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Abstract

This paper presents a generic multivariate adaptive regression splines-based approach

for dynamics and stability analysis of sandwich plates with random system parameters.

The propagation of uncertainty in such structures has significant computational chal-

lenges due to inherent structural complexity and high dimensional space of input par-

ameters. The theoretical formulation is developed based on a refined C0 stochastic finite

element model and higher-order zigzag theory in conjunction with multivariate adaptive

regression splines. A cubical function is considered for the in-plane parameters as a

combination of a linear zigzag function with different slopes at each layer over the entire

thickness while a quadratic function is assumed for the out-of-plane parameters of the

core and constant in the face sheets. Both individual and combined stochastic effect of

skew angle, layer-wise thickness, and material properties (both core and laminate) of

sandwich plates are considered in this study. The present approach introduces the

multivariate adaptive regression splines-based surrogates for sandwich plates to achieve

computational efficiency compared to direct Monte Carlo simulation. Statistical analyses

are carried out to illustrate the results of the first three stochastic natural frequencies

and buckling load.
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Introduction

The application of sandwich structures has gained immense popularity in advanced
engineering applications, especially in aerospace, marine, civil, and mechanical
structures that require superior performances and outstanding properties such as
lightweight, high stiffness, high structural efficiency, and durability. The construc-
tion of sandwich panels consisting of thin face sheets of high strength material
separated by a relatively thick and low density material offers excellent mechanical
properties such as high strength-to-weight ratio and high stiffness-to-weight ratios.
The characteristic features of such structures are affected by their layered construc-
tion and variations in properties through their thickness, and therefore it is import-
ant to predict their overall response in a realistic manner considering all these
features. The effect of shear deformation plays a vital role in the structural analysis
of sandwich and composite constructions because of their low shear modulus
compared to extensional rigidity with a large variation in material properties
between the core and the face layers. Moreover, due to their special type of con-
struction and behavior, sandwich structures possess high statistical variations in
the material and geometric properties. These inherent uncertainties should be prop-
erly taken into account in the analysis in order to have more realistic and safe
design. This cannot be mapped by the conventional deterministic analysis. In fact,
accurate predictions of the vibration response of these structures become more
challenging to the engineers in the presence of inherent scatter in stochastic input
parameters consisting of both material and geometric properties. Stochastic natural
frequencies of such sandwich structures consist of overall mode and localised ones
or through the thickness that the classical deterministic theories lack to detect. Due
to the dependency of a large number of parameters in complex production and
fabrication processes, the system properties are inevitably random in nature result-
ing in uncertainty in the response of the sandwich plate. Therefore, there is a need
for an efficient and accurate computational technique which takes into account the
effects of parameter uncertainty on the structural response. In the deterministic
analysis of structures, the variations in the system parameters are neglected and the
mean values of the system parameters are used in the analysis. But the variations in
the system parameters should not be ignored for accurate and realistic studies that
require a probabilistic description in which the response statistics can be adequately
achieved by considering the material and geometric properties to be stochastic in
nature.

Many review articles [1–4] are published on deterministic analysis of sandwich
composite plates. Several investigators [5–11] studied on deterministic bending,
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buckling and free vibration analysis of skew composite and sandwich plates and
thereby optimising such structures. Recently, a study has been published on ana-
lytical development for free vibration analysis of sandwich panels with randomly
irregular honeycomb cores [12]. Free vibration response of laminated skew sand-
wich plates is investigated by Garg et al. [13] using C0 isoparametric finite element
model based on HSDT. The vibration behaviour of imperfect sandwich plates with
in-plane partial edge load is presented by Chakrabarti and Sheikh [14] in a deter-
ministic framework, while free vibration analyses of sandwich plates subjected to
thermo-mechanical loads is studied by Shariyat [15] using a generalised global–
local higher order theory. Many literatures [16–20] are found which investigate on
dynamic and stability of soft core sandwich plates by analytical or finite element
method. Radial basis function is used by Roque et al. [21], Ferrera et al. [22–24]
and Rodrigues et al. [25,26] to analyse bending, buckling and free vibration
characteristics of composite sandwich plates. The mesh-free moving Kriging inter-
polation method is presented by Bui et al. [27] for analysis of natural frequencies
of laminated composite plates while Yang et al. [28] studied the vibration and
damping analysis of thick sandwich cylindrical shells with a viscoelastic core.
There is plenty of literature found which presents buckling and free vibration
analyses of sandwich plates using Rayleigh-Ritz method [29–32]. A failure analysis
of laminated sandwich shells has been carried out by Kumar et al. [33]. Several
recent reports investigate bending and buckling analysis of sandwich plates with
functionally graded material [34,35]. Researchers reported their results using
Galerkin method [36], quadrature method [37], state–space method [38,39],
Levy’s method [40,41], Navier’s method [42] or exact solutions method [43]
for buckling and free vibration analyses of laminated sandwich plates. Recently,
an analytical approach has been presented to obtain equivalent elastic properties
of spatially irregular honeycomb core [44–46], which is often used as the core of
sandwich panels. Such equivalent elastic properties of irregular honeycomb core
can be an attractive solution for stochastic analyses of honeycomb panels with
honeycomb core.

Most of the investigations carried out so far concerning the analysis of sandwich
composite panels are deterministic in nature that lacks to cater the necessary
insight on the behaviour of different structural responses generated from inherent
statistical variations of stochastic material and geometric parameters. The studies
on the stochastic analysis of sandwich plates with transversely flexible core are very
scarce in literature [47]. In general, Monte Carlo simulation (MCS) is commonly
used for stochastic response analysis. But the traditional MCS-based stochastic
analysis approach is very expensive because it requires thousands of finite element
simulations to be carried out to capture the random nature of parametric uncer-
tainty. Hence, reduced order modelling (ROM) techniques are used to reduce the
computational time and cost. In past, reduced order computational models are
found to be employed in stochastic analysis of structures and materials [48–50]
and some of them are specifically applied in laminated composite plates and shells
including the effect of noise [51–65]. In the present study, we propose a multivariate
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adaptive regression splines (MARS)-based efficient uncertainty quantification algo-
rithm for composite sandwich structures. In this approach, the expensive finite
element model for sandwich composite structures is effectively replaced by the
computationally efficient MARS model making the overall process of uncertainty
quantification much more cost-effective. Compared to other reduced order model-
ling techniques, the use of MARS for engineering design applications is relatively
new. Sudjianto et al. [66] used MARS model to emulate a conceptually intensive
complex automotive shock tower model in fatigue life durability analysis
while Wang et al. [67] compare MARS to linear, second-order, and higher-order
regression models for a five variable automobile structural analysis. Friedman [68]
integrated MARS procedure to approximate behaviour of performance variables
in a simple alternating current series circuit. Literature suggests that the major
advantages of using the MARS-based reduced order modelling appears to be
the accuracy and significant reduction in computational cost associated with con-
structing the surrogate model compared to other conventional emulators such as
Kriging [69].

To the best of the authors’ knowledge, no work is reported in scientific literature
on the study of dynamics and stability for laminated sandwich skewed plates with
random geometric and material properties based on efficient MARS approach.
MARS constructs the input/output relation from a set of coefficients and basis
functions that are entirely driven from the regression data. The algorithm allows
partitioning of the input space into regions, each with its own regression equation.
This makes MARS particularly suitable for problems with high dimensional input
parameter space. As finite element models of sandwich structures normally have
large number of stochastic input parameters, MARS has the potential to be an
efficient mapping route for the inputs and responses of such structures. In the
present study, a stochastic analysis for free vibration and buckling of laminated
sandwich skewed plates is carried out by solving the random eigenvalue problem
through an improved higher-order zigzag theory in conjunction with MARS fol-
lowing a bottom-up random variable framework. Characterisation of probabilistic
distributions for natural frequencies and buckling load of sandwich plates is first
attempted in this study. Subsequently, relative individual effect of different stochas-
tic input parameters towards natural frequencies and buckling is discussed. The
uncertain geometric and material properties are considered along with the effect of
the transverse normal deformation of the core. The in-plane displacement fields are
assumed as a combination of a linear zigzag model with different slopes in each
layer and a cubically varying function over the entire thickness. The out-of-plane
displacement is assumed to be quadratic within the core and constant throughout
the faces. The sandwich plate model is implemented with a stochastic C0 finite
element formulation developed for this purpose. The proposed computationally
efficient MARS-based approach for uncertainty quantification of sandwich com-
posite plates is validated with direct Monte Carlo simulation. The numerical results
are presented for both individual and combined layer-wise variation of the sto-
chastic input parameters.
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Theoretical formulation

Consider a laminated soft core sandwich plate (Figure 1) with thickness ‘t’ and
skew angle ‘�’ (as shown in Figure 2), consisting of ‘n’ number of thin lamina, the
stress–strain relationship considering plane strain condition of an orthotropic layer
or lamina (say k-th layer) having any fiber orientation angle ‘�’ with respect to
structural axes system (X–Y–Z) can be expressed as: f�ð ~!Þg ¼ fQkð ~!Þgf"ð ~!Þg

�xxð ~!Þ

�yyð ~!Þ

�zzð ~!Þ
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ð1Þ

where f�ð ~!Þg, f"ð ~!Þg and fQkð ~!Þg are random stress vector, random strain vector
and random transformed rigidity matrix of k-th lamina, respectively. Here the
symbol ~! indicates the stochasticity of respective input parameters. Figure 2(a)
represents the in-plane displacement field. The in-plane displacement parameters
are expressed as

Uxð ~!Þ ¼ uo þ z�x þ
Xnu�1
i¼1

ðz� zu
i
Þð ~!Þ�ðz � zu

i
Þ�ixu

Figure 1. Simply supported soft core sandwich plate.
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where uo and vo are the in-plane displacements of any point in the X-axis and
Y0-axis on the mid-surface, �x and �y are the rotations of the normal to the
middle plane about the Y-axis and X-axis respectively, nu and nl are the number
of upper and lower layers, respectively while �x, �y, 	x, and 	y are the higher-order
unknown co-efficient, �ixu, �

i
yu, �

j
xl, and �jyl are the slopes of i-th and j-th layer

corresponding to upper and lower layers, respectively, and �ðz � zu
i
Þ and

�ð�zþ zlji Þ are the unit step functions. The general lamination scheme, governing
equations and displacement configuration are considered as per Pandit et al. [70].
The transverse displacements are assumed to vary quadratically through the core
thickness and constant over the face sheets and it may be expressed as

Wð ~!Þ ¼
zðzþ tl Þ

tuðtu þ tl Þ
wuð ~!Þ þ

ðtl þ zÞðtu � zÞ

tu tl
wo ð ~!Þ þ

zðtu � zÞ

�tl ðtu þ tl Þ
wl ð ~!Þ ðfor coreÞ

ð4Þ

Wð ~!Þ ¼ wuð ~!Þ ðfor upper face layersÞ ð5Þ

Wð ~!Þ ¼ wl ð ~!Þ ðfor lower face layersÞ ð6Þ

Figure 2. (a) General lamination and displacement configuration. (b) Skewed laminate

geometry.
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where wuð ~!Þ, woð ~!Þ and wl ð ~!Þ are the values of the transverse displacement at the
top layer, middle layer and bottom layer of the core, respectively. Utilising the
conditions of zero transverse shear stress at the top and bottom surfaces of the
plate and imposing the conditions of the transverse shear stress continuity at the
interfaces between the layers along with the conditions, u¼ uu and v¼ vu at the top
and u¼ ul and v¼ vl at the bottom of the plate, the generalised displacement vector
f
g for the present plate model can be expressed as

f
g ¼ fuo vo wo �x �y uu vu wu ul vl wl g
T and yl ¼ y0l cos ½�ð ~!Þ� ð7Þ

where �ð ~!Þ denotes the random skew angle (Figure 2). For the skewed plates, the
elements on the inclined edges may not be parallel to the global axes (xg � yg � zg).
To determine the elemental stiffness matrix at skew edges, it becomes necessary to
use edge displacements (uo, vo, wo, �x, �y, uu, vu, wu, ul, vl and wl) in local coord-
inates (x0 � y0 � z0) (Figure 2). It is thus required to transform the element matrices
corresponding to global axes to local axes with respect to which the elemental
stiffness matrix can be conveniently determined. The relation between the global
and local degrees of freedom of a node on the skew edge can be obtained through
the simple transformation rules and the same can be expressed as

f
Lð ~!ÞgT ¼ ½Tnð ~!Þ� f
g
T ð8Þ

A nine-noded isoparametric element is used for finite element formulation con-
sidering 11 degrees of freedom, where f
Lð ~!Þg and ½Tnð ~!Þ� are the displacement vector
in the localised coordinate system and node transformation matrix, respectively.
Using the node transformation matrix, the elemental transformation matrix
½Teleð ~!Þ� can be determined, which is used to transfer the elemental stiffness matrix
of the skew edge elements from the global axes to local axis. The node transformation
matrix ½Tnð ~!Þ� and the elemental transformation matrix ½Teleð ~!Þ� are expressed as

½Tnð ~!Þ� ¼

m �n 0 0 0 0 0 0 0 0 0

n m 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 m �n 0 0 0 0 0 0

0 0 0 n m 0 0 0 0 0 0

0 0 0 0 0 m �n 0 0 0 0

0 0 0 0 0 n m 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 m �n 0

0 0 0 0 0 0 0 0 n m 0

0 0 0 0 0 0 0 0 0 0 1

2
6666666666666666666664

3
7777777777777777777775

and ð9Þ
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where m ¼ sin �ð ~!Þ and n ¼ cos �ð ~!Þ, wherein �ð ~!Þ is the random fibre orientation
angle.

Using linear strain–displacement relation, the strain field "ð ~!Þ
� �

may be
expressed in terms of unknowns (for the structural deformation) as

"ð ~!Þ
� �

¼
@Uð ~!Þ

@x

@Vð ~!Þ

@y

@Wð ~!Þ

@z

@Uð ~!Þ

@x

�
þ
@Vð ~!Þ

@y

@Uð ~!Þ

@z
þ
@Wð ~!Þ

@x

@Vð ~!Þ

@z
þ
@Wð ~!Þ

@x

�

i:e: "ð ~!Þ
� �

¼ Hð ~!Þ½ � "ð ~!Þ
� �

ð11Þ

where

"f g ¼ ½u0v0w0�x�yuuvuwuulvlwl ð@u0=@xÞð@u0=@yÞð@v0=@xÞð@v0=@yÞð@w0=@xÞð@w0=@yÞ

ð@�x=@xÞð@�x=@yÞð@�y=@xÞð@�y=@yÞð@uu=@xÞð@uu=@yÞð@vu=@xÞð@vu=@yÞð@wu=@xÞ

ð@wu=@yÞð@ul=@xÞð@ul=@yÞð@vl=@xÞð@vl=@yÞð@wl=@xÞð@wl=@yÞ�

and the elements of [H] are functions of z and unit step functions. In the present
problem, a nine-node quadratic element with 11 field variables (u0, v0, w0, �x, �y, uu,
vu, wu, ul, vl and wl) per node is employed. Using finite element method, the general-
ised displacement vector f
ð ~!Þg at any point may be expressed as


ð ~!Þ
� �

¼
Xn
i¼1

Nið ~!Þ
ið ~!Þ ð12Þ

where 
f g ¼ u0v0w0�x�yuuvuwuulvlwl

� �T
as defined earlier, 
i is the displacement

vector corresponding to node i, Ni is the shape function associated with the node
i and n is the number of nodes per element. With the help of equation (12), the
strain vector {"} that appeared in equation (11) may be expressed in terms of
unknowns (for the structural deformation) as

"ð ~!Þ
� �

¼ ½Bð ~!Þ� 
ð ~!Þ
� �

ð13Þ

where [B] is the strain–displacement matrix in the Cartesian coordinate system.
From Hamilton’s principle [71], the dynamic equilibrium equation for free

vibration analysis can be expressed as [72]

½Kð ~!Þ� f �
g ¼ �2 ½Mð ~!Þ�f �
g ð14Þ

where ½�ð ~!Þ� is the stochastic free vibration frequencies for different modes and the
global mass matrix ½Mð ~!Þ� may be formed by assembling a typical element mass
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matrix as shown below

½Mð ~!Þ� ¼
Xnuþnl
i¼1

ZZZ
�ið ~!Þ ½N�

T
½P�T½N�½P�dxdydz ¼

ZZ
½N�T½Rð ~!Þ�½N�dxdy ð15Þ

where �ið ~!Þ is the random mass density of the i-th layer, matrix [P] is of order
3� 11 and contains z terms and some constant quantities, matrix [N] is the shape
function matrix and the matrix ½Rð ~!Þ� can be expressed as

½Rð ~!Þ� ¼
Xnuþnl
i¼1

�ið ~!Þ ½P�
T
½P� dz ð16Þ

A numerical code is developed to implement the above-mentioned operations
involved in the proposed finite element model to determine the vibration response
of laminated skew composite sandwich plates. The skyline technique is used to
store the global stiffness matrix in a single array. Simultaneous iteration technique
of Corr and Jennings [73] is used in free vibration analysis. In the present study, a
nine-noded isoparametric element with 11 degrees of freedom at each node is con-
sidered for finite element formulation. The elemental potential energy can be
expressed as [17]

�e ¼ Us � Uext ð17Þ

where Us and Uext are the strain energy and the energy due to external in-plane
load, respectively.

Y
e
¼

1

2

Z Z

f gT Bð ~!Þ½ �

T Dð ~!Þ½ � Bð ~!Þ½ � 
f gdxdy

�
1

2

Z Z

f gT Bð ~!Þ½ �

T
Gð ~!Þ½ � Bð ~!Þ½ � 
f gdxdy

¼
1

2

f gT Keð ~!Þ½ � 
f g �

1

2
l 
f gT KGð ~!Þ½ � 
f g

ð18Þ

where Keð ~!Þ½ � ¼
R

Bð ~!Þ½ �
T Dð ~!Þ½ � Bð ~!Þ½ � dx and KGð ~!Þ½ � ¼

R
Bð ~!Þ½ �

T Gð ~!Þ½ � Bð ~!Þ½ �dx
Here Bð ~!Þ½ � is the random strain–displacement matrix while Keð ~!Þ½ � and KGð ~!Þ½ �

are the stochastic elastic stiffness matrix and geometric stiffness matrix, respect-
ively. The equilibrium equation can be obtained by minimising Oe as given in
equation (18) with respect to {
} as

Keð ~!Þ½ � 
f g ¼ lð ~!Þ KGð ~!Þ½ � 
f g ð19Þ
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where �ð ~!Þ is a stochastic buckling load factor. The skyline technique has been used
to store the global stiffness matrix in a single array and simultaneous iteration
technique is used for solving the stochastic buckling equation (19).

Formulation of multivariate adaptive regression
splines (MARS)

MARS [66] provides an efficient mathematical relationship between input param-
eters and output feature of interest for a system under investigation based on few
algorithmically chosen samples. MARS is a nonparametric regression procedure
that makes no assumption about the underlying functional relationship between
the dependent and independent variables. MARS algorithm adaptively selects a set
of basis functions for approximating the response function through a forward and
backward iterative approach. The MARS model can be expressed as

Y ¼
Xn
k¼1

�kH
f
k ðxiÞ ð20Þ

with H f
k ðx1, x2, x3 . . . xnÞ ¼ 1, for k¼ 1

where �k and Hf
k ðxiÞ are the coefficient of the expansion and the basis functions,

respectively. Thus, the first term of equation (20) becomes �1, which is basically an
intercept parameter. The basis function can be represented as

Hf
k ðxiÞ ¼

Yik
i¼1

�
zi,kðxj ði,kÞ � ti,kÞ

�q
tr

ð21Þ

where ik is the number of factors (interaction order) in the k-th basis function,
zi,k � 1, xj ði,kÞ is the j-th variable, 1� j(i,k)� n, and ti,k is a knot location on each of
the corresponding variables. q is the order of splines. The approximation function
Y is composed of basis functions associated with k sub-regions. Each multivariate
spline basis function Hf

k ðxiÞ is the product of univariate spline basis functions zi,k,
which is either order one or cubic, depending on the degree of continuity of
the approximation. The notation ‘tr’ means the function is a truncated power
function.

½zi,kðxj ði,kÞ � ti,kÞ�
k
tr ¼ ½zi,kðxj ði,kÞ � ti,kÞ�

q for ½zi,kðxj ði,kÞ � ti,kÞ�5 0 ð22Þ

½zi,kðxj ði,kÞ � ti,kÞ�
q
tr ¼ 0 Otherwise ð23Þ

Here each function is considered as piecewise linear with a trained knot ‘tr’ at
each xði,kÞ. By allowing the basis function to bend at the knots, MARS can model
functions that differ in behaviour over the domain of each variable. This is applied
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to interaction terms as well. The interactions are no longer treated as global across
the entire range of predictors but between the sub-regions of every basis function
generated. Depending on fitment, the maximum number of knots to be considered,
the minimum number of observations between knots, and the highest order of
interaction terms are determined. The screening of automated variables occur as
a result of using a modification of the generalised cross-validation (GCV) model fit
criterion, developed by Craven and Wahba [74]. MARS finds the location and
number of the needed spline basis functions in a forward or backward stepwise
fashion. It starts by over-fitting a spline function through each knot, and then by
removing the knots that least contribute to the overall fit of the model as deter-
mined by the modified GCV criterion, often completely removing the most insig-
nificant variables. The equation depicting the lack-of-fit (Lf) criterion used by
MARS is

Lf ðY ~kÞ ¼ Gcvð
~kÞ ¼

1
n

Pn
i¼1 ½Yi � Y ~k

ðxiÞ�
2

1� ~c ð ~kÞ
n

h i2 ð24Þ

where ~cð ~kÞ ¼ cð ~kÞ þM : ~k
Here ‘n’ denotes the number of sample observations, ~cð ~kÞ is the number of

linearly independent basis functions, ~k is the number of knots selected in the for-
ward process, and ‘M’ is a cost for basis-function optimisation as well as a smooth-
ing parameter for the procedure. Larger values of ‘M’ result in fewer knots and
smoother function estimates. The best MARS approximation is the one with the
highest GCV value. Thus, MARS is also compared with parametric and nonpara-
metric approximation routines in terms of its accuracy, efficiency, robustness,
model transparency, and simplicity and it is found suitable methodologies because
it is more interpretable than most recursive partitioning, neural and adaptive stra-
tegies wherein it distinguishes well between actual and noise variables. Moreover,
the MARS are reported [75] to work satisfactorily in terms of computational cost
irrespective of dimension (low–medium–high) and noise.

Random input representation

The layer-wise random input parameters such as ply-orientation angle, skew angle,
thickness and material properties (e.g. mass density, elastic modulus, Poisson’s
ratio) of both core and face sheet are considered for sandwich plates. It is assumed
that the random uniform distribution of input parameters exists within a certain
band of tolerance with their deterministic values. The individual and combined
cases wherein the input variables considered in both soft core and each layer of
face sheet of sandwich are as follows

(Case-a) Variation of ply-orientation angle only: � ð ~!Þ ¼ ½f�1 �2 �3 . . . �i . . . �l g�ð ~!Þ
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(Case-b) Variation of thickness only: ttot ð ~!Þ ¼ ½f tc g, f tfsð1Þ tfsð2Þ . . . tsðl Þg�ð ~!Þ
(Case-c) Variation of mass density only: � ð ~!Þ ¼ ½f�fsð1Þ �cð2Þ g �ð ~!Þ
(Case-d) Variation of skew angle only: ’ ð ~!Þ
(Case-e) Variation of material properties

Pð ~!Þ ¼ ½ Exð fs,cÞ,Eyð fs,cÞ,Ezð fs,cÞ,G12ð fs,cÞ,G13ð fs,cÞ,G23ð fs,cÞ,12ð fs,cÞ,21ð fs,cÞ,

. . .13ð fs,cÞ,23ð fs,cÞ,32ð fs,cÞ, �ð fs,cÞ�ð ~!Þ

(Case-f) Combined variation of ply orientation angle, thickness, mass density, skew
angle, elastic moduli, shear moduli, Poisson ratios and mass density for both
core and face sheet (total 63 numbers of random input variables):

Cð ~!Þ ¼ ½ � ð ~!Þ, ttot ð ~!Þ, �ð ~!Þ, ’ ð ~!Þ, Pð ~!Þ�

where �, t, � and ’ are the ply orientation angle, thickness, mass density and skew
angle, respectively. The subscripts c and fs are used to indicate core and face sheet,
respectively. ‘l’ denotes the number of layer in the laminate, where i¼ 1, 2,. . ., l. Six
different cases are considered for the analysis: layer-wise stochasticity in ply orien-
tation angle (� ð ~!Þ), combined effect for thickness of core and face sheet (ttot ð ~!Þ),
combined effect for mass density of core and face sheet (� ð ~!Þ), skew angle (’ ð ~!Þ),
combined effect for material properties of core and face sheet (Pð ~!Þ) and combined
variation of all parameters (Cð ~!Þ). In the present study, �5� variation for ply
orientation angle and skew angle and �10% variation in material properties are
considered from their respective deterministic values unless mentioned otherwise
for some analyses. Figure 3 presents the flowchart of proposed stochastic frequency
analysis using MARS model for the laminated soft core sandwich structure.

Results and discussion

The present study considers a sandwich composite plate with soft core (both upper
and lower as 0�) and two facesheets with four-layered cross-ply (90�/0�/90�/0�)
laminate covering the core in both top and bottom side. A nine-noded isopara-
metric plate bending element is considered for finite element formulation. For the
analysis, the dimensions and boundary conditions considered for the sandwich
composite plate are as follows: length (L)¼ 1m, width (b)¼ 0.5m and thickness
(t)¼L /10, with simply supported boundary conditions (unless otherwise men-
tioned). The considered material properties of the sandwich plate are provided in
Table 1.

The present MARS model is employed to find a predictive and representative
surrogate model relating each natural frequency to a number of stochastic input
variables. The MARS-based surrogate models are used to determine the first three
natural frequencies corresponding to a set of input variables, instead of time-
consuming and expensive finite element analysis. The probability density function
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is plotted as the benchmark of bottom line results. The variation of geometric and
material properties is considered to fluctuate within the range of lower and upper
limit (tolerance limit) as �10% with respective mean values while for ply orienta-
tion angles and skew angles as within �5� fluctuation (as per industry standard)

Start

Construct MARS models using the design points  

Identification and statistical description of stochastic input parameters   

Probabilistic characterization, statistical 
analysis and interpretation of results 

FE formulation to evaluate natural frequencies and buckling load 

Selection of design points based on Latin hypercube sampling 

FEM 
Code 

Input Output 

MCS using MARS model 

Mapping natural frequencies and buckling load using FEM  

Figure 3. Flowchart of stochastic analysis using MARS model.

Table 1. Material properties for core and face sheet of sandwich plate.

Material properties Core Face sheet

E1 0.5776 GPa 276 GPa

E2 and E3 0.5776 GPa 6.9 GPa

G12 and G13 0.1079 GPa 6.9 GPa

G23 0.2221 GPa 6.9 GPa

n12 and n13 0.25 0.25

n21 and n31 0.00625 0.00625

n23 and n32 0.25 0.25

� 1000 kg/m3 681.8 kg/m3
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with respect to their deterministic mean values. A layer-wise random variable
approach is employed for generating the set of random input variables which are
considered for surrogate-based numerical finite element iteration to obtain the
respective set of random output parameters accordingly. The transverse shear
stresses vanish only at the top and bottom surfaces of the laminate irrespective
of the considered boundary conditions, e.g. for clamped boundary condition, all
the kinematic variables vanish at clamped edges. Results are presented for stochas-
tic natural frequencies and stochastic buckling load for the sandwich plate.

Stochastic natural frequency analysis

Mesh convergence and validation of the finite element model for the sandwich plate
is conducted first considering a deterministic analysis. The optimum mesh size is
finalised on the basis of a mesh convergence study as presented in Figure 4, wherein
a mesh size of (14� 14) is found to be adequate. The non-dimensional natural
frequencies ($ ¼ 100� !L

ffiffiffiffiffi
�c
E2f

q
, where �c is the density of the core layer) for the

first two modes based on the present model are obtained for various skew angles
and are tabulated in Table 2 along with the previous results obtained by Wang
et al. [76] and Kulkarni and Kapuria [77]. Table 3 presents the results for non-
dimensional natural frequencies of a four-layered clamped symmetric (0�/90�/90�/
0�) laminated composite plate obtained from present analysis for various aspect
ratios with respect to the previous analyses reported by Kulkarni and Kapuria [76]
and Khandelwal et al. [78]. The results corroborate good agreement of the deter-
ministic natural frequencies obtained using the present finite elememt model with
respect to previous works. The validation of the MARS model as a surrogate of the
actual finite elemet model is presented using scatter plots and probability density
function plots (refer to Figures 5 and 6). The low deviation of points from the
diagonal line in the scatter plot (Figure 5) corroborates the high accuracy of pre-
diction capability of the MARS model with respect to finite element model for all
the random input parameter sets (combined effect of 63 numbers of random input
parameters). The probability density function plots presented in Figure 6 show a
negligible deviation between MARS model and original MCS model indicating
validity and high level of precision for the present surrogate-based approach fur-
ther. It is noteworthy that the proposed MARS-based approach requires 256 num-
bers of original finite element simulations for the layer-wise individual variation of
stochastic input parameters, while due to increment in number of input variables,
512 finite element simulations are found to be adequate for combined random
variation of input parameters. Here, although the same sample size as in direct
MCS (10,000 samples) is considered for characterising the probability distributions
of natural frequencies, the number of actual finite element simulations is much less
compared to direct MCS approach. Hence, the computational time and effort
expressed in terms of expensive finite element simulations is reduced significantly
compared to full scale direct MCS. This provides an efficient affordable way for
simulating the uncertainties in natural frequency. The optimum number of finite
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element simulations (i.e. the number of design points in Latin hypercube sampling)
required to construct the MARS models is decided based on a convergence study as
presented in Table 4.

In the present analysis, all the layer-wise individual cases of stochasticity are
studied as described in the Random input representation section. It is, however,
noticed that skew angle, mass density and transverse shear modulus are the three
most sensitive factors for first three stochastic natural frequencies (refer to

Figure 4. Mesh convergence study of finite element analysis with different mesh sizes with

respect to fundamental and second natural frequencies of sandwich skewed plates

FNF: first natural frequency; SNF: second natural frequency.

Table 2. Non-dimensional natural frequencies of a four-layered (0�/90�/0�/90�) anti-symmetric

composite plate.

Skew angle Mode Present analysis Wang et al. [76]

Kulkarni and

Kapuria [77]

30� 1 1.8889 1.9410 1.9209

2 3.4827 2.9063 3.5353

45� 1 2.5806 2.6652 2.6391

2 3.7516 3.2716 4.1810
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Figure 7) by analysing the relative coefficient of variations [64]. Relative combined
effect of the other parameters are (logitudinal and transverse elastic modulus, ply
orientation angle, thickness, longtudinal shear modulus and Poisson ratio) also
shown in Figure 7 for the first three natural frequencies. As the effect of other
parameters has neglegible sensitivity on stochastic natural frequencies,

Figure 5. Scatter plot of finite element (FE) model with respect to MARS model for

(a) fundamental natural frequency (FNF), (b) second natural frequency (SNF) and (c) third

natural frequency (TNF) of simply supported sandwich skewed plates considering combined

variation (total 63 numbers of random input variables) for �ð ~!Þ ¼ 45�.

Table 3. Non-dimensional natural frequencies of a four-layered clamped symmetric (0�/90�/

90�/0�) laminated composite plate.

Aspect ratio Mode Present analysis

Kulkarni and

Kapuria [77]

Khandelwal

et al. [78]

10 1 18.0843 18.2744 17.9550

2 28.9441 28.9047 28.9674

20 1 23.4534 24.1130 23.9339

2 37.0587 36.7473 37.0614
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representative results are furnished for stochastic effect of two most effective par-
ameters (skew angle and mass density) for analysis of individual cases.

Probability distributions for first three stochastic natural frequencies of a simply
supported composite sandwich plate due to only variation in skew angles are fur-
nished in Figure 8. As the skew angle increases, the mean of stochastic natural
frequencies is also found to increase, while probability distributions corresponding
to different skew angles vary consideranly. Figure 9 presents the stochastic first
three natural frequencies of a simply supported sandwich composite skewed plate
(for skew angle �ð ~!Þ ¼ 45�) due to only variation of mass density (layer-wise) with
different degree of stochasticity. As the percentage of stochasticity in mass density
increases, the response bounds are found to increase accordingly, while the mean
does not change for different percentage of variation in mass density. The effect of
combined stochasticity in all input parameters (referred as Cð ~!Þ in the Random
input representation section) is also analysed for different skew angles in addition
to individual effect of the input parameters for stochastic natural frequnencies of
sandwich plates. In Figure 10, the stochastic first three natural frequencies are
presented for simply supported sandwich composite plates with different skew
angles considering combined variation of input parameters Cð ~!Þ (total 63 numbers
random input variables), wherein a general trend is noticed that the mean and
response bounds increase with the increase in skew angle. Response bounds of
the first three natural frequencies due to combined variation are noticed to be

Figure 6. Probability density function for MCS as well as MARS model for the first three nat-

ural frequencies of simply supported compsoite sandwich skewed plates considering combined

variation (a total of 63 random input variables) for �ð ~!Þ ¼ 45�.
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higher than individual variation of input parameters in all cases. The stochastic first
three natural frequencies of sandwich composite skewed plates with different
boundary conditions (C-Clamped, S-Simply supported, F-Free) are shown in
Figure 11 considering combined variation of input parameters to investigate the

Figure 8. Stochastic first three natural frequencies (rad/s) of simply supported composite

sandwich plates due to only variation of skew angles.

Figure 7. Sensitivity for first three natural modes for simply supported sandwich plates.
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Figure 9. Stochastic first three natural frequencies (rad/s) of simply supported sandwich

composite skewed plates for �ð ~!Þ ¼ 45�due to only variation of mass density with different

degree of stochasticity.

Figure 10. Stochastic first three natural frequencies (rad/s) of simply supported sandwich

composite plates for different skew angles considering combined variation of input parameters

(a total of 63 random input variables).
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effect of boundary conditions. The probability distributions are found to vary
significantly depending on the considered boundary condition. Both mean and
standard deviation of CCCC boundary condition are found to be highest for
combined variation of all input parameters.

Stochastic buckling load analysis

Mesh convergence and validation of the finite elemnt model for deterministic buck-
ling load is presented in Figure 12. The convegence study on finite element mesh
size is conducted to obtain the optimum mesh size. In the present study, the results
of buckling load corresponding to different mesh sizes are found to be convergent
as depicted in Figure 12, wherein the mesh convergence study is carried out to
compare the critical bi-axial buckling load for laminated sandwich plates with
different boundary conditions such as CCCC, SCSC and SSSS (where S – simply
supported, C – clamped, indicating boundary condition of four sides). As the
computational iteration time increases with the increase of mesh size, a (14� 14)
optimal mesh size is considered in the present study. The present buckling load are
also validated with the results obtained by Liew and Huang [79]. The results cor-
roborate good agreement of the buckling load obtained using the present finite
elememt model with respect to previous works of Liew and Huang irrespective of
imposed bounary conditions. Further, the MARS model that is employed to
achieve computational efficiency is validated with traditional Monte Carlo simu-
lation (MCS). Representative results are furnished for combined variation of all

Figure 11. Stochastic first three natural frequencies (rad/s) of sandwich composite skewed

plates for �ð ~!Þ ¼ 45� with different boundary conditions considering combined variation of

input parameters (a total of 63 random input variables) (C: clamped; S: simply supported;

F: free).
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input parameters (512 samples) using probability density function plots and scatter
plot as shown in Figure 13. The figures indicate high degree of precision and
accuracy of the present MARS model with respect to original finite element
model. The results for buckling load are presented hereafter (Figure 13 to 19) as
a ratio of stochastic buckling load and deterministic buckling load to provide a
clear and direct interpretation for stochasticity in different input parameters.

The effects of variation of core thickness and face sheet thickness on stochastic
normalised buckling load of sandwich plates are shown in Figures 14 and 15,
respectively. It is found that as the percentage of variation of both core and face
sheet thickness increases, the response bound of stochastic buckling load also
increases, while the mean does not vary. The sparsity of stochastic normalised
buckling load due to variation of core thickness is observed to be significantly
higher than that of the same due to variation of face sheet thickness. The effect
of variation of all core material properties on stochastic buckling load of sandwich
plates is furnished in Figure 16, while Figure 17 presents the effect of ply

Figure 12. Mesh convergence study and validation for comparison of non-dimensionalised

critical bi-axial buckling load [ �� ¼ ð� l2Þ = ðh2ETf Þwhere �, l, h and ETf are the buckling load

factor, depth of the plate and transverse modulus of elasticity of face layer, respectively] for

laminated sandwich plates with different boundary conditions.

Figure 13. Probability density function and Scatter plot for buckling load of sandwich plates

considering combined variation of all input parameters (Cð ~!Þ).
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Figure 16. Effect of variation in material properties of core on normalised buckling load of

sandwich plates with SCSC (S – simply supported, C – clamped).

Figure 15. Effect of variation of face sheet thickness on normalised buckling load of sandwich

plates with SCSC (S – simply supported, C – clamped).

Figure 14. Effect of variation of core thickness on normalised buckling load of sandwich

plates with SCSC (S – simply supported, C – clamped).
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orientation angle of face sheet on stochastic normalised buckling load of sandwich
plates. Besides variation of core and face sheet thickness (Figures 14 and 15), the
mean value for stochastic buckling load remains unaltered with different degrees of
stochasticity in core material properties, while the standard deviation increases
with increase in degree of stochasticity. In contrast, both mean and standard devi-
ation of stochastic buckling load are found to increase with increasing degree of
stochasticity in ply orientation angle. The variation in buckling load due to sto-
chasticity of core material properties (Figure 16) is found to be higher than the
other three individual cases (Figures 14,15 and 17). However, the maximum vari-
ation in normalised buckling load is observed in case of combined stochasticity of
core and face sheet thickness, ply-orientation angle of face sheet and material
properties (Figure 18). The effect of different boundary conditions (CCCC,

Figure 18. Effect of combined variation of stochastic input parameters (core and face sheet

thickness, ply-orientation angle of face sheet and material properties) on normalised buckling

load of sandwich plates.

Figure 17. Effect of variation of ply orientation angle of face sheet on normalised buckling

load of sandwich plates with SCSC (S – simply supported, C – clamped).
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CFCF, SCSC and SSSS; where S – simply supported, C – clamped and F – fixed
end condition) on normalised stochastic buckling load of sandwich plates is pre-
sented in Figure 19. Even though the response bounds for different boundary
conditions for normalised buckling load does not vary, the probability distribu-
tions for buckling loads in actual values will vary significantly depending on their
deterministic values. The coefficient of variation corresponding to different degrees
of stochasticity for different cases considered in this study is plotted in Figure 20.
From the figure it is evident that the effect on buckling load due to stochastic
variation of different input parameters in a decreasing order is: combined variation
of all stochastic input parameters, core material properties, core thickness, ply
orientation angle and face sheet thickness. The slope of the curves for different
parameters corresponding to different degrees of stochasticity provides a clear
interpretation about their relative sensitivity towards buckling load.

Figure 19. Effect of boundary condition on normalised buckling load of sandwich plates.

Figure 20. Coefficient of variation on buckling load with respect to degree of stochasticity of

input parameters for simply supported sandwich plates.
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Conclusions

This article illustrates the layer-wise propagation of uncertainties in sandwich
skewed plates in an efficient surrogate based bottom-up framework. The probabil-
ity distributions of first three natural frequencies and buckling load are analysed
considering both individual and combined stochasticity in input parameters.
A multivariate adaptive regression splines (MARS)-based approach is developed
in conjunction with finite element modelling to map the variation of first three
natural frequencies and buckling load caused due to uncertain input parameters,
wherein it is found that the number of finite element simulations is exorbitently
reduced compared to direct Monte Carlo simulation without compromising the
accuracy of results. The computational expense is reduced by (1/78) times (indi-
vidual effect of stochasticity) and (1/39) times (combined effect of stochasticity) of
direct Monte Carlo simulation. The skew angle is found to be most sensitive to the
frequencies corresponding to the first three modes. The mass density and transverse
shear modulus are other two effective factors for the first three natural frequencies
among the considered stochastic input parameters, respectively. The combined
effect of the material properties of soft-core has the most sensitivity for buckling
load, followed by core thickness, ply orientation angle and face sheet thickness,
respectively.

Novelty of the present study includes probabilistic characterisation of natural
frequencies and buckling load for laminated sandwich plates following an effi-
cient MARS-based uncertainty propagation algorithm. The numerical results
presented in this article shows that stochasticity in different material and geo-
metric properties of laminated sandwich plates has considerable influence on the
dynamics and stability of the structure. Thus, it is of prime importance to incorp-
orate the effect of stochasticity in subsequent analyses, design and control of such
structures. The proposed MARS-based uncertainty quantification algorithm can
be extended further to explore other stochastic systems in future course of
research.
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