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a b s t r a c t 

Robust design optimization (RDO) is a field of optimization in which certain measure of 

robustness is sought against uncertainty. Unlike conventional optimization, the number of 

function evaluations in RDO is significantly more which often renders it time consum- 

ing and computationally cumbersome. This paper presents two new methods for solving 

the RDO problems. The proposed methods couple differential evolution algorithm (DEA) 

with polynomial correlated function expansion (PCFE). While DEA is utilized for solving 

the optimization problem, PCFE is utilized for calculating the statistical moments. Three 

examples have been presented to illustrate the performance of the proposed approaches. 

Results obtained indicate that the proposed approaches provide accurate and computa- 

tionally efficient estimates of the RDO problems. Moreover, the proposed approaches out- 

performs popular RDO techniques such as tensor product quadrature, Taylor’s series and 

Kriging. Finally, the proposed approaches have been utilized for robust hydroelectric flow 

optimization, demonstrating its capability in solving large scale problems. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Design, construction and maintenance of engineering systems involve decision making at the managerial as well as tech-

nological level. The two primary goals of such decision are to minimize the effort required and to maximize the desired

profit. In order to achieve the goals, techniques capable of finding the designs which meet the requirements specified by

goal functions or objective functions, are needed. This process of finding the appropriate design parameters is termed as

optimization. Apart from the objective function, a typical optimization also have to account for the design constraints im-

posed on the design variables. Such constraints are modelled by inequalities and/or equalities restricting the design space.

Mathematically, an optimization problem can be stated as 

arg min 

x ∈ R 
y 0 ( d ) 

s .t y l ( d ) � 0 , l = 1 , 2 , . . . , n c 

d k,L � d k � d k,U , k = 1 , . . . , n v , 

(1) 
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where d denotes the design variables, y 0 : R → R 

M denotes the objective function and y l : R → R 

M , l = 1 , . . . , n c , 1 � n c <

∞ denotes the constraints. d k, L and d k, U are, respectively, the lower and upper bounds of the k th design variable. However,

Eq. (1) optimized in the classical sense is often very sensitive to small changes in design variables and may yield erroneous

result due to the presence of uncertainties in the geometric and material properties, such as elastic modulus, cross-sectional

area, density, residual strength etc. In order to overcome this issue, Taguchi [1] introduced the concept of robust design

optimization (RDO). RDO establishes a mathematical framework for optimization in which certain measure of robustness is

sought against uncertainty. The primary aim of RDO is to minimize the propagation of uncertainties from input to output

variables and thus results in an insensitive design. Over the last decade, RDO has gained vast popularity in the field of

aerospace engineering [2] , automotive engineering [3] marine engineering [4] and civil engineering [5,6] . 

The objective and/or constraints in a RDO often involve determination of the first two statistical moments of responses.

Therefore, solution of a RDO problem necessitates uncertainty quantification of the response and its coupling with an opti-

mization algorithm. Consequently, RDO demands a greater computational effort as compared to conventional optimization.

The concern regarding accuracy and efficiency of existing RDO techniques is mainly two-fold. 

• Firstly, most of the methods for RDO utilizes gradient based optimization (GBO). Although easy to implement, GBO often

yields local optima. Alternatively, if explicit functional form for objective function is not available, the gradient of objec-

tive function is calculated by employing finite difference method. This renders the optimization process computationally

expensive. 
• Secondly, the popular methods for uncertainty quantification such as perturbation method [7,8] , point estimate method

[9] , simulation based approach [10,11] , Kriging [12–17] , polynomial chaos expansion [18,19] , moving least square method

[20,21] and radial basis function [22–24] often yields erroneous results. For example, perturbation method yields erro-

neous result for highly nonlinear system. This may be attributed to the fact that since perturbation method utilizes a

second order Taylor’s series expansion, it fails to capture the higher order of nonlinearity. Similar arguments hold for

point estimate method. In fact some of the most popular methods for uncertainty quantification, viz. , Kriging, radial ba-

sis function, moving least square and PCE, suffers from the curse of dimensionality. As a consequence, these methods

may not be applicable for problems involving large number of random variables. Even for lower dimensional problems,

the number of sample points required for Kriging is significantly large. Simulation based approach, such as the crude

Monte Carlo simulation (MCS) is computationally expensive. Thus, stochastic methods, that are efficient as well accurate,

should be investigated. 

This paper presents two novel approaches for solving RDO problems. The proposed approaches utilize polynomial corre-

lated function expansion (PCFE) [25–31] for stochastic computations and differential evolution algorithm (DEA) [32–35] for

optimization. While the first approach, referred to here as low-fidelity PCFE based DEA, yields a highly efficient estimate

of the RDO problems, the second variant, namely high-fidelity PCFE based DEA, provides a highly accurate estimate for the

RDO problems. Compared to exiting techniques for RDO, the proposed approaches have certain desirable advantages. 

• DEA is a global optimization tool and does not results in the local minima. Moreover, it has already been established in

previous studies [33] that DEA has rapid convergence rate. 
• DEA is a gradient-free optimization technique. Therefore, it is equally applicable to both differentiable and non-

differentiable functions. 
• PCFE is an efficient uncertainty quantification tool capable of dealing with high dimensional problems. Thus, using PCFE

to determine the statistical moments renders the procedure highly efficient. 

The rest of the paper is organised as follows. After describing the RDO problem in Section 2, Section 3 describes the DEA

utilized in this paper. In Section 4 , a brief description of PCFE has been provided. Section 5 introduces the proposed ap-

proaches for RDO. In Section 6, the proposed approach has been implemented for solving three examples. Section 7 presents

RDO of hydroelectric flow by using the proposed approaches. Finally, Section 8 provides the concluding remarks. 

2. Problem setup 

RDO is the process of designing in the presence of uncertainty. It takes into account not only the nominal value of

input variables but also the uncertainties in those parameters whose value is imprecisely known or is intrinsically variable.

Mathematically, RDO is the process of selecting the design variables while maximising the expected objective/goal function

and/or reducing its variance. 

Suppose x := ( x 1 , x 2 , . . . , x N ) be an R 

N valued input vector defined in probability space ( �, F , P ) and d t o be the design

parameters. Then one possible description of RDO is [36] : 

min 

d ⊂D∈ R N 
c 0 ( d ) := f o ( E ( y 0 ( x , d ) ) , var ( y o ( x , d ) ) ) , 

s .t . c l ( d ) := f l ( E ( y l ( x , d ) ) , var ( y l ( x , d ) ) ) � 0 , l = 1 , 2 , . . . , n c , 

d i,L � d i � d i,U , i = 1 , 2 , . . . , n v , 

(2)

where E ( •) and var ( •) denote mean and variance. It is evident from Eq. (2) that the objective function c 0 in RDO framework

is represented as a function ( f o ( •)) of mean and standard deviation of the objective function y in deterministic/conventional
0 
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optimization framework. Similarly, the the constraints c l in RDO are represented as a function ( f l ( •)) of mean and standard

deviation of the constraints y l in deterministic/conventional optimization framework. The above defined system is having n c 
constraint function and n v design variables. d i, L and d i, U are, respectively, the lower and upper limits of i th design vector. 

In most applications, Eq. (2) is reformulated as [36,37] 

min 

d ⊂D∈ R N 
c 0 ( d ) := β E ( y 0 ( x , d ) ) 

E ( y 0 ( x , d ) ) 
∗ + ( 1 − β) 

√ 

var ( y o ( x , d ) ) 

σ ∗
y 0 

, 

s .t . c l ( d ) := E ( y l ( x , d ) ) + κl 

√ 

var ( y l ( x , d ) ) � 0 , l = 1 , 2 , . . . , n c , 

d i,L � d i � d i,U , i = 1 , 2 , . . . , n v , 

(3) 

where β ∈ [0, 1] represents the weight. E ( y 0 ( x, d )) ∗ and σ ∗
y 0 

are non-zero and real valued scaling factors [36] . κl , l =
1 , 2 , . . . , n c are constant coefficients associated with constraint functions. The focus of this work is to present the applicabil-

ity of the proposed approaches for solving the RDO problem described in Eq. (3) . 

3. Differential evolution 

Differential evolution algorithm (DEA) is a stochastic direct search method that optimizes a problem by iteratively trying

to improve a candidate solution with respect to a given measure of quality. Unlike gradient based optimization, DEA does

not use the gradient of the problem and is thus equally applicable to both differentiable and non-differentiable problems.

Furthermore, DEA make few or no assumptions regarding the problem being optimized and searches very large spaces of a

candidate solution. 

DEA utilizes n P D -dimensional parameter vectors x i,G , i = 1 , 2 , . . . , n P as a population for each generation G . The initial

vector population is considered to be uniformly distributed over the entire parameter space. DEA generates new parameter

vectors by adding the weighted difference between the two population vectors to a third vector. This operation is known

as mutation . In the next step, the trial vector is obtained by mixing the parameter vectors obtained after mutation with

the target vector. This step is known as crossover . If the magnitude of objective function obtained corresponding to the trial

vector is smaller compared to the target vector, trial vector replaces the target vector. This step is known as selection . Note

that each population vector must serve once as the target vector in order to increase the competitions. Next, different steps

of DEA have been described. 

3.1. Mutation 

For each target vector x i,G , i = 1 , 2 , . . . , n P , where G denotes generation, a mutant vector v i,G +1 , for the G + 1 th generation,

is generated as: 

v i,G +1 = x k 1 ,G + F ·
(
x k 2 ,G − x k 3 ,G 

)
, (4) 

where k 1 , k 2 , k 3 ∈ { 1 , 2 , . . . , n p } ar e random integ ers that ar e mutually differ ent. It is further ensur ed that k 1 , k 2 , k 3 are

different from the running integer i. F is a real constant which controls the amplification of the differential variation(
x k 2 ,G − x k 3 ,G 

)
. For further details, interested readers are referred to the work by Storn and Price [33] . 

3.2. Cross-over 

The primary aim of this step is to increase the diversity of the perturbed parameter vectors. The trial vector u i,G +1 =(
u 1 i,G +1 , u 2 i,G +1 , . . . , u Di,G +1 

)
, having D candidates is formed, where 

u ji,G +1 = 

{
v ji,G +1 if r j � c R or j = ρi 

x ji,G if r j > c R and j � = ρi 

j = 1 , 2 , . . . , D. 

(5) 

In Eq. (5) , r j is the j th uniform random number with outcome ∈ [0, 1] and ρ i is the randomly chosen index ∈ 1 , 2 , . . . , D . ρ i

ensures that u i,G +1 gets at least one parameter from v i,G +1 . c R is the crossover parameter and resides in [0, 1]. The value of

c R is to be provided by the user. For further details, readers may refer to the work by Storn and Price [33] . 

3.3. Selection 

The final step of DEA is the selection. This step decides the suitability of trial vector. In this step, the trial vector u i,G +1 

is compared to the target vector x i, G . If the value of objective function corresponding to u i,G +1 is lower compared to that

obtained using x i, G , then x i,G +1 is set to be u i,G +1 . On contrary if, the value of objective function corresponding to u i,G +1 is

greater compared to that obtained using x i, G , then the old value of x i, G is retained. A flowchart depicting the procedure of

DEA is shown in Fig. 1 
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Fig. 1. Flowchart for DEA. 

 

 

 

 

4. Foundation of PCFE 

Polynomial correlated function expansion (PCFE) [25,26] is a general set of quantitative model assessment and analysis

tool for capturing high dimensional input-output system behaviour. In literature, this method is also referred as generalised

ANOVA [38] or generalised HDMR [39] . In this section, the mathematical formulation of PCFE has been discussed. 

Let i = ( i 1 , i 2 , . . . , i N ) ∈ N 

N 
0 

be a multi-index with | i | = i 1 + i 2 + · · · + i N , and let N � 0 be an integer. Now considering

x = ( x , x , . . . , x ) to be the random inputs, we express the response of interest g ( x ) as a series having finite number of
1 2 N 
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terms as shown in Eq. (6) 

g ( x ) = 

N ∑ 

| i | =0 

g i ( x i ) . (6) 

Definition 1. The univariate terms in Eq. (6) are termed as first order component functions. Similarly, the bivariate terms,

denoting cooperative effect of two variables acting together, are termed as second order component function. 

Definition 2. Assume, two subspace R and B in Hilbert space are spanned by basis { r 1 , r 2 , . . . , r l } and { b 1 , b 2 , . . . , b m 

} , re-

spectively. Now if (i) B ⊃R and (ii) B = R � R ⊥ where, R ⊥ is the orthogonal complement subspace of R in B , we term B as

extended basis and R as non-extended basis [39] . 

Now considering ψ to be a suitable basis of x and utilizing definition 2, Eq. (6) can be rewritten as [25–28] 

ˆ g ( x ) = g 0 + 

N ∑ 

k =1 

{ 

N−k +1 ∑ 

i 1 =1 

· · ·
N ∑ 

i k = i k −1 

k ∑ 

r=1 

[ 

∞ ∑ 

m 1 =1 

∞ ∑ 

m 2 =1 

· · ·
∞ ∑ 

m r =1 

α( i 1 i 2 ... i k ) i r 
m 1 m 2 ... m r 

ψ 

i 1 
m 1 

. . . ψ 

i r 
m r 

] } 

, (7) 

where α’s are the unknown coefficients associated with the bases and g 0 is a constant (termed as zeroth order component

function). From practical point of view, the expression for PCFE provided in Eq. (7) needs to be truncated. Considering up to

N t th order component function and s th order basis yields: 

ˆ g ( x ) = g 0 + 

N t ∑ 

k =1 

{ 

N−k +1 ∑ 

i 1 =1 

· · ·
N ∑ 

i k = i k −1 

k ∑ 

r=1 

[ 

s ∑ 

m 1 =1 

s ∑ 

m 2 =1 

· · ·
s ∑ 

m r =1 

α( i 1 i 2 ... i k ) i r 
m 1 m 2 ... m r 

ψ 

i 1 
m 1 

. . . ψ 

i r 
m r 

] } 

. (8) 

Definition 3. Eq. (8) is termed as N t th order PCFE expression. A N t th order PCFE consists of all the component functions up

to N t th order, i.e., while first-order PCFE consists zeroth and first order component functions, a second-order PCFE consists

zeroth, first and second order component functions. Therefore, adding all the N t th order component functions to an existing

( N t − 1 ) th order PCFE would yield the N t th order PCFE expression. 

As already illustrated in previous studies [26,27] , a second-order PCFE with third order basis yield satisfactory results for

most practical cases. Hence, substituting N t = 2 and s = 3 in Eq. (8) yields: 

g ( x ) = g 0 + 

∑ 

i 

∑ 

k 

α( i ) i 

k 
ψ 

i 
k ( x i ) + 

∑ 

1 � i< j� N 

{ 

3 ∑ 

k =1 

α( i j ) i 

k 
ψ 

i 
k ( x i ) + 

3 ∑ 

k =1 

α( i j ) j 

k 
ψ 

j 

k 

(
x j 

)
+ 

3 ∑ 

m =1 

3 ∑ 

n =1 

α( i j ) i j 
mn ψ 

i 
m 

( x i ) ψ 

j 
n 

(
x j 

)} 

. (9) 

Rewriting Eq. (9) in matrix form 

�α = e , (10) 

where � consists of the basis functions and 

e = g − ḡ , (11) 

where g = 

(
g 1 , g 2 , . . . , g N S 

)T 
is a vector consisting of the observed responses at N S sample points and ḡ = ( g 0 , g 0 , . . . , g 0 ) 

T is

the mean response vector. Pre-multiplying Eq. (10) by �T , one obtains 

B α = C , (12) 

where B = �T � and C = �T e . Close inspection of � reveals identical columns. Thus, B has identical rows. These rows are

redundants and can be removed. Removing identical rows of B and corresponding rows of C , one obtains 

B 

′ α′ = C 

′ , (13) 

where B 

′ and C 

′ are respectively, B and C after removing the redundants. 

Remark 1. An essential condition, associated with Eq. (13) is the hierarchical orthogonality of the component functions.

This condition requires a higher order component function to be orthogonal with all the lower order component functions.

To determine the unknown coefficients α while satisfying the orthogonality criterion, homotopy algorithm (HA) [40–43] is

employed. HA determines the unknown coefficients associated with the bases by minimizing the least-squared error and

satisfying the hierarchical orthogonality criterion. 

4.1. Homotopy algorithm 

Consider B 

′ to be a p × q matrix. Since the system described by Eq. (13) is underdetermined, there exists an infinite

number of solutions given by 

α( s ) = 

(
B 

′ )−1 
C 

′ + 

[ 
I −

(
B 

′ )−1 
B 

′ 
] 
v ( s ) , (14) 
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where 
(
B 

′ )−1 
denotes the generalized inverse of B 

′ , v ( s ) is an arbitrary vector in R 

q and I represents an identity matrix. One

choice of 
(
B 

′ )−1 
in Eq. (14) is ( B 

′ ) † , which is the generalised inverse of B 

′ satisfying all four Penrose conditions [44] . The

solution of α( s ) after replacing 
(
B 

′ )−1 
by ( B 

′ ) † is given as 

α( s ) = 

(
B 

′ )† 
C 

′ + 

[ 
I −

(
B 

′ )† 
B 

′ 
] 
v ( s ) 

= 

(
B 

′ )† 
C 

′ + P v ( s ) . 
(15)

It is noted that P is an orthogonal projector and satisfies 

P 

2 = P , P 

T = P . (16)

All the solutions of α obtained from Eq. (15) compose a completely connected submanifold M ⊂ R 

q . Homotopy algorithm

searches for the best solution by considering an exploration path α( s ) within M with s ∈ [0, ∞ ), which satisfies 

d α( s ) 

ds 
= Pv ′ , (17)

where v ′ = dv / ds . The free function vector v ′ may be chosen freely to enable broad choices for exploring α( s ) and provide

the possibility to continuously reduce the predefined cost function. 

The cost function in homotopy algorithm is defined as 

O = 

1 

2 

αT W α, (18)

where W is the weight matrix which is symmetric and non-negative definite. Minimizing the cost function is the additional

condition that is imposed on homotopy algorithm. Considering, 

v ′ = − ∂O 

∂a ( s ) 
, (19)

and noting that P is an orthogonal projector, we obtain 

∂O 

∂s 
= 

(
∂O 

∂α( s ) 

)(
∂α( s ) 

∂s 

)
= 

(
∂O 

∂α( s ) 

)
Pv ′ 

= −
(

P 

∂O 

∂α( s ) 

)T (
P 

∂O 

∂α( s ) 

)
� 0 . 

(20)

From Eq. (20) , it is obvious that the objective function O is minimized as s → ∞ . The solution of Eq. (17) , obtained using

homotopy algorithm is given as 

αHA = 

[ 
V q −r 

(
U 

T 
q −r V q −r 

)−1 
U 

T 
q −r 

] 
α0 , (21)

where α0 is the solution obtained using least-squares regression. U q −r and V q −r are the last q − r columns of U and V

obtained from singular value decomposition of matrix PW . 

PW = U 

(
A r 0 

0 0 

)
V 

T . (22)

Eq. (21) is the key formula for determining the optimal solution of α from homotopy algorithm. A detailed derivation of the

same can be found in [25,27,39] . 

Remark 2. An important aspect for HA is the formulation of weight matrix. A detailed description of weight matrix, based

on the hierarchical orthogonality criteria, is provided in Appendix A. 

A step-by-step procedure for PCFE is shown in Algorithm 1. 

5. Proposed approach for robust optimization 

PCFE, described in previous section, provides an efficient means to approximate the objective and constraint functions.

However, there exists multiple alternatives for coupling PCFE, into the framework of an optimization algorithm (DEA in this

case). Two such alternatives are presented in this section. 
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Algorithm 1 Algorithm of PCFE. 

1. INITIALIZE : Provide distribution type and distribution parameters of the input random variables. Identify bounds of ran- 

dom variables. 

2. Input order of PCFE 

3. Input number ( num ) of sample points; 

4. Obtain responses at sample points 

5. g 0 ← 

1 
num 

∑ 

s 
g ( x s ) where num is the number of sample points 

6. for i = 1 : num 

e i ← g ( x i ) − g 0 
end for 

7. � ← 

[
ψ 

(
x 1 

)
ψ 

(
x 2 

)
· · · ψ 

(
x N 

) ]T 
where 

ψ ( x 

r ) 
T ← 

[
ψ 

1 
1 

(
x r 1 

)
ψ 

1 
2 

(
x r 1 

)
· · · ψ 

1 
k 

(
x r 1 

)
ψ 

2 
1 

(
x r 2 

)
· · ·

ψ 

1 
1 

(
x r 1 

)
· · · ψ 

N−2 
m 

(
x r N−2 

)
ψ 

N−1 
m 

(
x r N−1 

)
ψ 

N−1 
m 

(
x r N−1 

)
ψ 

N 
m 

(
x r N 

) ]
8. e ← 

[
e 1 e 2 · · · e n 

]T 

9. 
[
B 

′ , C 

′ ] ← r emov e _ r ed und ants ( B , C ) 
10. W ← f orm _ weight ( ψ ) 
11. Utilize HA to determine the unknown coefficients 

12. Obtain statistical moments of the response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Low-fidelity PCFE based DEA 

This approach involves a straightforward integration of PCFE into DEA. However, instead of generating a PCFE model at

each design step, a single PCFE model is generated at the onset and the same model is utilized for all the iterations of

DEA. As a consequence, the computational effort involved in this method is minimal. The steps involved in low-fidelity PCFE

based DEA are outlined below. 

Step1: Determine lower limit and upper limit of the design variables. Suppose d i, l and d i, u to be the bounds of the design

variables. Also assume, δ to be the coefficient of variation. Then the lower limit d i, ll and upper limit d i, ul are defined

as: 

d i,ll = d i,l ( 1 − γ δ) 
d i,ul = d i,u ( 1 + γ δ) 

For present study, γ = 3 has been considered. Similarly, set the lower limit and upper limit of other stochastic

variables (apart from the design variables). 

Step 2: Using Algorithm 1, formulate a PCFE model ∈ [ d i, ll , d i, ul ] for the objective function y 0 . Similarly, formulate PCFE

model(s) for constraint function(s) y l as well. Formulate objective and constraint functions for the RDO problem

by substituting y 0 with 

� 

y 0 and y l with 

� 

y l in Eq. (3) , where 
� 

y 0 and 

� 

y l are PCFE models representing y 0 and y l ,

respectively. 

Step 3: Optimize the RDO problem defined in Step 2 using DEA. 

5.2. High-fidelity PCFE based DEA 

Although the low-fidelity PCFE based DEA is highly efficient, it may yield erroneous result specifically for problems in-

volving higher order of nonlinearity, either in objective function or in constraints. One possible alternative is to generate

PCFE models for the objective and constraint functions at each iteration. However, such an approach renders the procedure

computationally expensive, making it unsuitable for large scale problems. In this work, an alternative high-fidelity approach

has been presented. The proposed approach memorizes the previously generated PCFE model and utilizes them in the opti-

mization step. The steps involved in the proposed high-fidelity PCFE based DEA are outlined below. 

Step 1: Following the steps for low-fidelity PCFE based DEA, generate PCFE models for the objective and constraint func-

tions. 

Step 2: Define error tolerance ε. Also select an initial design vector. Set i = 0 and j l = 0 , l = 1 , 2 , . . . , n c . 

Step 3: Compute the objective function y 0 and constraint functions y l at the design point. Using the PCFE models, compute
� 

y 0 , 0 and 

� 

y l, 0 at the design points. 

Step 4: temp = 0 

for k = 0 : i 
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if 
∣∣∣ y 0 −

� 

y 0 ,k 
y 0 

∣∣∣ � ε

In Eq. (3) , replace y 0 with 

� 

y 0 ,k 
else 

set temp = temp + 1 

end if 

if temp = i + 1 

set i = i + 1 . Generate a local PCFE based model for the objective function 

� 

y 0 ,i , anchored around the design point. 

In Eq. (3) , replace y 0 with 

� 

y 0 ,i . 

end if 

end for 

tep 5: for l = 1 : n c 
temp1 = 0 

for k = 1 : j l 

if 

∣∣∣∣ y l −
� 

y 
l 

y l,k 

∣∣∣∣ � ε

In Eq. (3) , replace y l with 

� 

y l,k 
else 

set temp1 = temp1+1 

end if 

if temp1 = j l + 1 

set j l = j l + 1 . Generate a PCFE model for the constraint 
� 

y l, j l 
, anchored about the design point. 

In Eq. (3) , replace y l with 

� 

y l, j l 
. 

end if 

end for 

end for 

Step 6 Obtain updated design vector. If solution is converged, stop . Else go to Step 3. 

A flowchart depicting the two proposed approach are shown in Fig. 2 . 

6. Numerical examples 

In this section, three examples are presented to illustrate the proposed approaches for RDO. While a mathematical func-

tion has been considered in Example 1 , Example 2 illustrates the implementation of DEA-PCFE for RDO of a simple truss. In

Example 3, RDO of a transmission tower has been performed. For all the problems, the population size and the generation

size in DEA are considered to be 50 and 100 respectively. The cross-over parameter is considered to be 0.5. The mutation

parameter F is considered to be 0.8. The sample points required for PCFE are generated using Sobol sequence [45,46] . How-

ever, it is worth mentioning that DEA-PCFE is equally applicable with both uniformly and non-uniformly distributed sample

points. 

For ease of understanding, high-fidelity PCFE based DEA has been denoted as HF DEA-PCFE. Similarly, low-fidelity PCFE

based DEA is denoted as LF DEA-PCFE. 

6.1. Example 1: optimization of a mathematical function [47] 

This example illustrates the performance of DEA-PCFE for RDO of an explicit mathematical function [47] . The problem

involves two independent Gaussian random variables X 1 and X 2 and two design variables d 1 = E ( X 1 ) and d 2 = E ( X 2 ) . The

RDO problem reads 

min 

d∈ D 
c O ( d ) = 

σd ( y 0 ( X ) ) 
15 

s .t . c k ( d ) = 3 σd ( y 1 ( X ) ) − E ( y 1 ( X ) ) 

1 < d 1 , d 2 < 10 . 

(23)

where the two functions y 0 ( X ) and y 1 ( X ) are given as 

y 0 ( X ) = ( X 1 − 4 ) 
3 + ( X 1 − 3 ) 

4 + ( X 2 − 5 ) 
2 + 10 , (24)

and 

y 1 ( X ) = X 1 + X 2 − 6 . 45 . (25)

The standard deviation of both X and X is 0.4. 
1 2 
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Fig. 2. Flowchart for the proposed approaches. 

Table 1 

Optimized parameters for Example 1. 

Methods d 1 
∗ d 2 

∗ c O ( d 
∗) N s 

c 

TPQ a 3.45 5.00 0.086 162 (81 + 81) 

TS b 3.50 4.99 0.090 90 (45 + 45) 

Kriging 3.37 5.00 0.076 256 (128 + 128) 

DEA-PCFE LF 3.35 4.99 0.074 76 (52 + 24) 

HF 3.35 4.99 0.074 82 (56 + 28) 

a Tensor product quadrature. 
b Taylor’s series. 
c The two numbers in bracket indicates simulations required 

for approximating y 0 and y 1 , respectively. 
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Fig. 3. 2-bar truss structure considered in Example 2. 

Table 2 

Properties of random variables. 

Variable Mean COV Type 

X 1 d 1 0.02 Gaussian 

X 2 d 2 0.02 Gaussian 

X 3 10,0 0 0 0.2 Beta a 

X 4 800 0.25 Gumbel 

X 5 1050 0.24 lognormal 

a For beta distribution, both parameters 

are 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed approaches have been utilized for solving this problem. Table 1 shows the optimum design obtained using

the proposed approaches. Results obtained have been compared with results presented in [47] and Kriging. It is observed

that DEA-PCFE ( c O ( d 

∗) = 0 . 074 ) outperforms popular RDO techniques, such as tensor product quadrature (TPQ) ( c O ( d 

∗) =
0 . 086 ), Taylor’s series (TS) ( c O ( d 

∗) = 0 . 090 ) and Kriging ( c O ( d 

∗) = 0 . 076 ). Moreover, number of actual simulation required

using the proposed approaches ( N s = 76 / 84 ) are significantly less as compared to TPQ ( N s = 162 ), TS ( N s = 90 ) and Kriging

( N s = 256 ). 

Another interesting aspect observed from Table 1 is that both the proposed approaches, i.e. LF DEA-PCFE and HF DEA-

PCFE yields identical result. This is because in all the iterations, the initial PCFE model is found to yield satisfactory results.

The additional sample points required in HF DEA-PCFE is because of the additional simulations required, at each iteration,

to verify the accuracy of the initial PCFE model. 

6.2. Example 2: 2-bar truss 

In this example, a 2-bar truss element, as shown in Fig. 3 , has been considered [47] . The system is having five indepen-

dent random variables, namely cross-sectional area X 1 , the horizontal span (half) X 2 , material density X 3 , load X 4 and tensile

strength X 5 . The details of random variables are provided in Table 2 . The design variables are d 1 = E ( X 1 ) and d 2 = E ( X 2 ) .

The objective of this problem is to minimize the second moment properties of mass of the structure given limiting stresses

in both members are below the material yield stress. Consequently, the RDO problem is formulated as: 

min 

d∈ D 
c O ( d ) = β1 

E ( y 0 ( X ) ) 

10 

+ ( 1 − β1 ) 
σ ( y 0 ( X ) ) 

2 

s .t . c 1 ( d ) = 3 σ ( y 1 ( X ) ) − E ( y 1 ( X ) ) � 0 , 

c 2 ( d ) = 3 σ ( y 2 ( X ) ) − E ( y 2 ( X ) ) � 0 , 

0 . 2 c m 

2 � d 1 � 20 c m 

2 , 0 . 1 m � d 2 � 1 . 6 m (26)

where y 0 , y 1 and y 2 are respectively mass of the structure, stress in member 1 and stress in member 2. 

Table 3 shows the RDO results obtained using DEA-PCFE, TPQ, TS and Kriging. It is observed that LF DEA-PCFE

( c ( d 

∗) = 1.189, N s = 320 ) outperforms TPQ ( c ( d 

∗) = 1.239, N s = 7722 ) and Kriging ( c ( d 

∗) = 1.37, N s = 1280 ), both in terms of
O O O 
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Table 3 

Robust design of Example 2. 

Methods d 1 
∗ d 2 

∗ c O ( d 
∗) N s 

c 

TPQ a 11.567 0.3767 1.239 7722 (594+2 × 3564) 

TS b 10.957 0.3770 1.174 648 (108+2 × 270) 

Kriging 12.783 0.3770 1.37 1280 (256+2 × 512) 

DEA-PCFE LF 11.087 0.3810 1.189 320 (64+2 × 128) 

HF 10.958 0.3770 1.174 640 (128 + 256+256) 

a Tensor product quadrature. 
b Taylor’s series. 
c The three numbers in bracket indicates simulations required for approx- 

imating y 0 , y 1 and y 2 , respectively. 

Fig. 4. Schematic diagram of transmission tower : (a) dimensional details along with node and element numbers, (b) loading details. 

Table 4 

Group members for the transmission tower. 

Group number Members 

I 1 

II 2,3,4,5 

III 6,7,8,9 

IV 10,11,12,13 

V 14,15,16,17,18,19,20,21 

VI 22,23,24,25 

 

 

 

 

 

 

 

accuracy and efficiency. HF DEA-PCFE and TS yields the best results ( c O ( d 

∗) = 1.174). However, number of function evaluations

using HF DEA-PCFE ( N s = 640 ) is less, as compared to TS ( N s = 648 ). 

6.3. Example 3: a transmission tower 

In this example, the performance of the proposed approaches in robust design optimization of a transmission tower

[4 8,4 9] has been illustrated. Fig. 4 shows a schematic diagram of the transmission tower. The structure is modelled using

truss elements. It is subjected to lateral and vertical loads. The location of the loads are shown in Fig. 4 . The first four

nodal forces, namely P 1 , P 2 , P 3 and P 4 are having magnitude −1 . 0 × 10 4 . The other two loads are considered to be random.

Apart from the two loads, the material and geometric properties are also considered random. As a consequence, the system

is having fourteen random variables. Group membership of the twenty five members and the parameters of the random
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Table 5 

Random variables for the transmission tower. 

Sl Variables Type Mean SD COV 

1–5 E I − E V Normal 1.0 × 10 7 2.0 × 10 5 

6 E VI Normal 1.0 × 10 7 1.5 × 10 6 

7 P 5 Normal 500 50 

8 P 6 Normal 500 50 

9–14 A I − A VI Normal 0.05 

Table 6 

Robust designs of transmission tower. s max = 50 0 0 has been considered. 

β Methods A I A II A III A IV A V A VI E(y 0 ) σy 0 N s 
a 

0 DEA-MCS 0.05 0.05 4.48 2.16 0.79 7.04 5547.7 347.4 1.64 × 10 6 

Kriging b 2.24 2.11 2.86 1.98 1.57 4 6249.9 467.94 2500 

Past work b [48] 0.147 0.672 3.465 0.566 0.822 8.048 6196 295 –

DEA-PCFE LF 0.05 0.05 4.16 3.96 0.95 5.45 5914.8 422.5 1024 

HF 0.05 0.05 4.49 2.16 0.79 7.03 5550.7 347.73 2432 

0.25 DEA-MCS 0.05 0.05 4.48 2.15 0.79 7.04 5547.7 347.4 1.64 × 10 6 

Kriging b 0.28 0.75 3.48 1.23 1.26 6.39 5685.4 339.86 2500 

Past work b [48] 0.114 0.558 3.685 0.575 0.925 7.704 6036 297 –

DEA-PCFE LF 0.05 0.05 4.16 3.96 0.95 5.45 5914.8 422.5 1024 

HF 0.05 0.05 4.48 2.16 0.79 7.04 5550.7 347.73 2432 

0.5 DEA-MCS 0.05 0.05 4.48 2.10 0.89 6.81 5499.2 349.7 1.64 × 10 6 

Kriging b 0.05 0.05 4.43 1.53 1.23 6.23 5476.8 347.01 2500 

Past work b [48] 0.05 0.207 4.28 0.628 1.15 6.94 5775 304 –

DEA-PCFE LF 0.05 0.05 5.16 2.43 1.15 5.15 5504 411.21 1024 

HF 0.05 0.05 4.48 2.09 0.90 6.78 5496.30 350.33 2168 

0.75 DEA-MCS 0.05 0.05 4.91 2.02 0.98 6.26 5386.30 363.27 1.64 × 10 6 

Kriging b 0.05 0.05 5.05 1.58 1.13 5.98 5362.6 360.3 2500 

Past work b [48] 0.05 0.075 4.88 0.95 1.18 6.33 5478 330 –

DEA-PCFE LF 0.05 0.05 4.76 2.47 1.13 5.56 5502.3 391.85 1024 

HF 0.05 0.05 4.91 2.01 0.99 6.24 5286.3 363.76 1986 

1.0 DEA-MCS 0.05 0.05 5.62 1.62 1.05 5.71 5333.30 387.46 1.64 × 10 6 

Kriging b 0.05 0.05 5.62 1.62 1.05 5.71 5327.9 386.27 2500 

Past work b [48] 0.05 0.05 5.74 1.718 1.054 5.574 5328 384 –

DEA-PCFE LF 0.05 0.05 6.14 2.38 1.02 4.76 5526.5 4 4 4.59 1024 

HF 0.05 0.05 5.6 1.96 1.03 5.61 5333.3 387.46 1668 

a No. of actual simulations. 
b Constraints not satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

variables are shown in Table 4 and Table 5 , respectively. In accordance with [48] , all the random variables are assumed to

be normally distributed. The design variables are assumed to be bounded in [0.05, 10]. 

The optimization problem reads 

min 

d ⊂D∈ R 6 
c 0 ( d ) := β E ( y 0 ) 

E ( y 0 ) 
∗ + ( 1 − β) 

√ 

var ( y 0 ) 

σ ∗
y 0 

s .t . c i ( d ) := E ( | s i | ) + 3 σs i � s max , i = 1 , 2 , . . . , 25 

c 26 ( d ) := E ( w ) � 750 

0 . 05 � d = [ A I , A II , . . . , A VI ] � 10 , 

(27)

where y 0 denotes the structural compliance ( P 

T U ) and s i denotes the stress generated in the ith member. β and w , respec-

tively, denote weighing factor for RDO and the structural weight. P and U in the expression of elastic compliance denote the

force vector and displacement vector respectively. s max denotes the maximum allowable stress in the truss members and

σ denotes the standard deviation. In accordance with the actual problem definition provided by Doltsinis and Kang [48] ,

s max = 50 0 0 has been considered. 

The proposed approaches have been utilized to solve the problem. The cross-over parameter and the mutation parameter

F are considered to be 0.5 and 0.8, respectively. Benchmark solution for this problem has been generated by coupling MCS

with DEA. Table 6 depicts the results obtained using various methods. Case studies by considering different values of β have

also been reported. For all the cases, the benchmark solution obtained using DEA-MCS and the proposed HF DEA-PCFE are

in close proximity. On the other hand, results obtained using LF DEA-PCFE deteriorate from the benchmark solution. This is

because a single PCFE model fails to capture the second moment properties of the response. Kriging is also found to yield

erroneous results. 

Results reported in [48] are significantly different from those obtained in this study. This is because, the optimum design

variables reported in [48] violates the stress constraint in member 13. Similar observation has also been stated in [50] . 
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Table 7 

Robust designs of transmission tower. s max = 12 , 500 has been considered. 

β Methods A I A II A III A IV A V A VI E(y 0 ) σy 0 N s 
a 

0 DEA-MCS 0.36 0.97 2.50 0.40 1.07 7.91 6498 291.69 1.64 × 10 6 

Kriging b 0.27 1.12 2.87 0.36 1.09 8.14 6056 275.39 2500 

Past work [48] 0.147 0.672 3.465 0.566 0.822 8.048 6196 295 –

DEA-PCFE LF 0.29 0.86 2.75 0.41 1.15 7.55 6351 293.65 1024 

HF 0.31 0.85 2.63 0.42 1.10 7.83 6452 291 2218 

0.25 DEA-MCS 0.20 0.58 3.41 0.47 1.20 7.19 6045 295.15 1.64 × 10 6 

Kriging 0.14 0.42 3.58 0.49 1.24 7.10 6012 296.08 2500 

Past work [48] 0.114 0.558 3.685 0.575 0.925 7.704 6036 297 –

DEA-PCFE LF 0.18 0.55 3.35 0.52 1.22 7.1 6064 300.44 1024 

HF 0.19 0.53 3.49 0.48 1.22 7.20 6001 294.21 2072 

0.5 DEA-MCS 0.05 0.10 4.44 0.55 1.27 6.62 5769 303.88 1.64 × 10 6 

Kriging 0.05 0.06 4.48 0.55 1.29 6.57 5769 304.35 2500 

Past work [48] 0.05 0.207 4.28 0.628 1.15 6.94 5775 304 –

DEA-PCFE LF 0.05 0.1 4.46 0.57 1.25 6.48 5804 310.41 1024 

HF 0.05 0.12 4.46 0.55 1.28 6.59 5746 304 1854 

0.75 DEA-MCS 0.05 0.05 5.02 1.11 1.08 6.41 5435 337.87 1.64 × 10 6 

Kriging b 0.05 0.05 5.03 1.13 1.14 6.33 5389 337 2500 

Past work [48] 0.05 0.075 4.88 0.95 1.18 6.33 5478 330 –

DEA-PCFE LF 0.05 0.05 4.97 1.12 0.99 6.28 5591 349.28 1024 

HF 0.05 0.05 5.02 1.10 1.09 6.39 5438 337.28 1648 

1.0 DEA-MCS 0.05 0.05 5.67 1.66 1.05 5.67 5324 379.51 1.64 × 10 6 

Kriging b 0.05 0.05 5.70 1.64 1.10 5.72 5252 373.01 2500 

Past work [48] 0.05 0.05 5.74 1.718 1.054 5.574 5328 384 –

DEA-PCFE LF 0.05 0.05 5.73 1.72 1.04 5.58 5338 385.53 1024 

HF 0.05 0.05 5.67 1.66 1.04 5.67 5327 379.79 1442 

a No. of actual simulations. 
b Constraints not satisfied. 

 

 

 

 

 

 

 

 

 

 

 

As for the computational cost associated, LF DEA-PCFE is the most efficient followed by HF DEA-PCFE and Kriging. This

is because while LF DEA-PCFE operates based on a single PCFE model, HF DEA-PCFE builds several local PCFE models. 

Next, in order to allow the solutions obtained by Doltsinis and Kang [48] to be valid, s max = 12 , 500 has been considered

[50] . The solutions obtained with this setup are reported in Table 7 . It is observed that the proposed HF DEA-PCFE yields

excellent results outperforming Kriging based RDO and method proposed in [48] . In fact, LF DEA-PCFE also yields satisfactory

results and that to from significantly reduced computational cost. 

7. Application: robust hydroelectric flow optimization 

Over the last decade or so, several hydropower generation models have been investigated by scientists. While some of

the models were analytical, others were constructed from robust system models showing the dynamic characteristics. A

detailed account of various models of hydro plant and techniques used to control generation of power has been shown in

[51,52] . 

7.1. Model definition 

Considering f t ( i ) and S i ( i ) to be the flow through turbine and storage level of the reservoir at the i th hour, the electricity

produced at the i th hour is computed as: 

E ( i ) = f t ( i − 1 ) [ 0 . 5 k 1 { S ( i ) + S ( i − 1 ) } + k 2 ] . (28) 

where k 1 = 0 . 0 0 0 03 is termed as K-factor coefficient and k 2 = 9 is termed as K-factor offset [53] . The hourly storage level

S ( i ) is again computed as: 

S ( i ) = S ( i − 1 ) + �t [ f i ( i − 1 ) − f s ( i − 1 ) − f t ( i − 1 ) ] . (29) 

where f i ( •) and f s ( •), respectively, denote the in-flow and flow through spillway. Once the hourly electricity generated is

computed using Eq. (28) and Eq. (29) , hourly revenue generated from the dam is computed as: 

R i = E ( i ) P ( i ) . (30) 

where R i is the hourly revenue generated and P ( i ) denotes the hourly electricity price. Now if R is the total revenue gener-

ated by the dam, then 

R = 

∑ 

i 

R i . (31) 
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Fig. 5. Schematic diagram of hydroelectric dam. 

Table 8 

Statistical parameters of the uncertain inputs. 

Sl. No. Variable Distribution Mean COV/SD 

1–12 Hourly in-flow Normal 1070 CFS 0.05 

13–24 Hourly electricity price Normal 45 CFS 0.3 

25–36 Hourly flow through turbine Lognormal – 100 ∗ CFS 

37–48 Hourly flow through spillway Lognormal – 0.02 

∗ indicates standard deviation, CFS = cubic feet per second. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Eqs. (28) –(31) , it is clear that electricity generation using a hydroelectric dam is primarily governed by the hourly

water supplied through the turbine and the water level in the reservoir. It is quite obvious that due to environmental vari-

ations, large amount of uncertainties are associated with a hydroelectric dam. Moreover, hourly cost of electricity ( P i ) is

also influenced by various factors. Hence, it is of utter importance to consider the presence of uncertainties while optimiz-

ing (maximising) the overall revenue ( R ) of a hydroelectric dam. Fig. 5 shows a schematic diagram of hydroelectric dam

considered in the present study. Conventional optimization of the above mentioned hydroelectric dam can be found in [53] .

Various uncertainties are associated with any hydroelectric dam. For instance, the flow through spillway ( f s ) and turbine

( f t ) are generally controlled by some machine operated gates. However, it is not possible to exactly control the flow with

such machineries and this results in some uncertainties. On the other hand, the in-flow ( f i ) to the reservoir is uncontrolled

and hence large sources of uncertainties is associated with this. Moreover, market price of electricity depends on various

factors and is highly uncertain. It is to be noted that f s , f t , f i and market price P i are generally monitored on an hourly basis.

In the present study, the simulation is run for 12 h and hence, the system under consideration involves 48 random variables.

A detailed account of the involved uncertain variables have been provided in Table 8 . 

7.2. Problem definition 

The electricity produced in a hydroelectric dam depends on two primary parameters, namely amount of water flowing

through the turbine and the reservoir storage level. The storage of reservoir again depends on the three factors: (a) in-flow,

(b) flow through turbine and (c) flow through spillway. As the flow through turbine increases, the water in the reservoir

decreases. Therefore, it is necessary to compute the optimum flow through the turbine and spillway that maximises the

electricity production. Moreover, certain constraints needs to be considered while solving the optimization problem. First,

both reservoir level and downstream flow rates should be within some specified limit. Secondly, maximum flow through

the turbine should not exceed the turbine capacity. Finally, the mean reservoir level at the end of the simulation should be

same as that at the beginning. This ensures that the reservoir is not emptied at the end of the optimization cycle. The RDO

problem reads: 

arg min −βμR + ( 1 − β) σR 

s.t. μ f t ( i ) − 3 σ f t ( i ) � 0 , ∀ i 

μ f t ( i ) + 3 σ f t ( i ) � 25 , 0 0 0 , ∀ i 

μ f t ( i ) − 3 σ f t ( i ) + μ f s ( i ) − 3 σ f s ( i ) � 500 ∀ i ∣∣(μ f t ( i ) + 3 σ f t ( i ) + μ f s ( i ) + 3 σ f s ( i ) − μ f t ( i −1 ) + 3 σ f t ( i −1 ) − μ f s ( i −1 ) + 3 σ f s ( i −1 ) 

)∣∣ � 500 , ∀ i 

μS ( i ) − 3 σS ( i ) � 50 , 0 0 0 , ∀ i 

μS ( i ) + 3 σS ( i ) � 10 0 , 0 0 0 , ∀ i 

μS ( end ) = 90 , 0 0 0 , (32)
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Table 9 

Validation of the proposed approaches for hydroelectric dam 

optimization. 

Variable DEA-MCS LF DEA-PCFE HF DEA-PCFE 

f t (1) 800 1001.685 800.47 

f t (2) 800 802.38 806.1148 

f t (3) 800 800.02 800.139 

f t (4) 800 800.09 817.10 

f t (5) 800 800.85 801.39 

f t (6) 800 800.04 800.02 

f t (7) 840.69 999.39 878.535 

f t (8) 1040.69 967.97 1028.078 

f t (9) 1240.69 1167.952 1228.078 

f t (10) 1440.69 1367.93 1428.078 

f t (11) 1640.69 1567.92 1628.078 

f t (12) 1840.69 1767.92 1828.077 

f s (1) 2 . 53 × 10 −10 1 . 40 × 10 −14 9 . 88 × 10 −8 

f s (2) 1 . 36 × 10 −10 1 . 51 × 10 −7 8 . 43 × 10 −8 

f s (3) 7 . 89 × 10 −10 5 . 66 × 10 −12 2 . 87 × 10 −7 

f s (4) 4 . 75 × 10 −12 6 . 36 × 10 −12 8 . 88 × 10 −20 

f s (5) 2 . 32 × 10 −10 3 . 53 × 10 −9 2 . 61 × 10 −7 

f s (6) 1 . 62 × 10 −11 3 . 47 × 10 −9 9 . 75 × 10 −14 

f s (7) 2 . 53 × 10 −14 1 . 41 × 10 −16 1 . 44 × 10 −20 

f s (8) 1 . 53 × 10 −11 2 . 44 × 10 −9 1 . 92 × 10 −19 

f s (9) 1 . 11 × 10 −11 4 . 50 × 10 −9 8 . 86 × 10 −19 

f s (10) 1 . 66 × 10 −10 1 . 05 × 10 −7 1 . 93 × 10 −8 

f s (11) 3 . 07 × 10 −10 2 . 43 × 10 −8 2 . 44 × 10 −9 

f s (12) 3 . 55 × 10 −10 2 . 53 × 10 −10 1 . 36 × 10 −8 

μR 510.032 499.43 510.088 

σ R 61.48 57.78 59.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where μ( •) and σ ( •), respectively, denote the mean and standard deviation. β in Eq. (32) in the weight factor. The objective

of this work is to the determine f t and f s the minimizes the objective function defined in Eq. (32) . 

7.3. Results and discussion 

The proposed approaches have been utilized to solve the optimization problem given in Eq. (32) . Since generating bench-

mark solution using the MCS based DEA requires considerable time (approximately 35 days on a system with Xeon processor

with 24 cores and 48 Gb ram), the proposed approach has been validated only at β = 0 . 5 . Table 9 shows the results ob-

tained using the proposed approaches. While the high fidelity PCFE based DEA overpredicts the mean revenue at β = 0 . 5

by 0.01%, low fidelity PCFE based DEA underpredicts the same by 2.07%. As for the standard deviation of revenue at β = 0 . 5

, high fidelity PCFE based DEA and low fidelity PCFE based DEA underpredicts the result by 3.2% and 6.01% respectively.

As for the computational cost, while high fidelity PCFE based DEA requires 1500 actual simulations, the low fidelity PCFE

based DEA requires 1200 actual simulations. For generating the benchmark solution, 3 × 10 6 (the solution converges at 200

(objective function call) × 15,0 0 0 (number of function call for MCS)) number of actual simulations are required. 

One interesting aspect observed in Table 9 is that the flow through spillways are almost zero. This indicates that the

problem in hand can be simplified by setting flow through spillway to be zero. That way, the reduced problem will have 12

design variables and 36 random variables. However, this observation may not be true for all hydroelectric dam models and

hence, one must be careful before considering such simplifications. 

In order to have a better outlook in the problem, the hydroelectric dam optimization has been carried out corresponding

to various values of β . For all the cases, high fidelity PCFE based DEA has been employed due to its superior performance.

Fig. 6 shows the variation of mean and standard deviation of revenue. As expected, increase in β results in increase of both

mean and standard deviation of revenue. This is logical because of the presence of negative sign (indicating maximization

of the mean revenue) in the objective function ( Eq. (32) ). It is further observed that increase in β beyond 0.5 has no effect

on the results (optimum values corresponding to β = 0 . 5 and β = 0 . 6 are identical). Hence, results beyond β = 0 . 6 have not

been computed. 

8. Conclusion 

In this work, two novel approaches for robust design optimization (RDO) have been presented. Both the methods pre-

sented utilize polynomial correlated function expansion (PCFE) to estimate the second moment properties of response and

differential evolution algorithm (DEA) for solving the optimization problem. The first approach, referred to here as low-

fidelity PCFE based DEA, is highly efficient and can be utilized to obtain an initial estimate for the RDO problems. On

contrary, the second approach, referred to here as, high-fidelity PCFE based DEA, provides an accurate estimate for the RDO

problems. 
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Fig. 6. Variation of optimum mean and standard deviation of revenue generated with β . 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed approaches have been utilized for solving three benchmark RDO problems. Results obtained have been

compared with other popular RDO techniques. It is observed that for all the problems, the proposed approaches outperforms

the popular techniques, both in terms of accuracy and efficiency. Finally, the proposed approaches have been utilized for RDO

of a hydroelectric dam, demonstrating its capability in solving large scale problems. 
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Appendix A. Formulation of weight matrix 

The weight matrix ( W ) is formulated based on the hierarchical orthogonality of the component functions which requires

the higher order component function to be orthogonal with all the lower order component function. Thus, a first-order

component function should be orthogonal to the zeroth-order component function ( g 0 ). The orthogonality between first-

and zeroth-order component function requires 

∫ 
g 0 

( ∑ 

k 

α( i ) i 

k 
ψ 

i 
k ( x i ) 

) 

� i d x i = 0 , (A.1)

where ϖi represents the PDF of x i . Note that g 0 is the mean response and may not be zero. Thus, 

∫ ( ∑ 

k 

α( i ) i 

k 
ψ 

i 
k ( x i ) 

) 

� i d x i = 0 . (A.2)

Eq. (A.2) can be represented as 

1 

N 

N ∑ 

n =1 

∑ 

k 

α( i ) i 

k 
ψ 

i 
k 

(
x n i 

)
= 0 . (A.3)

Rewriting Eq. (A.3) in vectorial form 

G 1 ( x i ) 
T αi 

1 = 0 , ∀ i. (A.4)

Therefore, the objective function for first-order PCFE is 

O 

i 
1 = 

1 

2 

(
α1 

i 
)T 

W 

i 
1 

(
α1 

i 
)
, (A.5)

where 

W 

i 
1 = [ G 1 ( x i ) ] [ G 1 ( x i ) ] 

T 
. (A.6)
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Similarly, the second-order component function needs to be orthogonal to both zeroth- and first-order component function.

The same can be achieved by setting the second-order component function orthogonal to all the basis contained in lower

order component function. The orthogonality of the second-order component function and g 0 is represented as 

∫ ( ∑ 

k 

α( i j ) i 

k 
ψ 

i 
k ( x i ) + 

∑ 

k 

α( i j ) j 

k 
ψ 

j 

k 

(
x j 

)
+ 

∑ 

l 

∑ 

m 

α( i j ) i j 

lm 

ψ 

i 
l ( x i ) ψ 

j 
m 

(
x j 

)) 

� i j d x i d x j = 0 , (A.7) 

where ϖij is the joint PDF of x i and x j . Rewriting Eq. (A.7) as 

1 

N 

N ∑ 

p=1 

( ∑ 

k 

α( i j ) i 

k 
ψ 

i 
k 

(
x p 

i 

)
+ 

∑ 

k 

α( i j ) j 

k 
ψ 

j 

k 

(
x p 

j 

)
+ 

∑ 

l 

∑ 

m 

α( i j ) i j 

lm 

ψ 

i 
l 

(
x p 

i 

)
ψ 

j 
m 

(
x p 

j 

)) 

= 0 . (A.8) 

Writing Eq. (A.8) in vectorial notation [
G 

i j 
0 

]T [
αi j 

2 

]
= 0 . (A.9) 

Let us assume ψ 

i 
r ( x i ) to be the basis of first-order component function. Thus, the orthogonality between second-order

component function and ψ 

i 
r ( x i ) is given as 

∫ 
ψ 

i 
r ( x i ) 

( ∑ 

k 

α( i j ) i 

k 
ψ 

i 
k ( x i ) + 

∑ 

k 

α( i j ) j 

k 
ψ 

j 

k 

(
x j 

)
+ 

∑ 

l 

∑ 

m 

α( i j ) i j 

lm 

ψ 

i 
l ( x i ) ψ 

j 
m 

(
x j 

)) 

� i j d x i d x j = 0 . (A.10) 

Again expressing Eq. (A.10) as a summation series 

1 

N 

N ∑ 

p=1 

( ∑ 

k 

α( i j ) i 

k 
ψ 

i 
r 

(
x p 

i 

)
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i 
k 

(
x p 

i 

)
+ 

∑ 

k 

α( i j ) j 

k 
ψ 

i 
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(
x p 

i 

)
ψ 

j 

k 

(
x p 

j 

)) 

1 

N 

N ∑ 

p=1 

∑ 

l 

∑ 

m 

α( i j ) i j 

lm 

ψ 

i 
r 

(
x p 

i 

)
ψ 

i 
l 

(
x p 

i 

)
ψ 

j 
m 

(
x p 

j 

)
= 0 . (A.11) 

Writing in vectorial notation [
G 

i j 
ir 

]T [
αi j 

2 

]
= 0 . (A.12) 

Performing similar operation on the basis of component function and second-order component function [
G 

i j 
jr 

]T [
αi j 

2 

]
= 0 . (A.13) 

Combining Eqs. (A.9) , (A.12) and (A.13) , the objective function for second-order component function is given as 

O 

i j 
2 

= 

1 

2 

[
αi j 

2 

]T [
G 

i j 
2 

][
G 

i j 
2 

]T [
αi j 

2 

]
= 

1 

2 

[
αi j 

2 

]T [
W 

i j 
2 

][
αi j 

2 

]
. 

(A.14) 

The combined objective function for second-order PCFE is given as 

O = 

∑ 

i 

O 

i 
1 + 

∑ 

1 � i< j� N 

O 

i j 
2 

= 

1 

2 

αT W α, 

(A.15) 

where 

W = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

W 

1 
1 0 · · · 0 0 · · · 0 

0 W 

2 
1 · · · 0 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 · · · W 

N 
1 0 · · · 0 

0 0 · · · 0 W 

12 
2 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 0 · · · 0 0 · · · W 

( N−1 ) N 
2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (A.16) 
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