
Modeling Spatially Varying Uncertainty in Composite Structures
Using Lamination Parameters

C. Scarth∗ and S. Adhikari†

Swansea University, Swansea, Wales SA1 8EN, United Kingdom

DOI: 10.2514/1.J055705

Anapproach is presented formodeling spatially varyinguncertainty in the ply orientations of composite structures.

Lamination parameters are used with the aim of reducing the required number of random variables. Karhunen–

Loève expansion is employed to decompose the uncertainty in each ply into a sum of random variables and spatially

dependent functions.An intrusivepolynomial chaos expansion is proposed to approximate the laminationparameters

while preserving the separation of the random and spatial dependency. Closed-form expressions are derived for the

expansion coefficients in two case studies; an initial example inwhich uncertainty ismodeled using randomvariables,

and a second randomfield example.The approach is compared againstMonteCarlo simulation results for a variety of

layups as well as closed-form expressions for the mean and covariance. By summing the polynomial chaos basis

functions through the laminate thickness, the separation of the randomand spatial dependencymay be preserved at a

laminate level and the number of random variables reduced for some minimum number of plies. The number of

variables increases nonlinearly with the number of Karhunen–Loève expansion terms, and as such, the approach is

only beneficial in low-order expansions using relatively few Karhunen–Loève expansion terms.

Nomenclature

A = in-plane laminate stiffness matrix
âj = coefficient of polynomial chaos expansion
a, b, c = constants used in “generic” statistical expressions
B = extension–bending coupling matrix
C = covariance function
c = correlation length of random field
D = out-of-plane laminate stiffness matrix
D = spatial domain
E = expectation operator
E11, E22 = longitudinal and transverse Young’s moduli
f, g = functions used in generic statistical expressions
G12 = shear modulus
H = random field
Hp = univariate Hermite polynomial of order p
h = laminate thickness
L = length of spatial domain
M = moment resultants
m = number of Karhunen–Loève expansion terms
N = stress resultants
n = number of plies
P = number of polynomial chaos expansion terms
p = total polynomial order
Qij = reduced lamina stiffnesses

Ui = material invariants
ui = normalized through-thickness coordinate of the

upper surface of ith ply
X = response stochastic process
x = vector of spatial coordinates
y = general vector-valued model output
zi = distance from laminate midplane to upper surface of

ith ply
αj = multi-indexwith dictates the order of each univariate

orthogonal polynomial
Γp = polynomial chaos expansion of order p

ε0 = laminate midplane strains
ζj = standard Gaussian random variable
ηj = spatially dependent Karhunen–Loève expansion

terms
θi = ith ply orientation
κ = laminate curvatures
λj = Karhunen–Loève expansion eigenvalue
ν12 = Poisson’s ratio

ξA;B;D1–4 = lamination parameters
σ = ply orientation standard deviation
ϒi = random variable used to represent uncertainty at a

laminate level
ϕ = standard Gaussian probability density function
φj = Karhunen–Loève expansion eigenfunction
Ψj = jth orthogonal polynomial
ω = random event from space of possible outcomes

I. Introduction

C OMPOSITE materials are being used to an increasing degree,
due to a number of benefits including high specific strength and

stiffness as well as anisotropy, which may be exploited to tailor
structural properties. Although mathematical models can predict
behavior to a high degree of accuracy, in practice, all materials and
processes are subject to uncertainty. Composite materials require
complicated manufacturing processes involving many constituent
components, and as such, uncertainty can be introduced from a
number of sources, such as the volume fractions and moduli of the
fibers [1], fiber misalignment [2], and joining and machining
techniques [3]. Traditionally, uncertainty is accounted for using
safety factors and worst-case design scenarios; however, such
approaches can be overly conservative and can inhibit the adoption of
new technologies and techniques [4].
The most commonly used uncertainty quantification technique is

Monte Carlo simulation (MCS); however, this approach can be
computationally expensive because a large number of model runs are
required to achieve accurate results [5]. It is therefore also common to
use more efficient techniques such as polynomial chaos expansion
(PCE) [6,7]; however, the computational effort required by such
techniques is known to increase significantly with the number of
random variables. The analysis is further complicated when the
uncertainty is modeled as random fields, due to the need to discretize
these fields. Random fields may be represented using random
variables based upon their value at specific spatial coordinates such as
finite element midpoints, or using spatial averaging across each
element; however, such approaches are mesh-dependent [8].
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In spectral techniques such as theKarhunen–Loève expansion (KLE)

[6], the space of possible outcomes under uncertainty is discretized,

resulting in a sum of random variables and spatially dependent

functions. In each of the described approaches, modeling random

fields can result in a considerable increase in dimensionality

compared with the corresponding random variable problem.
Composite material properties have been modeled extensively

using random variables. For example, Monte Carlo simulation was

used in [9], to model uncertainty in the aeroelastic response of a

composite helicopter rotor blade with uncertainty in the elastic

moduli. A second-order perturbation technique was used in [10], to

model buckling and supersonic flutter of laminated plates with

uncertainty in the ply orientations, modulus and density, as well as

loading and geometric parameters. A similar analysiswas undertaken

byOh and Librescu [11] for the free vibration of cantilever composite

beams. Manan and Cooper [12] used polynomial chaos expansion to

model flutter of a cantilever platewingwith uncertainty in themoduli,

ply orientations, and thickness. A nonintrusive polynomial chaos

expansion was used by Umesh and Ganguli [13] to model the

vibration of smart laminated plates controlled using piezoelectric

patches, with uncertainty in the elastic moduli as well as two

piezoelectric coefficients. More recently various surrogate models,

such as kriging [14], RS-HDMR [15], Gram–Schmidt polynomial

chaos expansion [16], and artificial neural network [17], have been

used in the context of dynamic analysis of composite laminated plates

with random parameters.
The application of random field methods to composite material

properties was first undertaken by Engelstad and Reddy [18], who

modeled spatially-varying uncertainty in the ply orientations,

thickness, and moduli. Random fields were discretized using a finite

element mesh, and the first-order second-moment method was used

to model deflection of a spherical shell and postbuckling of a flat

plate. In [19], Karhunen–Loève expansion was combined with a

Rayleigh–Ritz approach to model free vibration of cantilever plates.

Taylor series expansions in the elastic moduli, Poisson’s ratio, and

density were used to express the stiffness and mass matrices as a

linear sum of contributions of from each KLE term, thereby enabling

the spatial dependency to be integrated directly into these matrices.

The spectral stochastic finite element method was used in [20], in

which KLE is used to represent random fields, polynomial chaos

expansion was used to model nodal displacements, and an intrusive

formulation was obtained for the stiffness and mass matrices.

Murugan et al. [21] used a similar approach, in which KLE was used

to expand laminate stiffness terms based upon uncertain elastic

moduli, and high-dimensional model representations were used to

determine vibration frequency in the aeroelastic analysis of a

composite rotor blade. More recently, KLE was used in conjunction

with a nonintrusive polynomial chaos formulation to model free

vibration of composite laminates with spatially varying uncertainty

in the ply orientations [22]. A stochastic finite element approach

based upon optimal linear expansion was proposed in [23] for

modeling non-Gaussian distributed uncertainty in the elastic moduli

and strength of composite laminates. An alternative approach for

modeling non-Gaussian fields was proposed [24], in which

polynomial chaos expansionwas combinedwith a series of nonlinear

transformations aimed at matching input marginal distributions at a

discrete set of points and used in the failure analysis of composite

laminates.

Lamination parameterswere introduced byMiki [25] andMiki and
Sugiyamat [26], building upon the work of Tsai et al. [27], with
further notable contributions made by Fukunaga and Sekine [28].
Given any composite laminate composed of layers with identical
material properties, the stacking sequencemay be represented using a
maximum of 12 lamination parameters and no more than eight
lamination parameters for midplane symmetric laminates, with
further reductions possible through additional assumptions. The
space of lamination parameters has been shown to be convex [29],
and as such, they are commonly used in optimization [26,28,30] due
to this simplified design space. Lamination parameters can, however,
complicate the design process because they are not independent but
are interrelated by complex relationships that define feasible regions,
a comprehensive review of which may be found in [31].
In many uncertainty quantification techniques, the computational

effort increases with the number of random variables, and as such, it
can be computationally expensive to model ply orientation
uncertainty in composite laminates with a large number of plies.
Scarth et al. [32] used lamination parameters to represent ply
orientation uncertainty as a small, fixed number of random variables
regardless of the number of plies, in the uncertainty quantification of
the aeroelastic stability of composite plate wings. To date, the use of
lamination parameters to represent uncertainty has been limited to
random variable models. In this paper, an approach is proposed for
using lamination parameters tomodel random fields, inwhich the ply
orientation uncertainty is defined using Karhunen–Loève expansion,
and the lamination parameters are approximated using an intrusive
polynomial chaos expansion. This approach is advantageous in that it
preserves the separation of the random and spatial terms under the
nonlinear transformation that defines the lamination parameters,
while providing physical insight through closed-form expressions.
The paper is structured as follows. The lamination parameters are

introduced in Sec. II, andKarhunen–Loève expansion and polynomial
chaos expansion are introduced in Sec. III. In Sec. IV, closed-form
expressions are derived for a PCE of the lamination parameters in a
simple Gaussian distributed, random variable case study. These
expressions are compared against closed-form expressions of themean
and variance as well as Monte Carlo estimates of the probability
density functions (PDFs). In Sec. V, the approach is extended to
random fields, and compared against Monte Carlo estimates of the
marginal distributions and covariance functions of the field.

II. Introduction to Lamination Parameters

A composite laminate composed of n plies, with the ith ply
orientation denoted θi, is shown in Fig. 1 alongwith the geometry and
coordinate systems used in this paper.
In classical lamination theory [33], applied in-plane stress

resultants N and out-of-plane moment resultants M are related to
midplane strains ε0 and curvatures κ by�

N
M

�
�
�
A B
B D

��
ε0

κ

�
(1)

where A, B, and D are the laminate in-plane, extension–bending
coupling, and out-of-plane stiffness matrices, respectively. When
using the lamination parameters [25,27], these stiffness matricesmay
be expressed as a linear function of the lamination parameters,
material invariants, and laminate thickness, given by

n

2L1

2L2

n+
1

Fig. 1 Composite laminate geometry and coordinate system.
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8>>>>>>><
>>>>>>>:

A11

A12

A22

A66

A16

A26

9>>>>>>>=
>>>>>>>;

� h

2
6666666664

1 ξA1 ξA2 0 0

0 0 −ξA2 1 0

1 −ξA1 ξA2 0 0

0 0 −ξA2 0 1

0 ξA3∕2 ξA4 0 0

0 ξA3∕2 −ξA4 0 0

3
7777777775

8>>>>>>><
>>>>>>>:

U1

U2

U3

U4

U5

9>>>>>>>=
>>>>>>>;

(2)

8>>>>>>><
>>>>>>>:

B11

B12

B22

B66

B16

B26

9>>>>>>>=
>>>>>>>;

� h2

4

2
6666666664

0 ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 −ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 ξB3 ∕2 ξB4 0 0

0 ξB3 ∕2 −ξB4 0 0

3
7777777775

8>>>>>>><
>>>>>>>:

U1

U2

U3

U4

U5

9>>>>>>>=
>>>>>>>;

(3)

8>>>>>>><
>>>>>>>:

D11

D12

D22

D66

D16

D26

9>>>>>>>=
>>>>>>>;

� h3

12

2
6666666664

1 ξD1 ξD2 0 0

0 0 −ξD2 1 0

1 −ξD1 ξD2 0 0

0 0 −ξD2 0 1

0 ξD3 ∕2 ξD4 0 0

0 ξD3 ∕2 −ξD4 0 0

3
7777777775

8>>>>>>><
>>>>>>>:

U1

U2

U3

U4

U5

9>>>>>>>=
>>>>>>>;

(4)

where h is the laminate thickness, and the material invariants Ui are

defined in terms of the reduced lamina stiffnesses Qij as8>>>><
>>>>:

U1

U2

U3

U4

U5

9>>>>=
>>>>;

� 1

8

2
66664
3 2 3 4

4 0 −4 0

1 −2 1 −4
1 6 1 −4
1 −2 1 4

3
77775
8>><
>>:
Q11

Q12

Q22

Q66

9>>=
>>; (5)

which are in turn defined as

Q11 � E2
11∕
�
E11 − E22ν

2
12

�
(6)

Q22 � E11E22∕
�
E11 − E22ν

2
12

�
(7)

Q12 � ν12Q22 (8)

Q66 � G12 (9)

where E11, E22, G12, and ν12 are the longitudinal, transverse, and

shear moduli as well as Poisson’s ratio, respectively. The lamination

parameters are defined by the integrals

ξA�1;2;3;4� �
1

2

Z
1

−1
�cos�2θ�u��; cos�4θ�u��; sin�2θ�u��; sin�4θ�u���du

(10)

ξB�1;2;3;4� �
Z

1

−1
�cos�2θ�u��; cos�4θ�u��; sin�2θ�u��; sin�4θ�u���udu

(11)

ξD�1;2;3;4��
3

2

Z
1

−1
�cos�2θ�u��; cos�4θ�u��; sin�2θ�u��; sin�4θ�u���u2du

(12)

where θ�u� is the distribution of the ply orientations with respect to
normalized through-thickness coordinate u � 2z∕h. In practice, the
integrals defined in Eqs. (10–12) reduce to finite summations of
discrete, ply-level properties. For the sake of brevity, a “general”
lamination parameter ξlk is used throughout this paper, which is
defined, using such a discrete sum, as

ξlk �
1

2

Xn
i�1

f�aθi�
�
ubi�1 − ubi

�
(13)

where k ∈ f1; 2; 3; 4g, l ∈ fA;B;Dg, and

a �
�
2 if k ∈ f1; 3g
4 if k ∈ f2; 4g ; b �

8<
:
1 if l � A
2 if l � B
3 if l � D

(14)

and

f�x� �
�
cos�x� if k ∈ f1; 2g
sin�x� if k ∈ f3; 4g (15)

where n is the number of plies, and ui denotes the normalized
through-thickness coordinate of the upper surface of the ith ply,
noting that un�1 denotes the coordinate of the lower surface of the
laminate.
Amaximumof 12 lamination parameters are required regardless of

the number of plies. If the laminate is midplane symmetric, ξB1–4 are
zero, and a total of eight parameters are required. If the laminate is

balanced, ξA3–4 are eliminated, and ξD3–4 are small and commonly

ignored, whereas ξD3–4 may be eliminated entirely by using an

antisymmetric layup. Furthermore, it is common to restrict the plies
to a discrete set of 0, �45, and 90 deg orientations, in which

case ξA;B;D4 � 0.

III. Representation of Uncertainty

A. Karhunen–Loève Expansion

A random fieldH�x;ω�may be defined as a collection of random
variables indexed by continuous spatial parameter x ∈ D, where
spatial domainD is an open set onRd, which defines the geometry of
the structure, andω ∈ Ω is a set of possible outcomes taken from the
sample space Ω. At a given spatial coordinate x0, H�x0;ω� is a
random variable, whereas for a given outcomeω0,H�x;ω0� defines a
deterministic realization of the field [8]. For practical applications, it
is necessary to discretize the field into a finite set of randomvariables,
which is commonly achieved using Karhunen–Loève expansion
(e.g., [6,19–22]).
Supposing that the random field is characterized by a symmetric

and positive-definite covariance function C�x; x 0�, it may be
represented by spectral decomposition and expressed as a
generalized Fourier series as

H�x;ω� � H0�x� �
X∞
j�1

�����
λj

q
ζj�ω�φj�x� (16)

where ζj�ω� form a set of uncorrelated random variables, and �⋅�0 is
used to denote the deterministic value of �⋅� throughout this paper. If
H�x;ω� is a Gaussian random field, ζj are independent Gaussian
randomvariables. The constants λj and functionsφj�x� correspond to
the eigenvalues and eigenfunctions of the integralZ

D
C�x; x 0�φj�x� dx � λjφj�x 0� ∀ j � 1; 2; : : : (17)

The eigenvalues may be sorted into a decreasing series converging
upon zero, and as such, it is possible to truncate the expansion
after the mth term to obtain a finite-dimensional approximation of
the field. The KLE separates the randomness from the spatial
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dependency and, as such, enables the spatial functions to be

integrated directly into system matrices in subsequent analysis.
In this paper, a random field with exponentially decaying

covariance function is assumed, which is defined as

C�x; x 0� � e−kx−x 0k∕c (18)

where c is the correlation length, a measure of the typical length scale

of variations. A small correlation length results in a field that varies

substantially over small distances, tending to white noise as c
approaches zero. Conversely, a large correlation length results in a

field that does not vary significantly over the spatial domain, tending

toward a random variable as c approaches infinity. Modeling a

random fieldwith small correlation length typically requires a greater

number of KLE terms, consequently increasing the dimensionality of

the problem. For an exponential covariance function, a closed-form

solution of the eigenvalue problem in Eq. (17) may be found in [6].

Using this expression, example realizations of a one-dimensional

random field are shown for different correlation lengths in Fig. 2.

B. Polynomial Chaos Expansion

Polynomial chaos expansion is commonly used to propagate

parametric uncertainty through mathematical models (e.g.,

[12,20,22,32]). In this approach, a second-order stochastic process

X�ω� is represented as a series of orthogonal polynomials in a set of

basic random variables, expressed as [6,7]

X�ω� � a0Γ0�
X∞
i1�1

ai1Γ1

�
ζi1�ω�

�
�
X∞
i1�1

Xi1
i2�1

ai1i2Γ2

�
ζi1�ω�;ζi2�ω�

�

�
X∞
i1�1

Xi1
i2�1

Xi2
i3�1

ai1i2i3Γ3

�
ζi1�ω�;ζi2�ω�;ζi3�ω�

�
� · · · (19)

where ai1; : : : ;ip are deterministic coefficients, and Γp�ζi1 ; : : : ; ζip� is
the polynomial chaos of order p in multivariate random variable

ζ � fζi1 ; : : : ; ζipg. If ζ is composed of independent, standard

Gaussian variables, the Γp terms are given by the Hermite

polynomials, which are defined as

Hp�ζi1 ; : : : ; ζip� � �−1�p ∂e−ζTζ∕2

∂ζi1 ; : : : ; ∂ζip
eζ

Tζ∕2 (20)

If the random variables are non-Gaussian, the polynomial chaos

may be formed of a different set of orthogonal polynomials

depending on the input distribution and its support. For example,

Legendre polynomials may be used for uniformly distributed inputs,

or Laguerre polynomials for gamma distributed variables [7]. For

notational convenience, Eq. (19) is often more concisely written as

X�ω� �
X∞
j�0

âjΨj�ζ�ω�� (21)

where there is a one-to-one correspondence betweenΓp�ζi1 ; : : : ; ζip�
and Ψj�ζ�, as well as ai1; : : : ;ip , and âj. The polynomials Ψj�ω�∞j�1

form a complete orthogonal basis with respect to ζ and can therefore
guarantee exponential convergence with increasing polynomial
order, as well as possessing the following useful properties:

Ψ0 � 1 (22)

E�Ψj�ω�� � 0 (23)

E�Ψj�ω�Ψk�ω�� � δjkE�Ψj�ω�2� (24)

where δjk is the Kronecker delta, defined as

δjk �
�
1 if j � k
0 otherwise

(25)

and E�ζ� denotes the expectation operator, which is evaluated asZ
S
ζf�ζ� dζ (26)

where S is the support of random variable ζ, defined inRn, where n is
the dimension of the random variable.
In practice, Eq. (21) is truncated to P terms, which introduces an

error. The unknown coefficients may be determined by minimizing
this error in a mean-square sense, which is equivalent to setting the
residual as orthogonal to the basis polynomials. Supposing the
expansion represents random vector y, this condition may be
expressed as

E

" 
y −

XP−1
j�0

âjΨj�ω�
!
Ψk�ω�

#
� 0; ∀ k � 0; : : : ; P − 1 (27)

Because of the orthogonality of polynomials, Eq. (27) is
simplified, and the vector-valued coefficients are given by

âj �
E�y�ω�Ψj�ω��
E�Ψj�ω�2�

(28)

In an intrusive polynomial chaos expansion, closed-form
expressions are sought for the numerator of Eq. (28). The
denominator is a normalizing coefficient, the calculation of which is
trivial. Realizations of y may be simulated using the basis functions
Ψj�ω�, and the mean vector and covariance matrix may be
determined as

0 0.25 0.5 0.75 1
-3

-2

-1

0

1

2

3

x
0 0.25 0.5 0.75 1

x
0 0.25 0.5 0.75 1

x

H
(x

,ω
)

-3

-2

-1

0

1

2

3

H
(x

,ω
)

-3

-2

-1

0

1

2

3

H
(x

,ω
)

Baseline Value
Field Realisation

a) c = 2L (8 terms) b) c = L/2 (20 terms) c) c = L/20 (130 terms)
Fig. 2 Example random field realizations obtained using Karhunen–Loève expansion.
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E�y�ω�� � â0 (29)

cov�y�ω�; y�ω�� �
XP−1
j�1

E�Ψj�ω�2�âjâ
T
j (30)

In this paper, the outlined approach is used to approximate the
distributions of all 12 lamination parameters, grouped together as a
vector, ξ � fξA1 ; : : : ; ξD4 gT . In the subsequent sections, two cases are
presented in which the ply orientations are modeled as Gaussian
random variables and random fields, respectively.

IV. Uncertainty Modeling Using Random Variables

A. Intrusive Expansion for the Lamination Parameters

In this section, closed-form expressions are derived for the
coefficients of an intrusive polynomial chaos expansion for the

lamination parameters. These coefficients are 12-dimensional

vectors with a component corresponding to each lamination

parameter. For the sake of brevity, full derivations are included only

for the first component of each vector, which corresponds to ξA1 ,
before general expressions are presented for the general lamination

parameter introduced in Sec. II.
The ply orientations are assumed to be Gaussian distributed

random variables. For use in a polynomial chaos expansion, it is

necessary to define these ply orientations as a function of standard

Gaussian variables with zero mean and unit variance, which may be

expressed as

θi�ω� � θi0 � σζi�ω� (31)

where θi0 is the deterministic orientation of the ith ply, ζi�ω� is a
standardGaussian randomvariable, and σ is the standard deviation of
the ply orientations. The intrusive expansion requires that closed-

form expressions are obtained for the expectation in the numerator of

Eq. (28). Using Eq. (13), this expectation may be written for ξA1 as

E
h
ξA1 �ω�Ψj�ω�

i
� 1

2

Z
∞

−∞
· · ·

Z
∞

−∞

 Xn
i�1

cos�2θi�ω���ui�1 − ui�
!

×Ψj�ω�ϕ�ζ� dζ1; : : : ; dζn (32)

where ϕ�ζ� is the multivariate Gaussian PDF, and n is the number of

plies. TheΨj�ω� terms are multivariate polynomials in ζ, which may

be expanded as the product of n univariate Hermite polynomials

Hp�ζj� using

Ψj�ω� �
Yn
i�1

Hαij�ζi�ω�� (33)

where αij is an element of a multi-index that governs the order of the

ith univariate polynomial in the jth basis function. Thismulti-index is

defined as

αj � fα1j; : : : ; αnjg; where αij ∈ f0; 1; : : : ; pg;

subject to
Xn
i�1

αij ≤ p (34)

where p is the maximum total order of the polynomials. Expanding

the basis polynomials and exploiting the independence of the random

variables, Eq. (32) may be expanded as

E
h
ξA1 �ω�Ψj�ω�

i
�1

2

Xn
i�1

�ui�1−ui�
Z

∞

−∞
Hαij�ζi�cos�2θi�ω��ϕ�ζi�dζi

×
Yn

k�1;k≠i

Z
∞

−∞
Hαkj�ζk�ϕ�ζk�dζk (35)

Using Eq. (23), it can be seen that Eq. (35) is zero in all cases in

which more than one of the αij terms is greater than zero and is

otherwise given by

E
h
ξA1 �ω�Ψj�ω�

i
�

8>>>>><
>>>>>:

1

2

Xn
i�1

�ui�1 − ui�
Z

∞

−∞
cos�2θi�ω��ϕ�ζi� dζi if αij � 0 ∀ i

1

2
�ui�1 − ui�

Z
∞

−∞
Hαij�ζi� cos�2θi�ω��ϕ�ζi� dζi otherwise

(36)

The cases in which multiple of the αij are greater than zero

correspond to polynomials that capture the effects of the interaction

between uncertainty in different ply orientations. The preceding

observation indicates that, because of the orthogonality of the

polynomials, these interactions are all zero. Similar properties are

exhibited by all orthogonal polynomials in the Askey scheme, and as

such, this observation is also true for non-Gaussian distributed ply

orientations. It is therefore possible to express the PCE as a weighted

sum of univariate orthogonal polynomials, summed over all of the

plies of the laminate. As such, the number of random variables scales

linearly with the number of plies.
Substituting Eq. (31) into the first case of Eq. (36), along with the

definition of the Gaussian distribution, the first term of the expansion

may be evaluated as

E
h
ξA1 �ω�Ψ0�ω�

i
� 1

2
������
2π

p
Xn
i�1

�ui�1 − ui�

×
Z

∞

−∞
cos�2θi0 � 2σζi�e−ζ2i ∕2 dζi

� 1

2
������
2π

p
Xn
i�1

�ui�1 − ui�
Z

∞

−∞
�cos�2θi0� cos�2σζi�

− sin�2θi0� sin�2σζi��e−�1∕2�ζ2i dζi

� 1

2
e−2σ

2
Xn
i�1

�ui�1 − ui� cos�2θi0� � e−2σ
2

ξA10 (37)

The sin�2σζi� term originates from the application of the

compound angle formula to Eq. (31) and is eliminated from the

integral due to symmetry. The first expansion coefficient is therefore

given by the deterministic lamination parameter value, denoted ξA10 ,
scaled by a factor that decreases exponentially with the ply

orientation variance.
A similar process is used to determine the remaining coefficients

of the expansion, which are given by the second case of Eq. (36).

The compound angle formula is applied as before, and because of

symmetry, the cos�2σζj� and sin�2σζj� terms are eliminated for

the coefficients corresponding to odd and even polynomials,

respectively. The coefficients therefore have different values for odd

and even j, which can be shown to be given by
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E
h
ξA1 �ω�Hj�ζi�ω��

i
� 1

2
������
2π

p �ui�1 − ui�
Z

∞

−∞
�cos�2θi0� cos�2σζi�

− sin�2θi0� sin�2σζi��e−�ζ2i ∕2�Hj�ζi�dζi

�

8>><
>>:
−�ui�1 − ui� sin�2θi0�σ�−4σ2��j−1�∕2e−2σ2 if j is odd

1

2
�ui�1 − ui� cos�2θi0��−4σ2��j∕2�e−2σ2 if j is even

(38)

It is also necessary to determine the normalizing factor given by the
denominator of Eq. (28). For univariate Hermite polynomials, it can
be shown that this factor is given by

E�Hj�ζi�ω��2� � j! (39)

The complete polynomial chaos expansion is therefore given by

ξA1 �ω� ≈ e−2σ
2

0
@ξA10 − 1

2

X�p�1�∕2

j�1

2σ�−4σ2�j−1
�2j − 1�!

×
Xn
i�1

�ui�1 − ui� sin�2θi0�H2j−1�ζi�ω��

� 1

2

Xbp∕2c
j�1

�−4σ2�j
�2j�!

Xn
i�1

�ui�1 − ui� cos�2θi0�H2j�ζi�ω��
1
A (40)

where b⋅c denotes the floor operator, which rounds down to the
nearest integer. Noting that the PCE described in Sec. III.B is used to
represent a 12-dimensional vector of lamination parameters, the
preceding analysis can be repeated to obtain the component of this
vector corresponding to general lamination parameter ξlk as

ξlk�ω� ≈ e−a
2σ2∕2

0
@ξlk0 � 1

2

X�p�1�∕2

j�1

aσ�−a2σ2�j−1
�2j − 1�!

×
Xn
i�1

�ubi�1 − ubi �g�aθi0�H2j−1�ζi�ω��

� 1

2

Xbp∕2c
j�1

�−a2σ2�j
�2j�!

Xn
i�1

�ubi�1 − ubi �f�aθi0�H2j�ζi�ω��
1
A (41)

where a, b, f, k, and l are as defined in relation to Eq. (13), and

g�x� �
�
− sin�x� if k ∈ f1; 2g
cos�x� if k ∈ f3; 4g (42)

The basis functionsHj�ζi�ω�� are shared between all components
of the vector and may be used to simulate realizations of the
lamination parameters. By using the proposed approach, a set ofn ply
orientations are instead represented using a set of n × p random
variables. The number of variables is by definition greater than or
equal to the number of ply orientations, and as such, this formulation
is not a useful representation of the uncertainty.

B. Statistical Properties of the Lamination Parameters

1. Overview

In the following sections, numerical results are obtained using the
expansions derived in the previous section and are compared against
results for the lamination parameters themselves. Exact closed-form
expressions are derived for the mean and variance and are compared
against polynomial chaos approximations. Emulated PDFs are
subsequently compared against Monte Carlo simulation results for

lamination parameters corresponding to various layups. To the

knowledge of the authors, there are very little experimental data

available for the statistical properties of the ply orientations, which

depend not only upon the material but also the manufacturing

process. As such, throughout this paper, numerical results are

obtained for a range of standard deviations of 1, 2.5, and 5 deg to

investigate changes in behaviorwith different assumptions. The large

value of 5 deg is chosen to highlight errors when modeling larger

deviations in ply orientations.

2. Exact Closed-Form Expressions

In this section, closed-form expressions are derived for the

mean, variance, and covariance of the lamination parameters. For

the sake of brevity, full derivations are only included for the

variance of ξA1 and covariance of ξA1 with ξA2 . In each case, the ply

orientations are assumed to be Gaussian distributed, as expressed

in Eq. (31).
Because the expectation of a sum is equal to the sum of

expectations, it is trivial to show that the mean of general lamination

parameter ξlk is given by

E
h
ξlk�ω�

i
� 1

2
e−a

2σ2∕2
Xn
i�1

�
ubi�1 − ubi

�
f�aθi0� � e−a

2σ2∕2ξlk0

(43)

which is identical to the first term of the polynomial chaos expansion

in Eq. (41). By using thewell-knownBienaymé formula, the variance

of a summay be expanded as the sumof variances, and thevariance of

ξA1 may be expanded as

Var
h
ξA1 �ω�

i
� Var

"
1

2

Xn
i�1

�ui�1 − ui� cos�2θi0 � 2σζi�ω��
#

� 1

4

Xn
i�1

�ui�1 − ui�2
�
E
	
cos2�2θi0 � 2σζi�ω��



− E�cos�2θi0 � 2σζi�ω���2

�
(44)

Using the fact that cos2�2θ� � �1� cos�4θ��∕2, and exploiting

the trends in expectation noted in Eq. (43), the expectations in

Eq. (44) may be evaluated to give the variance as

Var
h
ξA1 �ω�

i
� 1

8

Xn
i�1

�ui�1 − ui�2
�
1 − e−4σ

2 − cos�4θi0�e−4σ2

� cos�4θi0�e−8σ2
�

(45)

A similar approach may be used to determine the covariance

between ξA1 and ξA2 , which is first expressed as

cov
h
ξA1 �ω�; ξA2 �ω�

i
� 1

4

Xn
i�1

�ui�1 − ui�2

× �E�cos�2θi0 � 2σζi�ω�� cos�4θi0 � 4σζi�ω���
− E�cos�2θi0 � 2σζi�ω���E�cos�4θi0 � 4σζi�ω���� (46)

and using the fact that cos�2θ� cos�4θ� � cos�6θ� 2θ�, as well as
the previously noted trends in expectation, the covariance is

evaluated as

cov
h
ξA1 �ω�; ξA2 �ω�

i
� e−2σ

2

8

Xn
i�1

�ui�1 − ui�2
�
cos�2θi0�

�
1 − e−8σ

2�
� cos�6θi0�

�
e−16σ

2 − e−8σ
2��

(47)
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In a similar fashion, a general covariance term may be obtained as

cov
h
ξl1k1�ω�; ξ

l2
k2
�ω�

i
� 1

8
e−�a2−a1�2σ2∕2

�
1 − e−a1a2σ

2
�

×
Xn
i�1

�
ub1i�1 − ub1i

��
ub2i�1 − ub2i

�
�f��a2 − a1�θi0�

� �−1�cf
�
�a2 � a1�θi0�e−a1a2σ2

�
(48)

where a1, a2, b1, and b2 are defined as in Eq. (14) using the values of
k1, k2, l1, and l2, respectively, and

c �
�
0 if k1 ∈ f3; 4g and k2 ∈ f3; 4g
1 otherwise

(49)

and f�x� is redefined as

f�x� �
�
sin�x� if k1 ∈ f1; 2g and k2 ∈ f3; 4g; or k1 ∈ f3; 4g and k2 ∈ f1; 2g
cos�x� otherwise

(50)

The preceding closed-form expressions section are now used to
investigate trends with varying ply orientation θ in a number of
parameterized layups, assuming a ply orientation standard deviation
of 2.5 deg. Trends in the mean and standard deviation of the out-of-
plane lamination parameters of a single ply laminate �θ�, a two-ply
antisymmetric laminate �θ;−θ�, and a four-ply symmetric laminate
�θ;−θ�S are shown in Figs. 3 and 4, respectively.
The mean trends in Fig. 3 simply follow deterministic trends in the

lamination parameters, weighted by a factor that decreases

exponentially with the ply orientation variance. The plots for ξD1
and ξD2 are identical for all parameterizations, demonstrating that the

mean is not affected by the number of plies. As in a deterministic

laminate, the mean of ξD3 and ξD4 , which govern bend–twist coupling,
reduces with the number of plies in a balanced laminate, such as the

�θ;−θ�S example, and is zero for the antisymmetric laminate.
The plots in Fig. 4 follow weighted curves of 1 − cos�4θ�,

1 − cos�8θ�, 1� cos�4θ�, and 1� cos�8θ�, for ξD1–4, respectively.
For all values of θ, the standard deviation decreases with an

increasing number of plies due an averaging effect in which

uncertainty in the different plies cancel each other out. The standard

deviation varies considerably with the layup, and plots such as those

in Fig. 4 may be used to gain insight into how to tailor composite

laminates to be less sensitive to uncertainty. For example, the bending

stiffnessD11 ismaximized by 0 degplieswith ξD1 � 1, which can also

be seen tominimize thevariability in ξD1 . The torsional stiffnessD66 is

maximized by �45 deg plies with ξD2 � −1, which also minimizes

variability in ξD2 ; however, this also maximizes the variability in ξD1
and therefore the bending stiffness. Bend–twist coupling, which is

governed by ξD3–4, is often undesirable; however, minimizing ξD3 by

using 0 and 90 deg plies results in maximizing the variability in this

parameter. It should also be noted that standard deviations of ξD3–4 for
the antisymmetric example follow the same trends as the other
laminates, despite the fact that bend–twist coupling is eliminated in a
deterministic analysis of such laminates.

3. Polynomial Chaos Expansion Approximations

In the previous section, a closed-form expressionwas derived for a
general lamination parameter covariance term. In this section,
example PCE approximations of the lamination parameter variance
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Fig. 3 Trends in the out-of-plane lamination parameter mean with varying ply orientation.
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and covariance are derived and used to investigate the convergence of

the expansion with increasing order.
The polynomial chaos expansion approximation of the variance of

ξA1 may be obtained usingEq. (30). By squaring each of the expansion

coefficients and using the double-angle formula, alongwith the result

of Eq. (39), the alternating series of sin and cos terms in Eq. (40)

simplifies to a series of cos terms, to give the variance as

Var
h
ξA1 �ω�

i
≈
e−4σ

2

8

Xp
j�1

�4σ2�j
�j!�

Xn
i�1

�ui�1−ui�2�1��−1�j cos�4θi0��

(51)

Noting that the Taylor series definition of the exponential function

is given by

ex �
X∞
i�0

xi

i!
(52)

as the order of the polynomial chaos expansion tends to infinity,

Eq. (51) converges to

Var
h
ξA1

i
�ω�� e−4σ

2

8

Xn
i�1

�ui�1−ui�2
�
e4σ

2 −1��e−4σ2 −1�cos4θi0
�

(53)

which can be seen through basic algebra to be identical to Eq. (45),

and as such, the polynomial chaos approximation of the variance

converges toward the true value with increasing expansion order.
In a similar analysis, polynomial chaos expansion may be used to

approximate the covariance of ξA1 and ξA2 as

cov
h
ξA1 �ω�;ξA2 �ω�

i
≈
e−10σ

2

4

 Xb�p�1�∕2c

j�1

�8σ�2j−1
��2j− 1�!�2

Xn
i�1

�ui�1 − ui�2

× sin�2θi0� sin�4θi0�E
h
H2j−1�ω�2

i

�
Xbp∕2c
j�1

�8σ�2j
��2j�!�2

Xn
i�1

�ui�1 − ui�2 cos�2θi0�cos�4θi0�E
h
H2j�ω�2

i!

� e−10σ
2

8

Xp
j�1

�8σ�j
j!

Xn
i�1

�ui�1 − ui�2�cos�2θi0�� �−1�j cos�6θi0��

(54)

As in the previous example, using theTaylor series definition of the

exponential function, it is possible to show that this expression

converges to that expressed in Eq. (47) as the expansion order tends to

infinity.
To further investigate the convergence of the PCE, Fig. 5 shows

estimates of the standard deviation of the out-of-plane lamination

parameters of a �0; 90;�45�S laminate with increasing expansion

order, alongside the natural log of the error relative to the closed-form

solution from Eq. (48).
A good agreement is achieved between the polynomial chaos and

closed-form expressions of the standard deviation for relatively low

expansion order, with the relative error decreasing on an exponential

scale for increasing order. An accurate approximation is achieved

for ξD3–4 using a first-order expansion, which suggests that these

parameters are approximately Gaussian, whereas a second-order

expansion is required for ξD1–2. From Eq. (41), it can be seen that the

first-order coefficients of the PCE for ξD2 are factored by sin�4θi0�,
which are zero for orientations of 0,�45, and 90 deg. It is therefore
possible to reduce the number of parameters bymaking restrictions to

the layup, as is the case for a deterministic analysis. It is for this reason

that a minimum second-order expansion is required to model these
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Fig. 4 Trends in the out-of-plane lamination parameter standard deviation with varying ply orientation.
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parameters and for the stepped convergence in error, which is

especially notable for ξD2 . It can also be noted that the relative error is
higher for the examples with a larger ply orientation standard
deviation, and as such, higher-order expansions may be required to
model such behavior.

4. Simulation of the Lamination Parameters

In this section, the proposed approach is used to estimate
lamination parameter PDFs, which are compared with results of a
Monte Carlo simulation. PDFs for the out-of-plane lamination
parameters of a �0; 90;�45�S laminate are shown in Fig. 6, assuming
a ply orientation standard deviation of 2.5°. To compare the PDFs of

the in-plane, extension–bending coupling, and out-of-plane

lamination parameters, a similar exercise is undertaken for the PDFs

of ξA2 , ξ
B
2 , and ξD2 of a �0�8 laminate in Fig. 7, assuming a ply

orientation standard deviation of 5° so as to investigate convergence
with a larger magnitude of uncertainty. Additionally, scatter plots of

different sets of out-of-plane lamination parameters are shown in

Fig. 8 for the fourth-order PCE of a �02; 902�S laminate, to investigate

the ability to model correlated behavior.
The results in Fig. 6 reflect observations made in the previous

section in relation to the �0; 90;�45�S laminate, in that the PDFs of

ξD3–4 are approximately Gaussian, and as such, a first-order expansion

is sufficient to model these parameters. The convergence with
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Fig. 6 Convergence of out-of-plane lamination parameter PDFs for a �0;90;� 45�S laminate.
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increasing order is most evident for ξD1 , in which a substantial
improvement is achieved in using a second-order in favor of a first-
order expansion. In general, a second-order expansion is adequate to
model all of the behavior in this example. As discussed previously,
some of the expansion coefficients are zero due a dependency on
sin�4θi0�, and as such, plots corresponding to these coefficients are
omitted from Fig. 6.
Odd-valued expansions are omitted from Fig. 7 because these

depend upon sin�2θi0�, which is zero for zero degree plies. As in the
previous case, a second-order expansion provides a reasonable
agreement with the Monte Carlo results; however, a small
improvement is achieved by using a fourth-order expansion. This
higher required order may be attributed to the higher standard
deviation used for the ply orientations. The requirement of a fourth-
order expansion for the highest accuracymay also be attributed to the
fact that the third-order coefficients are zero; however, this result also
means that the fourth-order expansion only requires two sets of
coefficients. As such, it is difficult to make general statements
regarding the required expansion order and number of expansion
coefficients because these depend upon the layup.
Finally, from Fig. 8, it can be seen that the out-of-plane lamination

parameters of the �02; 902�S laminate are highly correlated and that
this correlation is non-Gaussian. The fourth-order polynomial chaos
expansion used in the example can be seen to give a good description
of this correlation.

V. Uncertainty Modeling Using Random Fields

A. Intrusive Expansion for Spatially Varying Lamination Parameters

Closed-form expressions are derived for the coefficients of a
polynomial chaos expansion for the lamination parameters, in which
the ply orientations are modeled as Gaussian random fields. The
analysis follows the approach taken in the random variable case

study, with the ply orientations initially defined using a Karhunen–

Loève expansion. It should be noted that such an approach is only

valid for Gaussian random fields. To extend the approach to non-

Gaussian fields, it would be necessary to undertake a nonlinear

transformation to target the non-Gaussian marginal distributions and

covariance function [23,24,34,35].
Using a Karhunen–Loève expansion, the definition of the ply

orientations in Eq. (31) may be rewritten as

θi�ω; x� � θi0 � σ
Xm
j�1

�����
λj

q
φj�x�ζij�ω� � θi0 � σ

Xm
j�1

ηj�x�ζij�ω�

(55)

where λj, ζj�ω�, and φj�x� are as defined in Eq. (16), and ηj�x� is
introduced to group together the nonrandom parts of each KLE term

for the sake of conciseness. The lamination parameters are

approximated as a sumof basis polynomials,Ψq�ω� inm × n random
variables, which are expressed as

Ψq�ω� �
Yn
i�1

Ym
j�1

Hαijq�ζij�ω�� (56)

where multi-index αijq is modified from Eq. (34) to dictate the order

of the polynomial corresponding to the jth KLE term in the ith ply, in
the qth basis function.
Expansion coefficients for ξA1 may once again by derived by setting

the residuals as orthogonal to the basis functions in line with the

numerator of Eq. (28), which may be expressed as

16

12

PD
F

PD
F

PD
F8

4

0

16

15

10

5

0

12

8

4

0
0.7 -0.2 -0.1 0.1 0.200.75 0.8 0.85

ξ2
A ξ2

B ξ2
D

0.95 10.9 0.6 0.7

MCS
2nd Order PCE
4th Order PCE

0.8 0.9 1

Fig. 7 Convergence of in-plane, coupling, and out-of-plane lamination parameter PDFs for a �0�8 laminate.
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Fig. 8 Comparison of scatter plots for the out-of-plane lamination parameters of a �02;902�S laminate.
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E�ξA1 �ω; x�Ψq�ω��

� 1

2

Xn
i�1

�ui�1 − ui�E
�
cos�2θi�ω; x��

Yn
j�1

Hαijq �ζij�ω��
�

×
Yn
k�1
k≠i

Ym
j�1

E
h
Hαkjq �ζkj�ω��

i
(57)

As in the random variable case study, this expectation is zero in all

cases inwhichαijq is greater than zero formultiple values of i, and the
coefficients that model the interaction between different plies are all

zero. In all other cases, the expectation is given by

E
h
ξA1 �ω; x�Ψq�ω�

i
�

8>>>><
>>>>:

1

2

Xn
i�1

�ui�1 − ui�E�cos�2θi�ω; x��� if αijq � 0 ∀ i; j

1

2
�ui�1 − ui�E

�
cos�2θi�ω; x��

Ym
j�1

Hαijq �ζij�ω��
�

for i s:t:
P

m
j�1 αijq > 0

(58)

It should be noted that this expression differs from that in Eq. (36)

in that there are interactions between the different KLE terms within

each ply. Uncertainty in the different plies is represented using an

identical set of polynomials, and as such, the imay be dropped in the

subscript of multi-index α.
Starting with the second case of Eq. (58), the expectation may be

expanded by exploiting the independence of the random variables,

and using the compound-angle formula to obtain

E
h
ξA1 �ω; x�Ψq�ω�

i
� 1

2
�ui�1 − ui�

×

E
h
cos�2ση1�x�ζi1�ω��Hα1q �ζi1�ω��

i

× E

�
cos


2θi0 � 2σ

Xm
j�2

ηj�x�ζij�ω�
�Ym

j�2

Hαjq�ζij�ω��
�

− E
h
sin�2ση1�x�ζi1�ω��Hα1q�ζi1�ω��

i

× E

�
sin


2θi0 � 2σ

Xm
j�2

ηj�x�ζij�ω�
�Ym

j�2

Hαjq�ζij�ω��
��

(59)

In Eq. (59), the first KLE term is separated into its own univariate

expectation. Noting that ζ1j�ω� is a standard Gaussian variable, the

expectation of the sin�2ση1�x�ζi1�ω�� term is zero due to symmetry

for even-order polynomials, whereas the cos�2ση1�x�ζi1�ω�� term is

zero for odd-order polynomials. As such, it is always possible to

discard one of the terms resulting from the compound-angle formula.

This process may be repeated to simplify the resulting expression as

the product of the expectation of different univariate Hermite

polynomials governed by Hαjq, factored by the corresponding sin or

cos term. These expectations are given by

E
h
sin�2σηj�x�ζij�ω��Hαjq�ζij�ω��

i

�
(
2σ�−4σ2��αjq−1�∕2ηj�x�αjq e−2σ2ηj�x�2 if αjq is odd

0 if αjq is even
(60)

and

E
h
cos�2σηj�x�ζij�ω��Hαjq �ζij�ω��

i

�
8<
:
0 if αjq is odd

�−4σ2��αjq∕2�ηj�x�αjq e−2σ2ηj�x�2 if αjq is even
(61)

The first case of Eq. (58), corresponding to the first expansion

coefficient α̂0, is a specific example of Eq. (59) with αj0 � 0∀ j,
summed over every ply of the laminate. This coefficient is therefore

given by

E
h
ξA1 �ω; x�Ψ0�ω�

i
� 1

2

Xn
i�1

�ui�1 − ui� cos�2θi0�

×
Ym
j�1

E
h
cos�2σηj�x�ζij�ω��

i

� ξA10e
−2σ2

P
m

j�1
ηj�x�2 (62)

which is simply the expression given in Eq. (37) for the random
variable case study, with additional factors due to the contribution of

the KLE eigenvalues and eigenfunctions to the variance of the
approximated random field.
To complete the expansion, expressions are required for the

normalizing coefficients given by the denominator of Eq. (28).
Noting that it is necessary to account for the interactions between
the different KLE terms, and using the result from Eq. (39), the

normalizing coefficients can be shown to be given by

E

"Ym
j�1

Hαjq�ζij�ω��2
#
�
Ym
j�1

αjq! (63)

The polynomial chaos expansion for ξA1 �ω; x� can therefore be
expressed as

ξA1 �ω; x� ≈ e
−2σ2

P
m

j�1
ηj�x�2

×

0
BB@ξA10 − 1

2

X
αq∈α

jαqjis odd

2σ�−4σ2��jαqj−1�∕2
Ym

j�1

ηj�x�αjq
αjq!

�

×
Xn
i�1

�ui�1 − ui� sin�2θi0�
Ym
j�1

Hαjq �ζij�ω��

� 1

2

X
αq∈α

jαqjis even

�−4σ2�jαqj∕2
Ym

j�1

ηj�x�αjq
αjq!

�

×
Xn
i�1

�ui�1 − ui� cos�2θi0�
Ym
j�1

Hαjq�ζij�ω��

1
CCA (64)

where jαkj �
P

m
j�1 αjk.
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Following the same process, the polynomial chaos expansion for
general lamination parameter ξlk�ω� may be derived as

ξlk�ω; x� ≈ e
−a2σ2∕2

P
m

j�1
ηj�x�2

×

0
BBB@ξlk0 � 1

2

X
αq∈α

jαqjis odd

aσ�−a2σ2��jαq j−1�∕2
Ym

j�1

ηj�x�αjq
αjq!

�

×
Xn
i�1

�
ubi�1 − ubi

�
g�aθi0�

Ym
j�1

Hαjq �ζij�ω��

� 1

2

X
αq∈α

jαqjis even

�−a2σ2�jαqj∕2
Ym

j�1

ηj�x�αjq
αjq!

�

×
Xn
i�1

�ubi�1 − ubi �f�aθi0�
Ym
j�1

Hαjq�ζij�ω��

1
CCCA (65)

where a, b, f, g, k, and l are as defined in relations to Eq. (41). It can
be seen that Eqs. (64) and (65) take a form similar to Eqs. (40) and
(41), with the addition of extra terms to capture the effects of the KLE
eigenvalues and eigenfunctions upon the ply orientation variance as
well as the interaction between the different KLE terms within
each ply.
Realizations of the lamination parameters may be simulated using

the basis functionsΨq�ω�; however, the number of basis functions is
by definition larger than the number of plies. It can be seen from
Eq. (65) that the spatial dependency is outside of the sum over the
laminate thickness. It is possible to preserve the separation of the
spatial and random terms while simulating the lamination parameters
at the laminate level, using an expansion of the form

ξlk�ω; x� ≈ e
−a2σ2∕2

P
m

j�1
ηj�x�2

0
@ξlk0 �XNRV

q�1

hq�x�ϒq�ω�
1
A (66)

where

ϒq�ω�

�
8<
:
P

n
i�1�ubi�1 − ubi �g�aθi0�

Q
m
j�1 Hαjq�ζij�ω�� if jαqjis oddP

n
i�1�ubi�1 − ubi �f�aθi0�

Q
m
j�1 Hαjq �ζij�ω�� if jαqjis even

(67)

where NRV is the number of random variables, and hq�x� is used to
group together all parts of the expansion coefficients in Eq. (65) that
lie outside of the through-thickness sum.

B. Number of Random Variables

The overall aim of the proposed approach is to reduce the
number of random variables compared with that required to directly
model uncertainty in the ply orientations. For random variable ply

orientations, the lamination parameters may be simulated directly
using commonly used techniques such as Monte Carlo simulation
[32]. In the most general case, the maximum number of random
variables is therefore 12. As such, a laminate must have at least 12
plies for there to be an advantage in general.
For random fields, it is not possible to directly simulate the

lamination parameters, which are highly non-Gaussian. The
proposed combination of Karhunen–Loève expansion and
polynomial chaos expansion enables the lamination parameters to
be simulated using the ϒq�ω� terms given by Eq. (67); however, the
number of random variables depends upon the number of KLE terms
used to model the ply orientation uncertainty and the order of the
polynomial chaos. The number of random variables required to
simulate random fields in all 12 lamination parameters is given by

NRV � 12

�m� p�!
m!p!

− 1

�
(68)

UsingEq. (68), the required number of randomvariables is shown in
Table 1 for various orders of polynomial chaos and numbers of KLE
terms. If the uncertainty is modeled directly using the ply orientations,
the number of random variables is simply the number of plies
multiplied by the number of KLE terms. As in the random variable
case, a laminatemust have aminimumnumber of plies before there is a
benefit to using lamination parameters. This minimum number of
plies, nmin, is also shown in Table 1, given by NRV∕NKLE.
Suppose that fiveKLE termswere used tomodel uncertainty in each

ply in conjunction with a second-order polynomial chaos expansion.
From Table 1, it can be seen that the lamination parameters may be
simulated using 240 random variables. This is equivalent to modeling
uncertainty in 48 ply orientations, using 5 × 48 KLE terms. As such,
the number of random variables may be reduced for any laminatewith
more than48plies. For example, the number of randomvariables could
be reduced by 10 for a laminate with 50 plies.
The number of variables can be seen to scale highly unfavorably

with the number of terms used in the KLE. As such, it is suggested
that the proposed approach is unlikely to achieve any benefits for
greater than a second-order expansion. Additionally, the approach
would achieve greatest benefits modeling uncertainty in a large
number of ply orientations because random fields with a high
correlation length such that relatively few KLE terms are required.
For a larger number of KLE terms, it is possible that a spatial
discretization would be more efficient because it may be possible to
achieve a sufficiently fine mesh in with fewer random variables.

C. Comparison with Monte Carlo Simulation

In this section, the expression derived in the previous sections are
compared against Monte Carlo simulation of the out-of-plane
lamination parameters of a �02; 902�S laminate. A ply orientation
standard deviation of 5 deg is used to highlight limitations inmodeling
a relatively large magnitude of uncertainty, and a correlation length of
L∕2 is used along with 20 KLE terms, which corresponds to the
scenario in Fig. 2b. Example realizations of one-dimensional random
fields obtained using a second-order polynomial chaos expansion are
compared with Monte Carlo results based upon the same Karhunen–
Loève expansion in Fig. 9. Assuming that the random field is
stationary, estimates of themarginal distributions are shown in Fig. 10,
based upon an ensemble average taken across 1000 points in the spatial
domain, and estimates of the covariance function based upon 10,000

Table 1 Required random variables, and number of plies for which approach is beneficial

Order

2 3 4 5

KLE terms NRV nmin NRV nmin NRV nmin NRV nmin

2 60 30 108 54 168 84 240 120
5 240 48 660 132 1,500 300 3,012 603
10 780 78 3,420 342 12,000 1,200 36,024 3,603
25 4,200 168 39,300 1,572 285,000 11,400 1,710,060 68,403
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Fig. 9 Random field realizations for the out-of-plane lamination parameters of a �02;902�S laminate.
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field realizations are shown in Fig. 11. In these plots, the Monte Carlo

results are obtained using a spatial discretization of the random field,

rather than KLE.
FromFig. 9, it can be seen that the second-order expansion achieves

a goodmatchwithMonte Carlo results, with some small discrepancies

in the realizations of ξD2 and ξD4 , whichmaybe attributed to the fact that,

in these lamination parameters, the ply orientation uncertainty is

multiplied by a factor of 4 rather than 2. The marginal distributions in

Fig. 10 show that the distributions of ξD3–4 are approximately Gaussian,

which is reflected by the fact that the example realizations fall either

side of the deterministic values. The marginals of ξD1–2 are highly

skewed, and as such, the realizations tend to lie below the deterministic

value for these lamination parameters. In linewith these observations, a

first-order expansion is sufficient to accurately model ξD3–4, whereas a
second-order expansion is necessary to model the non-Gaussian

behavior in ξD1–2. In this case, a minimum second-order expansion is

required because the odd coefficients are zero due to their dependency

upon sin�2θi0� and sin�4θi0� inEq. (65). The sameobservationmay be

made about the even coefficients of ξD3–4. For this reason, the required
number of random variables may be fewer than that shown in Eq. (68)

if restrictions are placed upon the layup.
As in the example realizations, some error may be noted in the

marginal PDFs for the second-order expansion of ξD2 and ξD4 .
Although a slight reduction in errormay be achieved by using higher-

order expansions, it can be noted from Table 1 that the number of

random variables increases substantially with the order of the

polynomials. It is therefore suggested that a second-order expansion

is used as a reasonable compromise between accuracy and efficiency.
From Fig. 11, it can be seen that very little improvement in the

covariance function occurs with increasing polynomial order, despite

the evident errors in the approximation. These errors may be

attributed to the truncation of theKarhunen–Loève expansion, and as

such, larger errors may be noted for small differences in x, which
require additional KLE terms. The KLE also results in a smooth

approximation of the covariance function at jx − x 0j � 0, where the
actual covariance function is nonsmooth.

VI. Conclusions

Amethod for modeling spatially varying uncertainty in composite
ply orientations has been presented. Karhunen–Loève expansion is
used to decompose the random fields, and an intrusive polynomial
chaos expansion is derived for the lamination parameters. The aim of
the proposed approach was to represent the uncertainty using a
reduced number of random variables, while ensuring the separation
of the random and spatial dependency of the random field at a
laminate level. Closed-form expressions for the expansion have been
derived in two case studies: an initial example in which the
uncertainty defined using random variables, and a second in which
the uncertainty is defined using random fields. The proposed
approach is a “bottom-up” method for defining laminate properties
based upon uncertain ply-level properties. Such an approach enables
laminate-level properties to be modeled, while preserving the
separation of random and spatial dependency achieved using a
Karhunen–Loève expansion (KLE) defined at the laminate level.
The number of random variables required by the polynomial chaos

expansion was by definition found to be greater than or equal to the
number of plies. In the random field example, it was noted that the
spatially dependent terms may be separated from the through-
thickness sum and the field simulated more efficiently using the
summed random variables. The number of random variables was
found to scale nonlinearly with the number of KLE terms and
polynomial order, and as such, there is aminimumnumber of plies for
which the proposed approach is beneficial over directly modeling the
ply orientation uncertainty. The approach is therefore only beneficial
in low-order expansions, for laminates with a large number of plies.
It was found that the error in the expansion reduced exponentially

with increasing polynomial order, with the polynomial chaos
approximation converging to exact closed-form expressions for the
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Fig. 11 Correlation functions for the out-of-plane lamination parameters of a �02;902�S laminate.
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covariance for infinite polynomial order. A minimum second-order
expansion was typically sufficient to achieve a good agreement with
benchmark Monte Carlo results, and given the unfavorable scaling
with polynomial order, this is considered a reasonable compromise
between accuracy and efficiency.
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