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a b s t r a c t

In this paper the analytical analysis of an adaptively tuned piezoelectric vibration based
energy harvester is presented. A bimorph piezoelectric energy harvester is suspended
between two electrodes, subjected to a same DC voltage. The resonance frequency of the
system is controllable by the applied DC voltage, and the harvested power is maximized
by controlling the natural frequency of the system to cope with vibration sources which
have varying excitation frequencies. The nonlinear governing differential equation of
motion is derived based on Euler Bernoulli theory, and due to the softening nonlinearity of
the electrostatic force, the harvester is capable of working over a broad frequency range.
The steady state harmonic solution is obtained using the harmonic balance method and
results are verified numerically. The results show that the harvester can be tuned to give a
resonance response over a wide range of frequencies, and shows the great potential of this
hybrid system.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Energy harvesting technologies that rely on the conversion of ambient vibration into a usable form of energy have
become the subject of significant research topic in recent years [1–9]. The most common types of transduction methods are
piezoelectric [10], electromagnetic [11] and electrostatic [12]. Among these three methods, piezoelectric convertors have
been recognized to offer more benefits. They have presented a potential solution to power systems which have a short
battery life and high maintenance costs. The battery replacement is more of a problem for Micro Electro Mechanical Systems
(MEMS). For some application it is not often practical to replace the dead battery because they are not easily accessible.
Therefore, the concept of low-power MEMS devices that are able to scavenge, or harvest, energy from their operating
environment have gained growing attention over recent years [13–15].

A MEMS-scale energy converter employing a piezoelectric thin film was first reported in 2005 by Jeon et al. [16]. They
studied a 170 mm�260 mm PZT beam power generator that can harvest 1 mW power output across a 5.2 ΩM resistive load
from a 10.8 g vibration at its resonance frequency of 13.9 kHz. Subsequently, a second generation of Piezoelectric Micro
Power Generator (PMPG) was proposed by the same group [17]. They considered the effect of proof mass, beam shape and
damping on the performance of the system and showed that the maximum harvested power occurs when the resonance
frequency of the energy harvester matches the dominant excitation frequency. Renaud et al. [18] reported the fabrication,
modeling, and characterization of a MEMS piezoelectric cantilever power generator with an integrated proof mass that can
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generate an average power of 40 mWat 1.8 kHz. Shen et al. [19] designed a MEMS piezoelectric energy harvesting device for
low vibration frequency and high vibration amplitude environment. They showed that with beam dimensions of
4.8 mm�0.4 mm�0.036 mm, 2.15 mW power can be harvested at 461.15 Hz.

Most of energy harvesters are designed to work at resonance frequency in order to obtain maximum output power, and
they are usually manufactured to have natural frequencies that match the frequencies of excitation. However in some cases,
there is a mismatch between the natural and excitation frequencies due to manufacturing errors or changes in the working
condition. To overcome this problem, harvesters with adjustable natural frequencies [20] and multiple oscillators [21] have
been proposed to improve the performance of the harvesters. Furthermore, the use of damping to allow better extraction
over a broad frequency band [22] and the use of nonlinear behavior [23] and magnetic buckling [24] have been exploited to
harvest energy efficiently over a wider frequency range.

There are different concepts through which the resonance frequency of the harvester can be tuned. Marzencki et al. [25]
employed mechanical nonlinear strain stiffening to tune the resonance frequency of a MEMS vibration energy harvester. Zhu
et al. [26] used permanent magnets to adjust the natural frequency of an electromagnetic micro-generator. They showed
that by applying different axial tensile forces to the micro-generator, the natural frequency of the system can be tuned.
Challa et al. [27] investigated a vibration energy harvesting device with autonomously tunable resonance frequency. They
used a piezoelectric cantilever beam array with magnets attached to the free ends of cantilever beams to tune resonance
frequency of the system by magnetic force. More recently, Miller et al. [28] proposed a passive self-tuning beam resonator
with sliding proof mass along the beam. This model enables the energy harvesting system to adjust the natural frequency of
the system and thereby increase the energy harvested over time.

This paper presents a comprehensive study and a framework for the design of a MEMS piezoelectric harvester which
employs an electrostatic device to adjust its resonance frequency. The paper builds upon previous work published by the
authors (Madinei et al. [29]), where the behavior of the harvester was numerically studied. In this work, we develop an
analytical solution using Harmonic Balance in order to efficiently solve the governing equations of the proposed harvester.
To this end, the nonlinear term of the electrostatic force is expanded using a Taylor series and the terms higher than the
ninth order are neglected (based on a convergence study). Using a Galerkin based reduced order model, a single-degree-of-
freedom (SDOF) system with nonlinearity up to ninth order is achieved. The steady state response of the harvester is
obtained based on the harmonic balance method which is more efficient than direct time integration. The results are
verified numerically and the effect of different parameters on the performance of the harvester is investigated in the design
of the harvester. Due to the softening nonlinearity of the electrostatic force, the operational frequency range of the harvester
can be increased in comparison with the linear tunable models. Finally a framework for the design of such harvesters is
proposed and illustrated using a numerical example.
2. Model description and mathematical modeling

Fig. 1 shows the model used in this paper. The model is an isotropic microbeam of length L, width a, thickness h, density ρ
and Young's modulus E, sandwiched with piezoceramic layers having thickness h0, Young's modulus E0 and density ρ0

throughout the microbeam length and located between two electrodes (electrode 1 and electrode 2). As illustrated in Fig. 1,
the piezoceramic layers are connected to the resistance (R) and the coordinate system is attached to the middle of the left
end of the microbeam where x and z refer to the horizontal and vertical coordinates respectively. The tip mass is used to
control the dynamics of the micro-cantilever. When the tip mass is much larger than the mass of the cantilever beam, a
simple SDOF model can be used to model the harvester. The governing equation of transverse motion can be written as
[30,31]
Micro-beam
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Fig. 1. Schematic of the proposed energy harvester.
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In Eq. (1), ( )w x t, is the transverse deflection of the beam relative to its base at the position x and time t, ca is the viscous
air damping coefficient, ε0 is the permittivity of free space, ( )H x is the Heaviside function, δ ( )x is the Dirac delta function, VDC

is the applied DC voltage to microbeam, g0 is the air gap between electrodes (the system is assumed to be symmetric), ( )z t is
the base excitation function, ( )v t is the voltage across the electrodes of each piezoceramic layer and ϑ is the coupling term
which is dependent on the type of connection between the piezoceramic layers (i.e. series or parallel connections). In series,
the two piezoelectric layers are oppositely polarized and produce a larger voltage output; whereas in parallel, the two
piezoelectric layers are polarized in the same direction, and a larger current output is achievable. For the series and parallel
connection cases the piezoelectric coupling term can be respectively expressed as [30]
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where subscripts s and p denote series and parallel connections of the piezoceramic layers respectively and ē31 is the
equivalent piezoelectric coefficient. By considering the parallel connection between these layers and Ω( )z tcos0 as a base
excitation, Eq. (1) can be written as
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and the electrical circuit equation (see Fig. 2) based on Kirchhoff's laws can be expressed as
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where the internal capacitance (Cp) and the current source can be obtained as [30]
R vp(t)Cpip(t)Cpip(t)

Fig. 2. Electrical circuit showing the parallel connection of the piezoceramic layers.
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and ε̄s
33 is the permittivity component at constant strain with the plane stress assumption for the beam.

It is obvious from Eq. (4) that the electrostatic force is an inherent source of nonlinearity. In order to investigate the
nonlinearity, the total deflection of the microbeam can be considered as
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By Substituting Eq. (7) into Eqs. (4) and (5) and using a Taylor series expansion about the equilibrium position ( = )w 0st up
to the ninth-order, the following equations are obtained
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2.1. Reduced-order model

In this subsection, the Galerkin decomposition method is used to eliminate the spatial dependence. To this end, the
deflection of the microbeam can be represented as a series expansion in terms of the eigenfunctions of the microbeam, i.e.
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Eqs. (8a) and (8b) can be converted into a system of differential equations using this method. A single-mode approximation
yields the following equations:
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Eq. (10a) can be rewritten as:
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Eq. (10a) shows that the electrostatic forces create a negative stiffness which opposes the mechanical stiffness. Above a
certain applied DC voltage, electrostatic MEMS devices can become unstable. This voltage is known as the pull-in voltage
[31].
2.2. Harmonic balance analyses

To determine the analytical solution of Eqs. (11a) and (10b), the method of harmonic balance is used. By assuming a
steady state periodic response, ( )U t and ( )v tp can be written as:
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Applying the same approach to the electrical equation yields
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In steady state, all time derivatives vanish so that we can re-write the mechanical amplitude equations as
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Substituting the steady-state solutions for a2 and b2 into the steady-state equations for a1 and b1 yields
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squaring and adding Eqs. (20a) and (20b) gives an eighteenth order nonlinear algebraic equation in r as
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and the frequency response can be determined by numerically finding the positive real roots of Eq. (22). Similarly, by
squaring and adding Eqs. (19a) and (19b), the response voltage amplitude can be written in terms of the mechanical am-
plitude as

Γ Γ= + ( )S r 23a b
2 2

where

Γ κλΩ
Ω λ

=
+ ( )24aa 2 2

Γ κΩ
Ω λ

=
+ ( )24bb

2

2 2

and r is an implicit function of the forcing amplitude, damping, electromechanical coupling, and electrical dissipation as
derived from the roots of Eq. (22). The peak power through the resistance can then be written as
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2.3. Stability analysis

In this subsection a stability analysis is provided because only a few solutions of the eighteen total roots for r in Eq. (22)
can be realized in practice. In order to ascertain the stability of the solutions, it is first necessary to rewrite Eqs.(14a),(14b),
(16a) and (16b) in the matrix form
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with the vector =[ ]a b a bx 1 1 2 2
T. One may write Eq. (27a) as

̇= ( ) ( )x G x 28a

where ( )= ( )−G x A D x1 . The stability can be investigated by constructing the Jacobian matrix of ( )G x and calculating its value at
the steady state values for x , which are indicated as xss

=∂
∂

| ( )=J
G
x 29x xss

The values for xss can be found through solutions of Eqs. (17a)–(18b). By evaluating the eigenvalues of the Jacobian
matrix, the stability of the steady state solutions is determined. If all of the eigenvalues associated with the steady state
solution have negative real parts then the solution is asymptotically stable. Otherwise, if one eigenvalue has a positive real
part then, the solution is unstable.
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3. Numerical results and discussion

To demonstrate the analysis presented in Sections 2.1 and 2.2, shape functions, which satisfy the boundary conditions of
the clamped-free microbeam (with tip mass Mt), are considered of the form [30]
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3.1. Parametric study

In order to investigate the effect of different parameters in the design of a tunable harvester, a clamped-free microbeam
is considered with the characteristics given in Table 1.

The dynamic behavior of the system is affected by the nonlinearity of the electrostatic force and increasing the applied
DC voltage or/and decreasing the initial gap can magnify this nonlinearity. Based on the Taylor expansion of this force at a
constant initial gap, by increasing the applied DC voltages to the electrostatic electrodes, the electrical stiffness of the
structure is increased and leads to the decrease of the equivalent stiffness of the structure (see Eq. (10c)). Consequently, at
the critical value of the applied DC voltage called the pull-in voltage, the system has a static instability by undergoing a
pitchfork bifurcation. On the other hand, decreasing the equivalent stiffness of the structure decreases the resonance fre-
quency of the open circuit system [29]. In order to study the dynamic analysis of the harvester using the harmonic balance
method (HBM), the electrostatic force is approximated by a Taylor series expansion. Fig. 3 illustrates that acceptable con-
vergence can be obtained by including the terms up to ninth-order.

The presented results based on the ninth order nonlinearity are verified by numerical results. Fig. 4 shows a good
agreement between the results obtained by harmonic balance and those achieved by time integration. In the numerical
method, the exact form of the electrostatic force is considered.

According to the dynamic analysis of the system the peak output power can be obtained from Eq. (25). Adjusting the
resonance frequency of the system to match the frequency of the base excitation will increase the harvested power. Also,
choosing the appropriate resistance can increase the harvested power. As illustrated in Fig. 5a, the optimal resistance de-
pends on the frequency of base excitation and Fig. 5b shows that the optimal resistance reduces as the frequency of the base
Table 1
Geometrical and material properties of the microbeam and piezoelectric layers.

Design variable Value

Length (L) 3000 mm
Width (a) 1000 mm
Thickness (h) 4 mm
Thickness (h0) 2 mm
Young's modulus (E) 169.6 GPa
Young's modulus (E0) 65 GPa
Viscous air damping coefficient ( )ca 0.0002 N s/m
Poisson's ratio (υ) 0.06
Density of Si beam (ρ) 2330 kg/m3

Density of PZT (ρ0) 7800 kg/m3

Equivalent piezoelectric coefficient ( ¯ )e31 �11.18 Cm�2

Permittivity component ε( ¯ )s
33 13.48 nF/m

Tip mass (Mt) 9.724× −10 8 kg
Length of the tip mass (Lm) 20 mm
Thickness of the tip mass (hm) 10 mm
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excitation increases.
The dynamic behavior of the system can be affected by the applied DC voltage, the length of the electrode, the initial gap

and the resistance. Therefore, these parameters can significantly affect the dynamic behavior of the system. Increasing the
length of the electrodes or/and decreasing initial gap at constant voltage increases softening effect. However, it will decrease
the harvested power. Fig. 6 investigates the effect of electrode length and resistance on the dynamics of the system at
constant applied DC voltage.

As shown in Fig. 6a, the length of the electrode is a key parameter in changing the resonance frequency of the system and also
the nonlinearity of the system is affected by this parameter. Moreover changing the value of the resistance changes the nonlinearity
of the system (see Fig. 6b). Therefore, by considering constant values for initial gap and electrodes length, the resonance frequency
of the harvester can be controlled by the applied DC voltage and resistance to maximize the harvested power.

Increasing the range of operation frequency of the harvester based on the increasing applied DC voltage and the length of
the electrode is limited due to the pull-in instability. However increasing the electrostatic force decreases the vibration of
the microbeam and leads to a decrease in the output power. Therefore, the system needs to be optimized for maximum
harvested power. On the other hand, due to the softening nonlinearity there are three solutions for the beam response
within the frequency range closed to resonance and in order to harvest maximum power the beam response should always
occur at the higher of the two solutions and close to resonance (but not too close to risk jumping down to the low amplitude
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solution). However the response at the high amplitude solution mostly depends on the initial conditions and hence it
cannot be guaranteed. The control system using the applied DC voltage can be used to ensure the harvester always responds
in the higher amplitude solution. For a given excitation frequency if the harvester response happens to be in the lower
amplitude solution the DC voltage is increased until a region is reached where the harvester only has a single solution. The
DC voltage is then slowly reduced and the harvester follows high amplitude solution until the resonance is obtained.

Fig. 7a shows that by varying the applied DC voltage to the electrodes, a frequency range between 312.2 Hz and 163.4 Hz
is accessible. However the amount of variation in the voltages that requires covering the given range of operation frequency
will be dependent upon the length of the electrodes, as shown in Fig. 7b.

In some cases, it is possible to have a vibration source with constant frequency and variable amplitude of base excitation.
Fig. 8 investigates the variation of the output power when the excitation amplitude is changed at constant frequency. This
figure shows that by increasing the amplitude of the base excitation the harvested power increases. However depending on
the frequency of the vibration source, jumping is observed in some ranges of excitation amplitudes.
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3.2. Sustainability of the proposed harvester

In the proposed model the voltage source has been used to change the resonance frequency of the harvester. However
this source can be charged by the harvested power from the electrostatic side. In general, electrostatic harvesters have
passive structures which need an energy cycle to convert the mechanical energy into electrical energy [32,33]. Among
different cycles proposed by researchers, there are two common cycles which use charge or voltage constraint concepts in
the conversion cycle [34]. Fig. 1 shows that the proposed model consists of two variable capacitors which are connected to
the same DC voltage. The variable capacitors are charged by VDC and their capacitances can be expressed as

( ) ( )
ε ε( ) =
+ ( )

( ) =
− ( ) ( )

C t
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g w t
C t
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where Ae is the overlapping area between the fixed and moveable electrodes and wav is the average value of w in this area.
The total amount of energy stored in the capacitors is
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Table 2
Geometrical properties of the microbeam and piezoelectric layer

Design variable Value

Length (L) 4600 mm
Width (a) 2000 mm
Thickness (h) 3.005 mm
Thickness (h0) 2 mm
Tip mass (Mt) 2.8108e�07

Load resistance ( k  )
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and consequently the generated instantaneous power can be presented by
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As illustrated in Fig. 9 the instantaneous power obtained from the capacitors varies between positive and negative values
during each cycle. Therefore the voltage source is self-chargeable.

3.3. Design strategy

The design of the tuneable harvester should be preceded by an analyses of the source of vibration. There are two main
design considerations. The first one is related to the maximum value of the excitation frequency Ω( )max which is important in
choosing the dimensions of the microbeam to match the resonance frequency of the harvester with Ωmax. The pull-in
instability and the clearance between the electrodes are the second design factor. In addition, because of the strong coupling
between the mechanical and electrical equations, the resistance can significantly change the mechanical behavior of the
harvester. Therefore, this resistance is a key parameter in analyzing the vibration amplitude of the harvester. As an example,
a source of vibration with a frequency range of 70–110 Hz and an amplitude of 0.25 mm is considered. According to the
design considerations, the first step will be to choose the geometrical properties of the harvester to match maximum value
of the excitation frequency (110 Hz). Like any other design problem, there is no unique solution. Table 2 gives one possibility.
In order to choose the geometrical parameters, care has been taken to select reasonable dimensions. The dimensions that
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are used here are similar to those used in recent experimental and theoretical research papers [35,36].
The second step in designing the harvester is to find the optimal value of the resistance when the harvester works at Ωmax. As

shown in Fig. 10a, without any electrostatic force the optimal resistance is Ω786 k . In the third step, by analyzing the vibration
response of the harvester the minimum initial gaps between electrodes can be determined to avoid any contact between the
microbeam and the electrodes. Based on this analysis, the initial gap between the electrodes is 165 mm (see Fig. 10b).

In order to change the resonance frequency of the harvester, there are two possibilities, using only the variable voltage
source or by simultaneously varying the load resistance and the voltages source. In the first case, the harvester is designed based
on a constant load resistance. As shown in Fig. 11, by considering the optimal value of the resistance at Ωmax as a constant load
resistance, the frequency range can be covered by changing the applied DC voltage from zero up to 50.5 V. The pull-in voltage of
the microbeam is greater than 50.5 V and the clearance between the electrodes is considered at the second step.

According to Fig. 5b, by decreasing the frequency of excitation the optimal value of the resistance will be increased. On the
other hand, based on Fig. 6b increasing the value of load resistance increases the softening effect and this can be considered as a
second frequency adjusting parameter. Therefore, in the second case, the harvester is designed based on finding the optimal load
resistance at each frequency of excitation. Fig. 12 shows the harvested power by considering the variable load resistance and
voltage source at 70 and 80 Hz. Choosing suitable values for the load resistance and the applied DC voltage can increase the
harvested power. At 70 Hz, the harvested power can be maximized by applying 43.6 V and using 1.9 MΩ load resistance. However
in order to increase the harvested power at 80 Hz, the tuning parameters can be considered as =V 35. 3 VDC and R¼1.5 MΩ.
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By comparing the results of the two cases, the harvested power can be increased by using variable resistance and the
difference is more obvious when the operational frequency range of the harvester is increased (see Fig. 13a). In addition, as
shown in Fig. 14b, using the variable resistance decreases the range of voltage source required to cover the given frequency
range. In general, the design process can be divided into four steps which are shown in Fig. 14.
4. Conclusions

In this paper, the design of a MEMS piezoelectric harvester, capable of adjusting its resonance frequency to the excitation
frequency, is studied. The steady state solution is obtained by using the harmonic balance method and the results were
verified numerically. It was observed that the analytical solution can lead to significant savings in computational time,
particularly when there is a need for multiple runs, for example performing parametric studies for design pur-
poses. Although the analytical solution requires an approximation to the electrostatic force by using a truncated Taylor's
series, a convergence study can determine the number of terms that have to be retained in order to maintain sufficient
accuracy. The results showed that the operating frequency bandwidth of the harvester can be increased by using a variable
DC voltage source. In addition, due to the strong coupling between electrical and mechanical equations, the results showed
that the load resistance can be considered as a second adjusting frequency parameter. A MEMS piezoelectric harvester was
designed for a vibration source with a frequency range of 70–110 Hz and 0.25 mm amplitude of base excitation. The dis-
advantage of the proposed system is the effect of the softening nonlinearity of the electrostatic part of the harvester which
results in a lower level of harvested energy. Future work includes devising a mechanism that has a hardening effect on the
system and hence the frequency can be adjusted on both sides of its linear natural frequency.
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