 6 terms was more appropriated in this test. Even the FRFs
updated procedure showed better convergence using 6 terms; However, the reconstructed EIðxÞ with 4 terms presents a



Fig. 18. The test rig for the free-free beam.

Fig. 19. Baseline, experiential sample and reconstructed random field sample of the flexural rigidity ðEIðxÞÞ with 4 (LHS) and 6 (RHS) terms in the KL
expansion.

Fig. 20. Comparison between an initial value, updated and the experimental measured FRF at node 1 (LHS) and at node 2 (RHS) using 4 terms in the KL
expansion.
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Fig. 21. Comparison between an initial value, updated and the experimental measured FRF at node 1 (LHS) and at node 2 (RHS) using 6 terms in the KL
expansion.

Fig. 22. FRF correlation coefficient (XsðxÞ).

Fig. 23. Convergence of the FRF (kHm �Hjk) and parameters (knjþ1 � njk) using 4 (LHS) and 6 (RHS) terms in the KL expansion.
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good approximation compared with random field sample measured by ultrasound. Fig. 23 shows the iteration process until
the change in the FRFs and change in the updating parameters converge with 4, and 6 terms in the KL expansion.

As shown in Fig. 22, the adjustments in the model have led to a high level of correlation. Regarding the numerical and
experimental cases presented, it was shown that the proposed method can be used to reconstruct the distributed variability
of the beam. In all cases, the random field samples were reconstructed with a certain error associated. In general, all results
were satisfactory; close shape of the random field sample was estimated, which demonstrated the performance of the pro-
posed technique. It was also observed that the iteration always stopped after achieving the threshold value for the FRF resid-
ual, similarly to the second case.

5. Final remarks

In the present work, a technique to estimate spatially distributed parameters of samples of a stochastic structure using
a KL expansion and sensitivity-based FRF model updating was proposed. Randomness was included in the flexural rigidity
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(EI) and mass per unit length (qA) of a beam structure. As a stochastic model is employed, the sensitivity-based method
using FRF is also developed for a stochastic model based on a spectral beam element. To verify the efficiency of the presented
technique numerical and experimental tests were performed. In the first case, random field estimation of the beam flexural
bending and mass per unit length have were performed. The discretized variables (n) were estimated from the synthetic
measured FRF through a non-linear least squares curve fit procedure. A subset of these random variables can be considered
as parameters to reconstruct the random field of the flexural bending and mass per unit of length. In the experimental test,
an experimentally obtained FRF was used. An experimental measurement of Young’s modulus at 22 points along the beam
was performed using ultrasound. By comparing the reconstructed and experimentally measured of EIðxÞ the proposed
method proved to work reasonably well. Ongoing work consists of improving these preliminary results by curve fitting many
measured FRF, instead of just one, to enrich the spatial information of the measured data. Based on the numerical and exper-
imental cases presented, it was shown that the proposed method can be used to reconstruct the distributed variability of the
beam. In all cases, the random field samples were reconstructed with a certain error associated. In general, all results were
satisfactory, close shape of the random field sample was estimated, which demonstrated the performance of the proposed
technique.
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