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a b s t r a c t 

An analytical framework is developed for investigating the effect of viscoelasticity on irregular hexagonal lattices. 
At room temperature many polymers are found to be near their glass temperature. Elastic moduli of honeycombs 
made of such materials are not constant, but changes in the time or frequency domain. Thus consideration of 
viscoelastic properties are essential for such honeycombs. Irregularity in lattice structures being inevitable from 

practical point of view, analysis of the compound effect considering both irregularity and viscoelasticity is cru- 
cial for such structural forms. On the basis of a mechanics based bottom-up approach, computationally efficient 
closed-form formulae are derived in frequency domain. The spatially correlated structural and material attributes 
are obtained based on Karhunen–Loève expansion, which is integrated with the developed analytical approach 
to quantify the viscoelastic effect for irregular lattices. Consideration of such spatially correlated behaviour can 
simulate the practical stochastic system more closely. The two effective complex Young ’s moduli and shear mod- 
ulus are found to be dependent on the viscoelastic parameters, while the two in-plane effective Poisson ’s ratios 
are found to be independent of viscoelastic parameters and frequency. Results are presented in both determin- 
istic and stochastic regime, wherein it is observed that the amplitude of Young ’s moduli and shear modulus are 
significantly amplified in the frequency domain. The response bounds are quantified considering two different 
forms of irregularity, randomly inhomogeneous irregularity and randomly homogeneous irregularity. The com- 
putationally efficient analytical approach presented in this study can be quite attractive for practical purposes to 
analyse and design lattices with predominantly viscoelastic behaviour along with consideration of structural and 
material irregularity. 
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. Introduction 

Hexagonal lattices/lattice-like structural forms are present as ma-
erials and structures in abundance across various length-scales (nano,
icro and macro) within natural systems and artificial products. Such

tructures have received considerable attention in last few decades as
n advanced material because of the capability to meet high perfor-
ance application-specific demands in various critically desirable pa-

ameters such as specific strength and stiffness, crushing resistance, fa-
igue strength, acoustic properties, shock absorption properties, electro-
echanical properties, corrosion and fire resistance [27] . The ap-
lication of honeycomb core for lightweight sandwich structures is
n active area of research [18,61,88,89] . An in-depth understanding
f the structural behaviour of such hexagonal lattices is useful in
merging research fields of nano-materials like Graphene and Boron
itride, which are often idealized as hexagonal periodic structures

50,65,73] . 
To eliminate the need of detail finite element modelling for hexag-

nal lattices/honeycombs as a part of another complex structural sys-
em (host structure such as sandwich panel), such lattices are generally
odelled as a continuous solid medium with equivalent elastic moduli

hroughout the domain. A similar approach is followed to evaluate the
ffective material properties of different nano-structures having hexag-
nal configurations [65,66] . It is a common practice to consider a rep-
esentative unit cell to model various other periodic structures [36] .
xtensive research has been conducted so far to predict effective elas-
ic properties of regular hexagonal lattices without any form of irregu-
arity [23,27,31,53,90] . Computational homogenization techniques are
eported in scientific literature to characterize the linear and non-linear
esponses of different lattices [7,69,70,76–79] . Other crucial research
reas concerning different responses related to honeycombs include
rushing behaviour, low velocity impact, buckling analysis and wave
ropagation through lattices [29,30,32,35,37,41,46,82,87,94] . Substan-
ial amount of scientific literature is available dealing with perfectly
eriodic hexagonal auxetic lattices [6,14] . Recently theoretical formu-
ations have been presented for equivalent elastic properties of periodic
symmetrical honeycomb [11] . Tailorable elastic properties of hierar-
hical honeycombs and spiderweb honeycombs have also been reported
3,57,72] . Analysis of two dimensional hexagonal lattices/honeycombs,
s presented in the above literature review, are based on a unit cell
pproach, which can be applied only for perfectly periodic lattice
orms. 

The major limitation of the aforementioned unit cell based approach
s that it cannot be used to analyse a system with spatial irregularity.
patial irregularity/variability in lattices is practically inevitable; it may
ccur due to structural defects, manufacturing uncertainty, variation in
emperature, micro-structural variability and pre-stressing. Moreover,
evelopment of novel meta-materials [83] having hexagonal micro-
tructures may involve spatially varying structural and material at-
ributes. To consider the effect of irregularity in cellular lattices, voronoi
oneycombs are found to be considered in literature [44,92,93] . Dy-
amic crushing of honeycombs with irregularity in cell wall thickness
nd cell shapes have been investigated [45] . [84] have studied the fail-
re surface of aluminium honeycombs for general inplane loading con-
idering micro-structural imperfections. Papka and Kyriakides [74] , 75 ]
nd Jang and Kyriakides [35] have reported numerical and experimen-
785 
al study of honeycomb crushing and buckling behaviour accounting
or geometrical imperfections, such as over/ under expanded cells and
ariation in length of bond line. Ronan et al. [80] have recently in-
estigated the tensile ductility of cellular solids including the effect of
rregularity. The effect due to defects on regular as well as voronoi hon-
ycombs and the effect of manufacturing uncertainty on auxetic hon-
ycomb have been reported by Ajdari et al. [4] and Liu et al. [49] ,
espectively. Though the above mentioned studies substantially inves-
igate the effect of irregularities based on limited number of expensive
amples, there is a further need to extend these works following a more
ealistic and robust probabilistic framework for spatially random imper-
ections/irregularities in order to develop appropriate uncertainty quan-
ification models. For voronoi honeycombs, the shape of all the irregular
ells may not be necessarily hexagonal that violates the presumption of
exagonal cell structure. A thorough review of the literature on hexago-
al lattices/honeycomb dealing with different forms of structural irreg-
larity reveals that the investigations are commonly based on either ex-
ensive finite element (FE) simulations or experimental investigations.
s experimental investigations are expensive and time consuming, it is
ractically not feasible to quantify the effect of random irregularities in
attice structures by testing a huge number of samples. In the finite ele-
ent approach, a small change in the geometry of a constituent cell may

equire completely new mesh generation. For dynamic and quasi-static
nalysis, separate finite element modelling of the honeycomb core in a
andwich structure may increase the degrees of freedom for the entire
ystem up to such an extent that can make the overall process unmanage-
bly complex and prohibitively expensive for simulation. In case of un-
ertainty quantification using a Monte Carlo based approach, the prob-
em aggravates as large number of expensive finite element simulations
re needed to be carried out [17,19–22,34,52,58,64,67,68] . Applica-
ion of surrogate based approaches to achieve computational efficiency,
s adopted in many of these papers, does not make the analysis physi-
ally insightful and this approach often suffer from lack of confidence
n the predicted results. Surrogate based approaches may not perform
ell in case of high non-linearity in the model and high dimensional

nput parameter space, which becomes a crucial factor in analysing spa-
ially irregular lattices. Moreover, large scale numerical simulation to
uantify the effect of irregularity in cellular lattices may not necessar-
ly yield proper understanding of the underlying physics of the system.
n analytical approach for this purpose could be a simple, efficient, yet

nsightful alternative. 
Recently an analytical framework has been reported for in-plane

lastic moduli of hexagonal honeycombs with spatially varying struc-
ural configurations [59,60,62,63] without any spatial correlation. How-
ver, in practical situation the material and structural attributes are of-
en found to be spatially correlated. Thus it is important to account for
uch correlation in structural irregularity and material property distri-
ution. Moreover, many polymers are found to be near their glass tem-
erature at room temperature. Elastic moduli of honeycombs made of
uch materials are not constant, but changes in the time or frequency
omain. So consideration of viscoelastic properties are essential for such
oneycombs. Gibson and Ashby [27] have provided analytical expres-
ions for regular viscoelastic honeycombs in time domain. Otherwise,
nvestigation on the viscoelastic properties of honeycomb-like lattices
s very scarce to find in literature. Irregularity in lattice structures be-
ng inevitable from practical point of view, analysis of the compound
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Fig. 1. (a) Illustration to define degree of irregularity and perturbation of nodes (b) Typical representation of irregular honeycomb (c) Scope and focus of the present study (d) 
Conventional unit cell for regular lattices (e) Representative unit cell element (RUCE) for the analysis of spatially irregular lattices. 
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ffect considering both irregularity and viscoelasticty is crucial for such
tructural forms. 

In the present paper, we aim to develop an analytical model to anal-
se spatially correlated irregular lattices considering viscoelastic prop-
rties in frequency domain (refer to Fig. 1 (c)). The spatially correlated
tructural and material attributes are obtained based on Karhunen–
oève expansion, which is integrated with the developed analytical ap-
roach to quantify the viscoelastic effect. This paper deals with the
iscoelastic properties of randomly disordered lattice structures that
aries spatially i.e. the structural units are different in geometry along
 two-dimensional plane; but they do maintain a particular shape.
ne representative unit in the present problem may be considered as

hown in Fig. 1 (e) and the entire lattice structure shown in Fig. 1 (b)
s basically a tessellation of the shape shown in Fig. 1 (e) with dif-
erent values of the lengths of the three members and their orienta-
ions. Thus such repetition of the representative units can be referred as
uasi-periodicity. This article is organized hereafter as follows: descrip-
ion of the underlying concepts of viscoelastic analysis is provided in
ection 2 ; derivation of the effective viscoelastic properties of irregular
attices is given in Section 3 ; effective viscoelastic properties of irregu-
ar lattices with correlated structural and material attributes based on
arhunen-Loève expansion is described in Section 4; Section 5 presents

he numerical results based on the developed analytical formulae;
inally, Section 6 presents the conclusion and perspective of this
aper. 
p

786 
. Formulation for viscoelastic analysis 

In classical elasticity, instantaneous stress within a material is a func-
ion of instantaneous strain only. In contrast, in viscoelasticity, instan-
aneous stress is considered to be a function of strain history. When a
inear viscoelastic model is employed, the stress at some point of a struc-
ure can be expressed as a convolution integral over a kernel function
25] as 

( 𝑡 ) = ∫
𝑡 

−∞
𝑔( 𝑡 − 𝜏) 𝜕𝜖( 𝜏) 

𝜕𝜏
𝑑𝜏 (1)

ere 𝑡 ∈ ℝ 

+ is the time, 𝜎( t ) is stress and 𝜖( t ) is strain. The kernel func-
ion g ( t ) also known as ‘hereditary function ’, ‘relaxation function ’ or
after-effect function ’ in the context of different subjects. The stress-
train relationship in (1) can be directly applied to dynamic analysis of
 solid body. For example, if it is applied to a uniform rod, Eq. (1) can
e multiplied by the area and the equation can be expressed in terms
f the force and displacement rate (or velocity). In practice, the kernel
unction is often defined in the frequency domain (or Laplace domain).
aking the Laplace transform of Eq. (1) , we have 

̄ ( 𝑠 ) = 𝑠 ̄𝐺 ( 𝑠 ) ̄𝜖( 𝑠 ) (2)

ere 𝜎̄( 𝑠 ) , 𝜖( 𝑠 ) and 𝐺̄ ( 𝑠 ) are Laplace transforms of 𝜎( t ), 𝜖( t ) and g ( t ) re-
pectively and 𝑠 ∈ ℂ is the (complex) Laplace domain parameter. There
re two broad ways by which the kernel function g ( t ) can be constructed,
amely by a physics based approach or a more general mathematical ap-
roach. 
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Fig. 2. Springs and dashpots based models viscoelastic materials. 
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.1. Physics-based representation of the kernel function 

In a physics based approach, the kernel function appearing in the
iscoelastic constitutive relationship can arise from a combination of
prings and dashpots. This can be achieved in various ways. Four main
ases are in shown in Fig. 2 . 

We define the unit step function  ( 𝑡 ) and Dirac delta function 𝛿( t )
s below 

 ( 𝑡 ) = 

{ 

1 if 𝑡 ≥ 0 , 
0 if 𝑡 < 0 . and 𝛿( 𝑡 ) = 

{ 

0 if 𝑡 ≠ 0 , 
∫ ∞
−∞ 𝛿( 𝑡 )d 𝑡 = 1 (3)

sing these functions, the viscoelastic kernel function can be expressed
10,13,25,38] for the four models as 

• Maxwell model: 

𝑔( 𝑡 ) = 𝜇𝑒 −( 𝜇∕ 𝜂) 𝑡  ( 𝑡 ) (4)

• Voigt model: 

𝑔( 𝑡 ) = 𝜂𝛿( 𝑡 ) + 𝜇 ( 𝑡 ) (5)

• Standard linear model: 

𝑔( 𝑡 ) = 𝐸 𝑅 

[ 
1 − (1 − 

𝜏𝜎

𝜏𝜖
) 𝑒 − 𝑡 ∕ 𝜏𝜖

] 
 ( 𝑡 ) (6)

• Generalised Maxwell model: 

𝑔( 𝑡 ) = 

[ 

𝑛 ∑
𝑗=1 

𝜇𝑗 𝑒 
−( 𝜇𝑗 ∕ 𝜂𝑗 ) 𝑡 

] 

 ( 𝑡 ) (7)

Models similar to this is also known as the Prony series model. 

These functions can be constructed by considering the equilibrium of
orces arising by stretching the springs and dashpots appearing in Fig. 2 .

.2. Mathematical representation of the kernel function 

The kernel function in Eq. (2) is a complex function in the frequency
omain. For notational convenience we denote 

̄
 ( 𝑠 ) = 𝐺̄ (i 𝜔 ) = 𝐺( 𝜔 ) (8)

here 𝜔 ∈ ℝ 

+ is the frequency. The complex modulus G ( 𝜔 ) can be ex-
ressed in terms of its real and imaginary parts or in terms of its ampli-
ude and phase as follows 

( 𝜔 ) = 𝐺 

′( 𝜔 ) + i 𝐺 

′′( 𝜔 ) = |𝐺( 𝜔 ) |𝑒 i 𝜙( 𝜔 ) (9)

he real and imaginary parts of the complex modulus, that is, G ′ ( 𝜔 ) and
 ′′ ( 𝜔 ) are also known as the storage and loss moduli respectively. One
f the main restriction on the form of the kernel function comes from the
787 
act that the response of the structure must start before the application
f the forces. This causality condition imposes a mathematical relation-
hip between real and imaginary parts of the complex modulus, known
s Kramers–Kronig relations (see for example [81] for recent discus-
ions). Kramers–Kronig relations specifies that the real and imaginary
arts should be related by a Hilbert transform pair, but can be general
therwise. Mathematically this can be expressed as 

𝐺 

′( 𝜔 ) = 𝐺 ∞ + 

2 
𝜋 ∫

∞

0 

𝑢𝐺 

′′( 𝑢 ) 
𝜔 

2 − 𝑢 2 
d 𝑢 

 

′′( 𝜔 ) = 

2 𝜔 

𝜋 ∫
∞

0 

𝐺 

′( 𝑢 ) 
𝑢 2 − 𝜔 

2 d 𝑢 
(10) 

here the unrelaxed modulus 𝐺 ∞ = 𝐺( 𝜔 → ∞) ∈ ℝ . Equivalent rela-
ionships linking the modulus and the phase of G ( 𝜔 ) can be expressed
s 

n |𝐺 

′( 𝜔 ) | = ln |𝐺 ∞| + 

2 
𝜋 ∫

∞

0 

𝑢𝜙( 𝑢 ) 
𝜔 

2 − 𝑢 2 
d 𝑢 

𝜙( 𝜔 ) = 

2 𝜔 

𝜋 ∫
∞

0 

ln |𝐺( 𝑢 ) |
𝑢 2 − 𝜔 

2 d 𝑢 
(11) 

It should be noted that complex modulus derived using the physics
ased principled discussed above automatically satisfy these conditions.
owever, there can be many other function which would also satisfy

hese condition. It is possible to determine G ( 𝜔 ) from experimental mea-
urements (see [24,81] ) which satisfy these conditions. In Table 1 we
how some functions which have been used in literature. Among various
ossible viscoelastic models, the Biot ’s model is considered here. 

. Effective in-plane properties of viscoelastic irregular 

oneycombs 

.1. Viscoelastic effect on the intrinsic Young ’s modulus 

We consider that each constitutive element of a hexagonal unit with
he honeycomb structure is modelled using viscoelastic properties. For
implicity, we use Biot model (see Table 1 ) with only one term. Fre-
uency dependent complex elastic modulus for an element is expressed
s 

( 𝜔 ) = 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) 

(12)

here 𝜇 and 𝜖 are the relaxation parameter and a constant defining the
strength ’ of viscosity, respectively. E s is the intrinsic Young ’s modulus.
he amplitude of this complex elastic modulus is given by 

𝐸( 𝜔 ) | = 𝐸 𝑆 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 (13)
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Table 1 

Complex modulus for viscoelastic models in the frequency domain. 

Viscoelastic model Complex modules Main references 

Biot model 𝐺( 𝜔 ) = 𝐺 0 + 
∑𝑛 

𝑘 =1 
𝑎 𝑘 i 𝜔 
i 𝜔 + 𝑏 𝑘 

[8,9] 

Fractional derivative 𝐺( 𝜔 ) = 𝐺 0 + 𝐺 ∞(i 𝜔𝜏) 𝛽

1+(i 𝜔𝜏) 𝛽
[5] 

GHM 𝐺( 𝜔 ) = 𝐺 0 
[
1 + 

∑
𝑘 𝛼𝑘 

− 𝜔 2 +2i 𝜉𝑘 𝜔 𝑘 𝜔 
− 𝜔 2 +2i 𝜉𝑘 𝜔 𝑘 𝜔 + 𝜔 2 𝑘 

]
[28] and [56] 

ADF 𝐺( 𝜔 ) = 𝐺 0 
[
1 + 

∑𝑛 

𝑘 =1 Δ𝑘 

𝜔 2 +i 𝜔 Ω𝑘 

𝜔 2 +Ω2 
𝑘 

]
[42] 

Step-function 𝐺( 𝜔 ) = 𝐺 0 
[
1 + 𝜂 1− 𝑒 − 𝑠𝑡 0 

𝑠𝑡 0 

]
[1] 

Half cosine model 𝐺( 𝜔 ) = 𝐺 0 
[
1 + 𝜂 1+2( 𝑠𝑡 0 ∕ 𝜋) 2 − 𝑒 − 𝑠𝑡 0 

1+2( 𝑠𝑡 0 ∕ 𝜋) 2 

]
[1] 

Gaussian model 𝐺( 𝜔 ) = 𝐺 0 
[
1 + 𝜂 𝑒 𝜔 2 ∕4 𝜇

{ 
1 − erf 

(
i 𝜔 

2 
√

𝜇

)} ]
[2] 
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2 
1 𝑖𝑗 𝑙 

2 
2 𝑖𝑗 

(
(
𝑙 1 𝑖𝑗
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w  
he phase ( 𝜙) of this complex elastic modulus is given by (
𝐸( 𝜔 ) 

)
= tan −1 

( 

𝜖𝜇𝜔 

𝜇2 + 𝜔 

2 (1 + 𝜖) 

) 

(14)

he complex elastic modulus has the following limiting properties,
hich can be useful in understanding the role of viscoelasticity in the
omogenised elastic properties of the honeycomb. 

𝐸( 𝜔 ) | → 𝐸 𝑆 for 𝜇 → ∞ and |𝐸( 𝜔 ) | → 𝐸 𝑆 (1 + 𝜖) for 𝜇 → 0 ∀𝜔 > 0 
(15)

𝐸( 𝜔 ) | → 𝐸 𝑆 for 𝜔 → 0 and |𝐸( 𝜔 ) | → 𝐸 𝑆 (1 + 𝜖) for 𝜔 → ∞ ∀𝜇 > 0 
(16)

(
𝐸( 𝜔 ) 

)
→ 0 for 𝜇 → ∞ and 𝜙

(
𝐸( 𝜔 ) 

)
→ 0 for 𝜇 → 0 ∀𝜔 > 0 (17)

(
𝐸( 𝜔 ) 

)
→ 0 for 𝜔 → 0 and 𝜙

(
𝐸( 𝜔 ) 

)
→ 0 for 𝜔 → ∞ ∀𝜇 > 0 (18)

t can be seen that for all these limiting cases, the viscoelastic effects
anish (the phase is zero) and then the material is purely elastic. The
ases 𝜇→∞ and 𝜔 →0 correspond to minimum amplitude whiles cases
→0 and 𝜔 →∞ correspond to maximum amplitude. 

.2. Effective elastic properties of randomly irregular lattices without the 

ffect of viscoelasticity 

The elastic moduli with spatially random structural and material at-
ributes have been derived in a previous paper [62] using classical me-

hanics based principles. The underlying philosophy of the proposed
dea is that the entire irregular hexagonal lattice structure consists of
everal representative unit cell elements (RUCE) at the elementary level
s shown in Fig. 1 . Each of the RUCEs possess different individual elas-
ic moduli depending on its structural geometry and intrinsic material
roperties (i.e. l 1 , l 2 , l 3 , 𝛼, 𝛽, 𝛾, E s are different for the RUCEs in spatially
rregular lattices; refer to Fig. 1 for the symbols). The effect of irregular-
ty in material and geometric attributes are accounted in the elementary
ocal level first by analysing the RUCEs and then the effect of such irreg-
larity is propagated to the global scale (equivalent in-plane properties
f the entire irregular lattice structure). This is achieved by following a
ulti-scale and multi-stage framework as described in [62] . The closed-

orm formulae for five in-plane elastic moduli of a single RUCE are de-
ived as a function of their respective material and geometric attributes.
hus the formulae developed for a single RUCE is effectively capable of

21 𝑒𝑞 = − 

𝐿 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 

(
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)
cos 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

(
cos 𝛼𝑖𝑗 sin 𝛽𝑖𝑗 −(

𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 
)2 ( 

𝑙 2 3 𝑖𝑗 cos 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) 

+ 

𝑙

788 
xpressing the equivalent material properties at local scale. The RUCEs
re idealized further in this stage on the basis of the adopted assem-
ling scheme. Subsequently, using the formulae for a single idealized
UCE, the expressions for effective elastic moduli of the entire irregu-

ar lattice are derived based on the basic principles of mechanics along
ith the equilibrium and deformation compatibility conditions follow-

ng a multi-stage approach.The obtained formulae, which correspond to
 generalization of the elastic moduli for perfectly periodic lattices [27] ,
re given below: 

 1 𝑒𝑞 = 

𝑡 3 

𝐿 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 

(
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)(
cos 𝛼𝑖𝑗 sin 𝛽𝑖𝑗 − sin 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

)2 
𝐸 𝑠𝑖𝑗 

((
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)2 )
(19)

 2 𝑒𝑞 = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝐸 𝑠𝑖𝑗 

( 

𝑙 2 3 𝑖𝑗 cos 2 𝛾𝑖𝑗 
(
𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 

𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)
+ 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 ( 𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 ) cos 2 𝛼𝑖𝑗 cos 2 𝛽𝑖𝑗 

( 𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 ) 2 
) −1 

(20) 

12 𝑒𝑞 = − 

1 
𝐿 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

(
cos 𝛼𝑖𝑗 sin 𝛽𝑖𝑗 − sin 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

)
cos 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

(21)

𝑖𝑗 cos 𝛽𝑖𝑗 
)

𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 
)
cos 2 𝛼𝑖𝑗 cos 2 𝛽𝑖𝑗 

 

cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 
)2 

) 

(22)

 12 𝑒𝑞 = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝐸 𝑠𝑖𝑗 

( 

𝑙 2 3 𝑖𝑗 sin 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) ) −1 

(23)

ere E sij represents the intrinsic material property of the honeycomb
aterial without viscoelasticity, while the structural dimensions are in-
icated in Fig. 1 (e). The parameter t denotes the thickness of honeycomb
ell wall and L is the total length of the lattice. The subscripts i and j
 𝑖 = 1 , 2 , 3 , … , 𝑚 and 𝑗 = 1 , 2 , 3 , … , 𝑛 ) are used to indicate location of a
UCE. In the present analysis, the entire irregular lattice is assumed to
ave m and n number of RUCEs in direction-1 and direction-2, respec-
ively. Thus, to denote a particular parameter, the subscript of ij is used
hen a RUCE is referred corresponding to a position of i th column and
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th row. From the above expressions, it can be observed that only the two
oung ’s moduli and shear modulus are dependent on the intrinsic mate-
ial properties of the honeycomb material ( E s ), while the two Poisson ’s
atios are dependent only on the structural geometry of the honeycomb.
hus the two Young ’s moduli and shear modulus would be influenced
y viscoelasticity, but the two Poisson ’s ratios will remain unaltered.
he expressions of Poisson ’s ratios for the case of viscoelastic material
roperty variation will remain same as Eqs. (21) and (22) . 

.3. Effective viscoelastic properties of randomly irregular lattices 

Based on the elastic-viscoelastic correspondence principle [12] and
he discussion furnished in Section 3.1 , the expressions for two Young ’s
oduli and shear modulus accounting the viscoelastic effect can be ob-

ained easily in the frequency domain by replacing Young ’s modulus
 sij in Eqs. (21) and (22) by the frequency dependent Young ’s modulus

 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) 

. We then obtain 

 1 𝑣 ( 𝜔 ) = 

𝑡 3 

𝐿 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 

(
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)(
cos 𝛼𝑖𝑗 sin 𝛽𝑖𝑗 − sin 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

)2 
𝐸 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) ((
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)2 )
(24) 

 2 𝑣 ( 𝜔 ) = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝐸 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) ( 

𝑙 2 3 𝑖𝑗 cos 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) 

+ 

𝑙 2 1 𝑖𝑗 𝑙 
2
2(

 12 𝑣 ( 𝜔 ) = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝐸 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) ( 

𝑙 2 3 𝑖𝑗 sin 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) ) −1 

(26) 

he above expressions allow us to consider spatially varying structural
ttributes and viscoelastic material properties. It can be noted that the
bove expressions provide complex values of the viscoelastic moduli,
rom which the respective amplitudes and phase angles can be obtained
umerically. The effective elastic moduli of irregular viscoelastic lat-
ices with spatially correlated material and structural attributes are ob-
ained by integrating the above closed-form expressions (as furnished in
ections 3.2 and 3.3 ) and the Karhunen–Loève expansion, as described
n Section 4 . 

.4. Remark 1: effective viscoelastic properties of hexagonal lattices with 

nly spatial variation of material properties 

According to the notations used for a regular honeycomb by Gibson
nd Ashby (1999) (as shown in Fig. 1 (d)), the notations of the present
aper for honeycombs without any structural irregularity can be ex-
ressed as: 𝐿 = 𝑛 ( ℎ + 𝑙 sin 𝜃) ; 𝑙 1 𝑖𝑗 = 𝑙 2 𝑖𝑗 = 𝑙 3 𝑖𝑗 = 𝑙; 𝛼𝑖𝑗 = 𝜃; 𝛽𝑖𝑗 = 180 ◦ − 𝜃;

𝑖𝑗 = 90 ◦, for all i and j . Using these transformations in case of the spa-
ial variation of only material properties, the structural parameter in
789 
 𝑙 2 𝑖𝑗 
)
cos 2 𝛼𝑖𝑗 cos 2 𝛽𝑖𝑗 

 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 
)2 

) −1 

(25)

qs. (24) –(26) can be put out of the sums and the closed-form formulae
or compound variation of material and geometric properties are sim-
lified as 

 1 𝑣 = 𝜅1 

(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

(27) 

 2 𝑣 = 𝜅2 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

(28) 

and 𝐺 12 𝑣 = 𝜅2 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 (
1 + 2 ℎ 

𝑙 

)
cos 𝜃

(29) 

he multiplication factors 𝜅1 and 𝜅2 arising due to the consideration
f spatially random variation of intrinsic material properties can be ex-
ressed as 

1 = 

𝑚 

𝑛 

𝑛 ∑
𝑗=1 

1 
𝑚 ∑
𝑖 =1 

1 

𝐸 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) 

(30) 

and 𝜅2 = 

𝑛 

𝑚 

1 
𝑛 ∑

𝑗=1 

1 
𝑚 ∑
𝑖 =1 

𝐸 𝑠𝑖𝑗 

( 

1 + 𝜖𝑖𝑗 
i 𝜔 

𝜇𝑖𝑗 + i 𝜔 

) 

(31) 

he expressions of 𝜅1 and 𝜅2 are complex in nature and include the vis-
oelastic material properties. Thus the effective elastic moduli presented

n Eqs. (27) –(29) are also complex valued and dependent on the spatially
andom variation of intrinsic material property and the viscoelastic pa-
ameters. The amplitude and phase angle of the three complex valued
n-plane elastic moduli can be obtained numerically. In the special case
hen 𝜔 →0 and there is no spatial variabilities in the material proper-

ies of the lattice, all viscoelastic material properties become identical
i.e. 𝐸 𝑠𝑖𝑗 = 𝐸 𝑠 , 𝜇𝑖𝑗 = 𝜇 and 𝜖𝑖𝑗 = 𝜖 for 𝑖 = 1 , 2 , 3 , … , 𝑚 and 𝑗 = 1 , 2 , 3 , … , 𝑛 )
nd subsequently the amplitude of 𝜅1 and 𝜅2 becomes exactly E s . This
onfirms that the expressions in Eqs. (30) and (31) give the necessary
eneralisations of the classical expressions of Gibson and Ashby (1999)
hrough Eqs. (27) –(29) . 

.5. Remark 2: effective viscoelastic properties of hexagonal lattices with 

nly structural irregularity 

In case of only spatially random variation of structural geometry but
onstant viscoelastic material properties (i.e. 𝐸 𝑠𝑖𝑗 = 𝐸 𝑠 , 𝜇𝑖𝑗 = 𝜇 and 𝜖𝑖𝑗 =
for 𝑖 = 1 , 2 , 3 , … , 𝑚 and 𝑗 = 1 , 2 , 3 , … , 𝑛 ) the Eqs. (24) –(26) lead to 

 1 𝑣 = 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) 

𝜁1 (32) 

 2 𝑣 = 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) 

𝜁2 (33)

 12 𝑣 = 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) 

𝜁3 (34)
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Fig. 3. Effective Young ’s modulus ( E 1 ) of irregular lattices with different structural configurations considering correlated attributes. 

Fig. 4. Effective Young ’s modulus ( E 2 ) of irregular lattices with different structural configurations considering correlated attributes. 
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here 𝜁𝑖 ( 𝑖 = 1 , 2 , 3) are the factors concerning spatially random vari-
tion of structural geometry. These factors can be expressed as 

1 = 

𝑡 3 

𝐿 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 

(
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)(
cos 𝛼𝑖𝑗 sin 𝛽𝑖𝑗 − sin 𝛼𝑖𝑗 cos 𝛽𝑖𝑗 

)2 (
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)2 
(35)

2 = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

( 

𝑙 2 3 𝑖𝑗 cos 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) 

+ 

𝑙 2 1 𝑖𝑗 𝑙 
2 
2 𝑖𝑗 

(
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

)
cos 2 𝛼𝑖𝑗 cos 2 𝛽𝑖𝑗 (

𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 
)2 

) −1 

(36)
790 
3 = 

𝐿𝑡 3 

𝑛 ∑
𝑗=1 

𝑚 ∑
𝑖 =1 

(
𝑙 1 𝑖𝑗 cos 𝛼𝑖𝑗 − 𝑙 2 𝑖𝑗 cos 𝛽𝑖𝑗 

)
𝑚 ∑
𝑖 =1 

( 

𝑙 2 3 𝑖𝑗 sin 
2 𝛾𝑖𝑗 

( 

𝑙 3 𝑖𝑗 + 

𝑙 1 𝑖𝑗 𝑙 2 𝑖𝑗 
𝑙 1 𝑖𝑗 + 𝑙 2 𝑖𝑗 

) ) −1 

(37)

he amplitude of the three viscoelastic moduli for the case of only spa-
ially random variation of structural geometry can be expressed as 

𝐸 1 𝑣 | = 𝐸 𝑠 𝜁1 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 (38)

𝐸 2 𝑣 | = 𝐸 𝑠 𝜁2 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 (39)

𝐺 12 𝑣 | = 𝐸 𝑠 𝜁3 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 (40)
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Fig. 5. Effective shear modulus ( G 12 ) of irregular lattices with different structural configurations considering correlated attributes. 

Fig. 6. Effective Poisson ’s ratio ( 𝜈12 ) of irregular lattices with different structural configurations considering correlated attributes. 
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he phase ( 𝜙) of the three complex elastic moduli corresponding to the
ase of only spatially random variation of structural geometry are given
y (
𝐸 1 𝑣 

)
= 𝜙

(
𝐸 2 𝑣 

)
= 𝜙

(
𝐺 12 𝑣 

)
= tan −1 

( 

𝜖𝜇𝜔 

𝜇2 + 𝜔 

2 (1 + 𝜖) 

) 

(41)

rom the above expression it is interesting to notice that the phase an-
le in case of regular lattice configurations are not dependent on the
tructural geometry and they are same for the three in-plane elastic
oduli. This result is expected since, for this case, the viscoelasticity
arameters are the same in all the cells of the lattice, the global time
elay induced by the viscoelastic effects of the material is the same
ompared to the ones related to each cell. The amplitude of the elastic
oduli obtained based on the above expressions converge to the closed-

orm equation provided by [27] in the limiting case of 𝜔 →0 and reg-
lar structural configuration (i.e. 𝐿 = 𝑛 ( ℎ + 𝑙 sin 𝜃) ; 𝑙 1 𝑖𝑗 = 𝑙 2 𝑖𝑗 = 𝑙 3 𝑖𝑗 = 𝑙;

𝑖𝑗 = 𝜃; 𝛽𝑖𝑗 = 180 ◦ − 𝜃; 𝛾𝑖𝑗 = 90 ◦, for all i and j ). For the limiting cases
→0, 𝜇→∞, 𝜔 →0, 𝜔 →∞, Eqs. (38) –(41) for the viscosity dependent
791 
n-plane elastic properties simplify as 

𝐸 1 𝑣 | → 𝐸 𝑆 𝜁1 for 𝜇 → ∞ and |𝐸 1 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 𝜁1 for 𝜇 → 0 ∀𝜔 > 0 
(42) 

𝐸 1 𝑣 | → 𝐸 𝑆 𝜁1 for 𝜔 → 0 and |𝐸 1 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 𝜁1 for 𝜔 → ∞ ∀𝜇 > 0 
(43) 

𝐸 2 𝑣 | → 𝐸 𝑆 𝜁2 for 𝜇 → ∞ and |𝐸 2 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 𝜁2 for 𝜇 → 0 ∀𝜔 > 0 
(44) 

𝐸 2 𝑣 | → 𝐸 𝑆 𝜁2 for 𝜔 → 0 and |𝐸 2 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 𝜁2 for 𝜔 → ∞ ∀𝜇 > 0 
(45) 

𝐺 12 𝑣 |→𝐸 𝑆 𝜁3 for 𝜇→∞ and |𝐺 12 𝑣 |→𝐸 𝑆 (1 + 𝜖) 𝜁3 for 𝜇→ 0 ∀𝜔 > 0 
(46) 
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Fig. 7. Effective Poisson ’s ratio ( 𝜈21 ) of irregular lattices with different structural configurations considering correlated attributes. 

Fig. 8. Effective normalized relative density (normalized with respect to the correspond- 
ing relative density of regular structural configurations) of irregular lattices with different 
structural configurations considering correlated attributes. 
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𝐺 12 𝑣 |→𝐸 𝑆 𝜁3 for 𝜔 → 0 and |𝐺 12 𝑣 |→𝐸 𝑆 (1 + 𝜖) 𝜁3 for 𝜔 →∞ ∀𝜇 > 0 
(47)

(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜇 → ∞ (48)

and 𝜙
(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜇 → 0 ∀𝜔 > 0 (49)

(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜔 → 0 (50)

and 𝜙
(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜔 → ∞ ∀𝜇 > 0 (51)

.6. Remark 3: effective viscoelastic properties of regular hexagonal lattices

The closed-form expressions for all the in-plane elastic moduli (with-
ut the viscoelastic effect) of irregular lattices in Eqs. (19) –(23) can be
educed to the formulae provided by [27] in the special case of uni-
orm honeycombs. According to the notations used for a regular hon-
ycomb by [27] as shown in Fig. 1 (d), the geometric notations of the
792 
resent paper for regular lattices can be expressed as: 𝐿 = 𝑛 ( ℎ + 𝑙 sin 𝜃) ;
 1 𝑖𝑗 = 𝑙 2 𝑖𝑗 = 𝑙 3 𝑖𝑗 = 𝑙; 𝛼𝑖𝑗 = 𝜃; 𝛽𝑖𝑗 = 180 ◦ − 𝜃; 𝛾𝑖𝑗 = 90 ◦, for all i and j . Using
hese transformations in Eqs. (19) –(23) , the expressions of in-plane elas-
ic moduli for regular hexagonal lattices (without the viscoelastic effect)
an be obtained. 

The in-plane Poisson ’s ratios are not dependent on the viscoelastic
roperties, as discussed in the preceding subsection. For regular hon-
ycombs with viscoelastic effect, the geometrical transformations de-
cribed in the preceding paragraph are applicable along with 𝐸 𝑠𝑖𝑗 = 𝐸 𝑠 ,

𝑖𝑗 = 𝜇 and 𝜖𝑖𝑗 = 𝜖 for 𝑖 = 1 , 2 , 3 , … , 𝑚 and 𝑗 = 1 , 2 , 3 , … , 𝑛 . Thus, based
n Eqs. (24) –(26) , the in-plane Young ’s moduli and shear modulus (vis-
osity dependent in-plane elastic properties) can be expressed as 

 1 𝑣 = 𝐸 𝑠 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

(52)

 2 𝑣 = 𝐸 𝑠 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

(53)

 12 𝑣 = 𝐸 𝑠 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 (
1 + 2 ℎ 

𝑙 

)
cos 𝜃

(54)

he amplitude of the three viscoelastic moduli are given by 

𝐸 1 𝑣 | = 𝐸 𝑠 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 

(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

(55)

𝐸 2 𝑣 | = 𝐸 𝑠 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

(56)

𝐺 12 𝑣 | = 𝐸 𝑠 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 
(1 + 2 ℎ 

𝑙 
) cos 𝜃

(57)

he phase ( 𝜙) of the three complex elastic moduli corresponding to reg-
lar configuration are given by (
𝐸 1 𝑣 

)
= 𝜙

(
𝐸 2 𝑣 

)
= 𝜙

(
𝐺 12 𝑣 

)
= tan −1 

( 

𝜖𝜇𝜔 

𝜇2 + 𝜔 

2 (1 + 𝜖) 

) 

(58)

rom the above expression, as expected, again the phase angle in case of
egular lattice configurations are not dependent on the structural geom-
try and they are same for the three in-plane elastic moduli. It can also
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Fig. 9. (a) Effect of viscoelasticity on the magnitude and phase angle of E 1 for regular hexagonal lattices (b) Effect of viscoelasticity on the magnitude and phase angle of E 2 for regular 
hexagonal lattices (c) Effect of viscoelasticity on the magnitude and phase angle of G 12 for regular hexagonal lattices. 

Fig. 10. (a) Effect of variation of 𝜇 on the viscoelastic modulus of regular hexagonal lattices (considering a constant value of 𝜖 = 2 ) (b) Effect of variation of 𝜖 on the viscoelastic modulus 
of regular hexagonal lattices (considering a constant value of 𝜇 = 𝜔 𝑚𝑎𝑥 ∕5 ). Here Z represents the viscoelastic moduli (i.e. E 1 , E 2 and G 12 ) and Z 0 is the corresponding elastic modulus 
value for 𝜔 = 0 . 
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e noticed that the expressions of phase angle are identical to the spe-
ial case considered in Section 3.5 . The amplitude of the elastic moduli
btained based on the above expressions converge to the closed-form
quation provided by Gibson and Ashby [27] in the limiting case of
 →0. Again, for the limiting cases 𝜇→0, 𝜇→∞, 𝜔 →0, 𝜔 →∞, the vis-
osity dependent in-plane elastic properties simplify as 

𝐸 1 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

for 𝜇 → ∞ (59) 

and |𝐸 1 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

for 𝜇 → 0 ∀𝜔 > 0 

(60) 
793 
𝐸 1 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

for 𝜔 → 0 (61) 

and |𝐸 1 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 cos 𝜃(
ℎ 

𝑙 
+ sin 𝜃

)
sin 2 𝜃

for 𝜔 → ∞ ∀𝜇 > 0 

(62) 

𝐸 2 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

for 𝜇 → ∞ (63) 

and |𝐸 2 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 ( ℎ 
𝑙 
+ sin 𝜃) 

cos 3 𝜃
for 𝜇 → 0 ∀𝜔 > 0 (64) 
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Fig. 11. (a) Effect of variation of 𝜇 on the phase angle of regular hexagonal lattices (considering a constant value of 𝜇 = 𝜔 𝑚𝑎𝑥 ∕5 ) (b) Effect of variation of 𝜖 on the phase angle of regular 
hexagonal lattices (considering a constant value of 𝜇 = 𝜔 𝑚𝑎𝑥 ∕5 ). Here Z represents the complex viscoelastic moduli (i.e. E 1 , E 2 and G 12 ) 

Fig. 12. Typical representation of random fields for a particular realization considered in the analysis for (a) movement of the top vertices of a tessellating hexagonal unit cell with 
respect to the corresponding deterministic locations ( 𝑟 = 6 ) (b) intrinsic elastic modulus ( E s ) with Δ𝑚 = 0 . 002 . 
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T. Mukhopadhyay et al. International Journal of Mechanical Sciences 150 (2019) 784–806 

Fig. 13. Structural configurations for a single random realization of an irregular hexagonal lattice considering deterministic cell angle 𝜃 = 30 ◦ and ℎ ∕ 𝑙 = 1 : (a) 𝑟 = 0 (b) 𝑟 = 2 (c) 𝑟 = 4 
(d) 𝑟 = 6 . 

Fig. 14. Simulation bound of the structural configuration of an irregular hexagonal lattice for multiple random realizations considering 𝜃 = 30 ◦ , ℎ ∕ 𝑙 = 1 and 𝑟 = 6 . The regular configu- 
ration is presented using red colour. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

|

|

|

𝜙

𝐸 2 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

for 𝜔 → 0 (65) 

and |𝐸 2 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
cos 3 𝜃

for 𝜔 → ∞ ∀𝜇 > 0 (66) 

𝐺 12 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 (
1 + 2 ℎ 

𝑙 

)
cos 𝜃

for 𝜇 → ∞ (67) 

and |𝐺 12 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 
(1 + 2 ℎ 

𝑙 
) cos 𝜃

for 𝜇 → 0 ∀𝜔 > 0 

(68) 

𝜙

795 
𝐺 12 𝑣 | → 𝐸 𝑆 

(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 
(1 + 2 ℎ 

𝑙 
) cos 𝜃

for 𝜔 → 0 (69) 

and |𝐺 12 𝑣 | → 𝐸 𝑆 (1 + 𝜖) 
(
𝑡 

𝑙 

)3 

(
ℎ 

𝑙 
+ sin 𝜃

)
(

ℎ 

𝑙 

)2 
(1 + 2 ℎ 

𝑙 
) cos 𝜃

for 𝜔 → ∞ ∀𝜇 > 0 

(70) (
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜇 → ∞ (71) 

and 𝜙
(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜇 → 0 ∀𝜔 > 0 (72) 

(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜔 → 0 (73) 
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Fig. 15. Effect of viscoelasticity on Young ’s modulus E 1 corresponding to randomly correlated inhomogeneous lattices having spatial structural irregularity. Frequency dependent 
amplitudes and phase angles are presented for various cellular configurations considering two different degree of structural irregularity ( 𝑟 = 3 and 𝑟 = 6 ). 
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and 𝜙
(
𝐸 1 𝑣 

)
, 𝜙

(
𝐸 2 𝑣 

)
, 𝜙

(
𝐺 12 𝑣 

)
→ 0 for 𝜔 → ∞ ∀𝜇 > 0 (74)

In the case of regular uniform honeycombs with 𝜃 = 30 ◦, we have 

 1 𝑣 = 𝐸 2 𝑣 = 2 . 3 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 
(75)

imilarly, in the case of shear modulus for regular uniform honeycombs
 𝜃 = 30 ◦) 

 12 𝑣 = 0 . 57 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 
(76)

he amplitude of the three viscoelastic moduli for regular uniform hon-
ycomb are given by 

𝐸 1 𝑣 | = |𝐸 2 𝑣 | = 2 . 3 𝐸 𝑠 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 

(
𝑡 

𝑙 

)3 
(77)

𝐺 12 𝑣 | = 0 . 57 𝐸 𝑠 

√ 

𝜇2 + 𝜔 

2 ( 1 + 𝜖) 2 

𝜇2 + 𝜔 

2 

(
𝑡 

𝑙 

)3 
(78)
796 
he phase ( 𝜙) of the three complex elastic moduli corresponding to reg-
lar configuration are given by 

(
𝐸 1 𝑣 

)
= 𝜙

(
𝐸 2 𝑣 

)
= 𝜙

(
𝐺 12 𝑣 

)
= tan −1 

( 

𝜖𝜇𝜔 

𝜇2 + 𝜔 

2 (1 + 𝜖) 

) 

(79)

imiting values for the amplitude and phase angle of the three viscoelas-
ic moduli for regular uniform honeycomb can be obtained by substitut-
ng 𝜃 = 30 ◦ in Eqs. (60) –(74) . 

Regular viscoelastic honeycombs satisfy the reciprocal theorem 

 2 𝑣 𝜈12 𝑣 = 𝐸 1 𝑣 𝜈21 𝑣 = 𝐸 𝑆 

( 

1 + 𝜖
i 𝜔 

𝜇 + i 𝜔 

) (
𝑡 

𝑙 

)3 1 
sin 𝜃 cos 𝜃

(80)

t is noteworthy that for regular uniform honeycombs, the Poisson ’s
atios become unity (i.e. 𝜈12 = 𝜈21 = 1 ) and the regular uniform hon-
ycombs with viscoelastic properties correctly obey the relation 𝐺 =
∕2(1 + 𝜈) , where E , G and 𝜈 represent Young ’s modulus, shear mod-
lus and Poisson ’s ratio of isotropic viscoelastic solids respectively. 
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Fig. 16. Effect of viscoelasticity on Young ’s modulus E 2 corresponding to randomly correlated inhomogeneous lattices having spatial structural irregularity. Frequency dependent 
amplitudes and phase angles are presented for various cellular configurations considering two different degree of structural irregularity ( 𝑟 = 3 and 𝑟 = 6 ). 
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. Effective viscoelastic properties of irregular lattices with 

orrelated structural and material attributes based on 

arhunen–Loève expansion 

Let ’s introduce the probability space ( Θ,  ,  ) , where Θ ,  and 
re the classical sample space, 𝜎− algebra and probability measure re-
pectively. Let  ( 𝐱, 𝜃) be a random fields defined on ( Θ,  ,  ) , where
∈Θ is an outcome and x is the spatial coordinates. In this section,
 ( 𝐱, 𝜃) is a general notation for a random field and can represent the

andom structural parameters (coordinates of the nodes of a lattice) or
he random material properties parameters (Young ’s moduli and vis-
oelastic parameters). There are a useful tool to model random field
 ( 𝐱, 𝜃) . The traditional way of dealing with random field is to discretize

he random field into finite number of random variables. The avail-
ble schemes for discretizing random fields can be broadly divided into
hree groups: point discretization (e.g., midpoint method [40] , shape
unction method [47,48] , integration point method [55] , optimal lin-
ar estimate method [43] ); average discretization method (e.g., spatial
verage [85,86] , weighted integral method [15,16] ), and series expan-
 

797 
ion method (e.g., orthogonal series expansion [91] ). An advantageous
lternative for discretizing  ( 𝐱, 𝜃) is to represent it in a generalized
ourier type of series as, often termed as Karhunen–Loève (KL) expan-
ion [39,51] . Suppose,  ( 𝐱, 𝜃) is a random field with covariance function

 

( 𝐱 1 , 𝐱 2 ) . The KL expansion for  ( 𝐱, 𝜃) takes the following form 

 ( 𝐱, 𝜃) = ̄ ( 𝐱 ) + 

∞∑
𝑖 =1 

√
𝜆𝑖 𝜉𝑖 ( 𝜃) 𝜓 𝑖 ( 𝐱 ) (81)

here { 𝜉i ( 𝜃)} is a set of uncorrelated random variables. { 𝜆i } and
 𝜓 i ( x )} are the eigenvalues and eigenfunctions of the covariance ker-
el Γ 

( 𝐱 1 , 𝐱 2 ) , satisfying the integral equation 

ℜ 

𝑁 

Γ 

( 𝐱 1 , 𝐱 2 ) 𝜓 𝑖 

(
𝐱 1 
)
𝑑 𝐱 1 = 𝜆𝑖 𝜓 𝑖 

(
𝐱 2 
)

(82) 

n practise, the infinite series of Eq. (81) must be truncated, yielding a
runcated KL approximation 

̃
 ( 𝐱, 𝜃) ≅ ̄ ( 𝐱 ) + 

𝑀 ∑
𝑖 =1 

√
𝜆𝑖 𝜉𝑖 ( 𝜃) 𝜓 𝑖 ( 𝐱 ) (83) 
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Fig. 17. Effect of viscoelasticity on shear modulus G 12 corresponding to randomly correlated inhomogeneous lattices having spatial structural irregularity. Frequency dependent ampli- 
tudes and phase angles are presented for various cellular configurations considering two different degree of structural irregularity ( 𝑟 = 3 and 𝑟 = 6 ). 
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hich approaches  ( 𝐱, 𝜃) in the mean square sense as the positive in-
eger M →∞. Finite element methods can be readily applied to obtain
igensolutions of any covariance function and domain of the random
eld. For linear or exponential covariance functions and simple do-
ains, the eigensolutions can be evaluated analytically [26,33] . Once

 

( 𝐱 1 , 𝐱 2 ) and its eigensolutions are determined, the parameterization
f ̃ ( 𝐱, 𝜃) is achieved by the KL approximation of its Gaussian image,
.e., 

̃
 ( 𝐱, 𝜃) ≅ 𝐺 

[ 

̄ ( 𝐱 ) + 

𝑀 ∑
𝑖 =1 

√
𝜆𝑖 𝜉𝑖 ( 𝜃) 𝜓 𝑖 ( 𝐱 ) 

] 

(84)

ccording to Eq. (84) , the KL approximation provides a parametric rep-
esentation of the random field  ( 𝐱, 𝜃) . It is to be noted that KL expan-
ion is not the only available discretization scheme for the random field
 ( 𝐱, 𝜃) . However, KL expansion has some desirable properties, such as
niqueness and error-minimization, making it a convenient choice over
ther available methods. The readers may refer to [26,33] for a detailed
tudy of the cited and other KL expansion properties. 
798 
In the present study, both intrinsic material properties and structural
rregularity are represented as random fields and discretized using the
L expansion with a Gaussian random field. For both the cases, the co-
ariance function is assumed to be represented as: 

 

( 𝑦 1 , 𝑧 1 ; 𝑦 2 , 𝑧 2 ) = 𝜎2  

𝑒 (− |𝑦 1 − 𝑦 2 |∕ 𝑏 𝑦 )+(− |𝑧 1 − 𝑧 2 |∕ 𝑏 𝑧 ) (85)

n which b y and b z are the correlation parameters along y and z direc-
ions (that corresponds to direction - 1 and direction - 2 respectively,
s shown in Fig. 1 (b)) and where 𝜎2  

is the variance of the random
eld. These quantities control the rate at which the covariance decays.

n a two dimensional physical space the eigensolutions of the covariance
unction are obtained by solving the integral equation (refer to Eq. (82) )
nalytically 

𝑖 𝜓 𝑖 ( 𝑦 2 , 𝑧 2 ) = ∫
𝑎 1 

− 𝑎 1 ∫
𝑎 2 

− 𝑎 2 
Γ 

( 𝑦 1 , 𝑧 1 ; 𝑦 2 , 𝑧 2 ) 𝜓 𝑖 ( 𝑦 1 , 𝑧 1 ) 𝑑𝑦 1 𝑑𝑧 1 (86)

here − 𝑎 1 ⩽ 𝑦 ⩽ 𝑎 1 and − 𝑎 2 ⩽ 𝑧 ⩽ 𝑎 2 . Substituting the covariance func-
ion and assuming the eigen-solution is separable in y and z directions,
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Fig. 18. Probability density function plots for the amplitude of the elastic moduli considering randomly inhomogeneous form of stochasticity for different structural configurations 
and degree of structural irregularity ( 𝑟 = 3 and 𝑟 = 6 ). Results are presented for the three in-plane elastic moduli as a ratio of the values corresponding to irregular configurations and 
respective deterministic values. Probabilistic descriptions are shown both at a lower frequency (100 Hz) and a relatively higher frequency (800 Hz). 
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 𝑖 ( 𝑦 2 , 𝑧 2 ) = 𝜓 

( 𝑦 ) 
𝑖 

( 𝑦 2 ) 𝜓 

( 𝑧 ) 
𝑖 

( 𝑧 2 ) (87)

𝑖 ( 𝑦 2 , 𝑧 2 ) = 𝜆
( 𝑦 ) 
𝑖 
( 𝑦 2 ) 𝜆

( 𝑧 ) 
𝑖 
( 𝑧 2 ) (88)

he solution of Eq. (86) reduces to the product of the solutions of two
quations of the form 

( 𝑦 ) 
𝑖 

𝜓 

( 𝑦 ) 
𝑖 

( 𝑦 1 ) = ∫
𝑎 1 

− 𝑎 1 
𝑒 (− |𝑦 1 − 𝑦 2 |∕ 𝑏 𝑦 ) 𝜓 

( 𝑦 ) 
𝑖 

( 𝑦 2 ) 𝑑𝑦 2 (89)

he solution of this equation, which is the eigensolution (eigenval-
es and eigenfunctions) of an exponential covariance kernel for a one-
799 
imensional random field is obtained as 

 

 

 

 

 

 

 

 

 

𝜓 𝑖 ( 𝜁 ) = 

cos ( 𝜔 𝑖 𝜁 ) √ 

𝑎 + 

sin (2 𝜔 𝑖 𝑎 ) 
2 𝜔 𝑖 

𝜆𝑖 = 

2 𝜎2  

𝑏 

𝜔 

2 
𝑖 
+ 𝑏 2 

for 𝑖 odd 

𝜓 𝑖 ( 𝜁 ) = 

sin ( 𝜔 

∗ 
𝑖 
𝜁 ) √ 

𝑎 − 

sin (2 𝜔 ∗ 
𝑖 
𝑎 ) 

2 𝜔 𝑖 ∗ 

𝜆∗ 
𝑖 
= 

2 𝜎2  

𝑏 

𝜔 

∗2 
𝑖 

+ 𝑏 2 
for 𝑖 even 

(90) 

here 𝑏 = 1∕ 𝑏 𝑦 or 1∕ 𝑏 𝑧 and 𝑎 = 𝑎 1 or a 2 . 𝜁 can be either y or z; 𝜔 i and 𝜔 i 
∗ 

re the solutions of equations 𝑏 − 𝜔 𝑖 tan ( 𝜔 𝑖 𝑎 ) = 0 and 𝜔 𝑖 + 𝑏 tan ( 𝜔 𝑖 𝑎 ) = 0
espectively. It is to be noted that the KL expansion was developed for
iscretizing Gaussian random fields and hence, all the operations de-
cribed above are only applicable to Gaussian random fields. For lognor-
al random fields considered in this study, the KL expansion is carried

ut on its classical Gaussian image. 
In the present analysis of spatially irregular lattices with spatially

arying viscoelastic properties, the scheme for introducing structural ir-
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Fig. 19. Probability density function plots for the amplitude of the elastic moduli considering randomly inhomogeneous form of stochasticity for different values of Δm (i.e. coefficient of 
variation for spatially random correlated material properties, such as E s , 𝜇 and 𝜖). Results are presented as a ratio of the values corresponding to irregular configurations and respective 
deterministic values (for a frequency of 800 Hz). 
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egularity is explained in Fig. 1 (a), where it can be noticed that each
ode of a regular lattice is simultaneously perturbed with a certain
ound (defined by degree of irregularity) for each of the realizations
62] . A typical resulting structure obtained from Fig. 1 (a) after intro-
ucing irregularity is shown in Fig. 1 (b). Multiple such structural con-
gurations with random geometry are considered to quantify the effect
f irregularity. Each structural parameter and each material parame-
er is represented by an independent random field parametrized by a
ean value, a coefficient of variation (ratio of the mean value and the

tandard deviation) and two correlation parameters. The mean values
re equal to the deterministic nominal values. To present the results in
 physically insightful way for randomly inhomogeneous systems, we
ave defined (1) a unique degree of structural irregularity ( r ) and (2) a
nique degree of material property variation ( Δm 

). The two parameters
re equal to the respective coefficients of variation of their Gaussian ran-
om fields. The statistical results are computed on the basis of 10,000
uch realizations of irregular lattices. 

. Results and discussion 

In this section results are presented to portray the viscoelastic effect
n effective in-plane material properties of irregular hexagonal lattices
onsidering two different forms of irregularity in structural and material
ttributes: randomly inhomogeneous correlated irregularity and ran-
omly homogeneous irregularity [71] . In randomly inhomogeneous cor-
elated system, spatial variability of the stochastic structural attributes
re accounted, wherein each sample of the Monte Carlo simulation in-
ludes the spatially random distribution of structural and materials at-
ributes with a rule of correlation. The spatial variability in structural
nd material properties ( E s , 𝜇 and 𝜖) are physically attributed by degree
f structural irregularity ( r ) and degree of material property variation
 Δm 

) respectively, as discussed in the Section 4 . In randomly homoge-
eous system, no spatial variability is considered. It is assumed that
tructural and material attributes remain the same spatially for a partic-
lar realization. However the stochastic parameters vary from sample
o sample following a probabilistic distribution (a Monte Carlo simula-
ion based random variable approach). This model of irregularity can
e regarded as a random distribution of over and under expanded cells.
he degree of stochasticity in randomly homogeneous system ( r ) is de-
ned based on the coefficient of variation of the considered random
istribution. As the two Young ’s moduli and shear modulus for low den-
800 
ity lattices are proportional to E s 𝜌
3 [92] , the non-dimensional results

or in-plane elastic moduli E 1 , E 2 , 𝜈12 , 𝜈21 and G 12 , unless otherwise

entioned, are presented as: 𝐸 1 = 

𝐸 1 𝑒𝑞 

𝐸 𝑠 𝜌
3 , 𝐸 2 = 

𝐸 2 𝑒𝑞 

𝐸 𝑠 𝜌
3 , ̄𝜈12 = 𝜈12 𝑒𝑞 ,

2̄1 = 𝜈21 𝑒𝑞 and 𝐺 12 = 

𝐺 12 𝑒𝑞 

𝐸 𝑠 𝜌
3 respectively, where ‘ ( ̄. ) ’ denotes the non-

imensional elastic modulus and 𝜌 is the relative density of the lattice
defined as a ratio of the planar area of solid to the total planar area of
he lattice) ( Fig. 6 ). 

.1. Analysis of spatially correlated irregular lattices without considering 

iscoelasticity 

As discussed in the Section 3 , the two Young ’s moduli and shear
odulus depend on the viscoelastic intrinsic material properties of the

onstituent members, while the two Poisson ’s ratios depend only on the
tructural configurations. For this reason, we have concentrated primar-
ly on the two Young ’s moduli and shear modulus to show the viscoelas-
ic effect. However, the variation of all the in-plane elastic moduli for
patially correlated structural randomness are presented without consid-
ring the effect of viscoelasticity in Figs. 3–5 (obtained using Eqs. (19) –
23) ). The results are compared with the elastic moduli obtained from
irect finite element simulation. The elastic moduli are obtained for two
ifferent h / l ratios (1 and 1.5) considering different cell angles 𝜃 = 30 ◦
nd 𝜃 = 45 ◦ with a small t / l value ( ∼ 10 −2 ) corresponding to respective
eterministic lattice configurations (refer Fig. 1 (d)). 

The elastic moduli of hexagonal lattices with spatially correlated
tructural irregularities are found (refer to Figs. 3–5 ) to be increasingly
nfluenced for higher degree of structural irregularity ( r ) causing a sig-
ificant change in the respective mean values with a wide response
ound. Such inevitable variability in the responses make it crucial to
ccount for the effect of system irregularity in the analysis and design
f hexagonal lattices. It can be noticed from Figs. 3–5 that the elas-
ic moduli obtained using the analytical formulae and the direct fi-
ite element simulation are in good agreement corroborating the va-
idity of the analytical formulae for spatially correlated structural ran-
omness. Fig. 8 shows the variation of effective normalized relative
ensity (normalized with respect to the corresponding relative density
f regular structural configurations) for irregular lattices considering
ifferent structural configurations with increasing degree of spatially
orrelated structural irregularity. The figure reveals an interesting in-
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Fig. 20. Effect of viscoelasticity on elastic modulus E 1 considering randomly homogeneous form of stochasticity in the structural and material attributes. Frequency dependent amplitudes 
and phase angles are presented for various cellular configurations considering two different degree of stochasticity ( 𝑟 = 3 and 𝑟 = 6 ). 
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ormation; even though a regular hexagonal lattice with 𝜃 = 30 ◦ and
 ∕ 𝑙 = 1 is regarded as the most efficient space filling pattern in a two di-
ensional space, this structural configuration gets the most affected by

patial irregularity. Influence of irregularity on the structural configura-
ion with ℎ ∕ 𝑙 = 1 is noticed to be higher than the ℎ ∕ 𝑙 = 1 . 5 configuration
or both the cell angles ( 𝜃) ( Fig. 7 ) . 

.2. Deterministic analysis for the viscoelastic properties of regular lattices 

Deterministic results depicting the effect of viscoelasticity on the two
oung ’s moduli and the shear modulus of regular hexagonal lattices are
resented in Figs. 9–11 . The amplitude gives an impression about the
trength of the frequency components relative to other components (i.e.
requency of the constituting signals corresponding to different ampli-
udes of the conventional time domain representation), while the phase
hows how all the frequency components align in time. Fig. 9 shows
he variation of amplitude and phase angle with frequency for the three
iscoelastic moduli considering different lattice configurations. To ob-
ain numerical results we have considered the viscoelastic parameters
801 
= 𝜔 𝑚𝑎𝑥 ∕5 (where 𝜔 max is the maximum value of considered frequency)
nd 𝜖 = 2 . With increasing value of frequency the amplitude of elastic
oduli are found to increase until a limit elastic moduli as explained

n Eq. (18) . For very low frequency (i.e. 𝜔 →0), amplitude of all the
hree moduli assume the value of classical elastic moduli as provided
y [27] . Similar trend has been reported for the viscoelastic proper-
ies of strand-based composites in time domain [54] . The expressions
rovided by [27] for accounting viscoelastic effect of honeycombs in
ime domain also yield similar results. Fig. 9 also shows the variation of
hase angle for the three elastic moduli with frequency. However, as the
hase angles corresponding to the Young ’s moduli and shear modulus
or regular lattices are same as the phase angle of the complex intrinsic
lastic material property of the lattice, the numerical values are indiffer-
nt for various structural configurations and they are also same for the
ifferent elastic moduli (refer to Eq. (58) ). A peak value of the phase
ngle is observed for a certain critical frequency in all the tree cases.
his behaviour can be explained by the use of a Biot model here which

s equivalent to the standard linear model represented in Fig. 2 (c): for
ery low and very large frequencies, the model behaves like pure elastic
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Fig. 21. Effect of viscoelasticity on elastic modulus E 2 considering randomly homogeneous form of stochasticity in the structural and material attributes. Frequency dependent amplitudes 
and phase angles are presented for various cellular configurations considering two different degree of stochasticity ( 𝑟 = 3 and 𝑟 = 6 ). 
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hile near the critical frequency (which can easily be calculated using
q. (14) ) the viscous effect induced by the dashpot is maximum and
or very large values of 𝜖, the phase at the critical frequency tend to
/2 which corresponds to a pure viscous effect. Unlike amplitude of the
lastic moduli, it is interesting to notice that the variation of phase angle
ith frequency does not depend on the lattice configuration for regular

attices, as discussed in Section 3.6 . 
Fig. 10 (a) and (b) show the effect of variation of the viscoelastic pa-

ameters 𝜇 and 𝜖 respectively on the amplitude of the elastic moduli with
egular structural configuration, while Fig. 11 (a) and (b) show the ef-
ect of viscoelasticity for the phase angles of elastic moduli. Normalized
alues (with respect to the corresponding elastic modulus for 𝜔 = 0 ) of
he elastic moduli, as shown in the Y-axes of the figures, are presented
or the purpose of comparison. It is evident from the figure that 𝜇 and 𝜖
nfluence the factor of amplification for the amplitude and phase angle
f the elastic moduli. As the results in Figs. 10 and 11 are presented
n the form of non-dimensional ratios normalized by respective elastic
odulus, these observations are valid for all the three viscoelastic mod-
li (i.e. E 1 , E 2 and G 12 ). It is interesting to notice from Figs. 10 and
 s  

802 
1 that 𝜇 controls the critical frequency value (the critical frequency
alue increases with the increase of 𝜇), while 𝜖 controls the value of
eak amplitude as well as phase angle of the elastic moduli (the peak
alues of amplitude and phase angle decrease with the increase of 𝜖). 

.3. Analysis of the viscoelastic properties for spatially correlated irregular 

attices with randomly inhomogeneous form of irregularity 

Scope of the present investigation includes the compound effect of
iscoelasticity and irregularity of the lattices. Results corresponding to
andomly inhomogeneous correlated structural and material irregular-
ty are presented in this subsection, followed by randomly homogeneous
tructural and material irregularity in the next subsection. 

There are two different types of randomness (related to structural
nd material attributes) involved in the present problem of viscoelastic
attices with spatially varying system parameters. One is random varia-
ion of the X- and Y- coordinates of the joints (within a circular bound,
hich defines the degree of irregularity) with respect to their corre-

ponding deterministic values, as shown in Fig. 1 (a). The random vari-
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Fig. 22. Effect of viscoelasticity on shear modulus G 12 considering randomly homogeneous form of stochasticity in the structural and material attributes. Frequency dependent amplitudes 
and phase angles are presented for various cellular configurations considering two different degree of stochasticity ( 𝑟 = 3 and 𝑟 = 6 ). 
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tion of X- and Y- coordinates are considered to be correlated spatially
hile generating the respective deviated values. A Gaussian random
eld is used for this purpose following the standard approach described

n Section 4 . In case of material properties (such as intrinsic Young ’s
odulus and viscoelastic parameters), correlated spatial randomness is

mposed on each unit cell as shown in Fig. 1 (e). Similar to the case of
patially random structural irregularity, a Gaussian random field is used
o model the correlated material properties of each constituting unit cell
f the lattice. Representative plots showing the typical distribution of
orrelated structural and material attributes are shown in Fig. 12 for
 particular realization. Multiple such random realizations (following a
aussian random field) are considered in this paper to present the results

n a probabilistic framework. Fig. 13 presents the structural configura-
ion of a hexagonal lattice with different degree of structural irregular-
ties considering a single random realization, while Fig. 14 shows the
imulation bound an irregular hexagonal lattice for multiple random re-
lizations considering 𝜃 = 30 ◦, ℎ ∕ 𝑙 = 1 and 𝑟 = 6 . These figures provide a
hysical perspective of the correlated structural randomness considered
n this study. 
803 
The compound effect of spatially correlated structural and material
rregularity on the viscoelastic material properties of hexagonal lattices
randomly inhomogeneous system) are presented in Figs. 15–17 for two
ifferent degree of structural irregularities (with Δ𝑚 = 0 . 002 ) consider-
ng various structural configurations. The response bounds, mean values
nd deterministic values of the amplitude and phase angles are shown
orresponding to various frequencies. It is observed that the response
ounds increase with increasing degree of structural irregularity ( r ),
s expected. The response bounds for the elastic moduli also increase
ith the increasing value of frequency and then becomes constant as

he mean value becomes constant. However, it is interesting to notice
hat the variation of phase angle with frequency is least influenced by
he spatially random structural and material irregularity in the system.
esides that, the phase angle also remain independent of the determinis-
ic lattice configuration under consideration. Probabilistic descriptions
or the variation of the amplitudes of viscoelastic properties are shown
n Fig. 18 for both lower and higher frequency ranges, wherein it can be
oticed that the elastic moduli follow a Gaussian distribution. The effect
or variation of the degree of stochasticity in spatially random intrinsic
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Fig. 23. Probabilistic descriptions for the amplitudes of three effective viscoelastic properties corresponding to a frequency of 800 Hz considering individual and compound effect of 
stochasticity in material and structural attributes with 𝑟 = 6 . 
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aterial properties and viscoelastic parameters ( Δm 

) is investigated con-
idering a lattice configuration with 𝜃 = 45 ◦ and ℎ ∕ 𝑙 = 1 corresponding
o a frequency of 800 Hz. From the probability distributions depicted
n Fig. 19 , it is observed that the response bound and the mean value
ncrease and decrease respectively with the increasing value of Δm 

. 

.4. Analysis of the viscoelastic properties for randomly homogeneous form

f structural and material irregularities 

The amplitude and phase angle of viscoelastic properties consider-
ng randomly homogeneous form of structural and material irregular-
ties are presented in Figs. 20–22 . In case of randomly homogeneous
rregularity, coefficient of variation (COV) of the samples for a particu-
ar parameter ( 𝑟 = 1000×COV) is defined to relate degree of irregularity
ith the results. The elastic moduli are obtained considering a com-
ound effect of various structural ( h , l and 𝜃) and material attributes
 E s , 𝜇, 𝜖) for different degree of stochasticity ( r ). From the figures, the
iscoelastic response bounds for amplitudes are found to increase with
ncreasing degree of irregularity, as expected. Similar to the case of ran-
omly inhomogeneous irregularity, the response bounds for the elastic
oduli also increase with the increasing value of frequency and then

ecomes constant. Even though the results obtained for the two dif-
erent forms of irregularities (randomly inhomogeneous and randomly
omogeneous) are not directly comparable, it is interesting to notice
hat the difference between deterministic values and response mean for
he amplitude of effective viscoelastic properties are negligible in case
f randomly homogeneous irregularity, while there exists a significant
ifference between these two parameters in case of randomly inhomo-
eneous irregularity. Variation of phase angle with frequencies shows
 similar trend like randomly inhomogeneous system, wherein a neg-
igible variability in the response bound is observed. Fig. 23 presents
he probabilistic distributions for the two Young ’s moduli and the shear
odulus (with a frequency of 800 Hz) considering individual and com-

ined effect of structural and material irregularity. The results are shown
onsidering a lattice configuration with 𝜃 = 45 ◦ and ℎ ∕ 𝑙 = 1 . From the
esponse bounds corresponding to different probability distributions, it
an be discerned that the structural irregularity has the most influen-
ial effect on the amplitude of effective viscoelastic properties for ran-
omly homogeneous irregular lattices. This result could be expected
egarding Eqs. (77) and (78) where the structural parameters have a
ower of three while material and viscoelastic parameters have lesser
owers. 
804 
. Conclusion 

The effect of viscoelasticity on irregular hexagonal lattices is inves-
igated in frequency domain considering two different forms of irregu-
arity in structural and material parameters, randomly inhomogeneous
rregularity and randomly homogeneous irregularity. Practically rele-
ant spatially correlated structural and material attributes are consid-
red to account for the effect of randomly inhomogeneous form of ir-
egularity based on Karhunen–Loève expansion. Closed-form analytical
xpressions are developed to quantify the effect of viscoelasticity for
rregular lattices, wherein it is observed that the two Young ’s moduli
nd shear modulus are dependent on the viscoelastic parameters. Lim-
ting values of the amplitude and phase angles are established based on
he analytical framework. The two in-plane Poisson ’s ratios depend only
n structural geometry of the lattice structure. Results are presented in
oth deterministic and stochastic regime to comprehensively analyse
he structural behaviour. The amplitude of in-plane Young ’s moduli and
hear modulus are amplified significantly due to the viscoelastic effect.
tructural and material irregularity in the lattices cause considerable
mount of variation in the amplitude of effective elastic moduli from
heir respective deterministic values, while the phase angle experiences
egligible variation due to this. 

Since the structural and material irregularities in lattices are in-
vitable for practical purposes and many of the common materials show
iscoelastic behaviour in room temperature, the combined effect pre-
ented in this study will serve as a practical reference for future appli-
ations. Moreover, the developed analytical approach being computa-
ionally efficient, can be quite attractive for the purpose of analysis and
esign of lattices and metamaterials considering structural irregularities
nd the effect of viscoelasticity along with Monte Carlo simulation based
eliability analysis of the system. 
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