
Computers and Structures 82 (2004) 2453–2461

www.elsevier.com/locate/compstruc
Direct time-domain integration method
for exponentially damped linear systems

S. Adhikari a,*, N. Wagner b

a Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, United Kingdom
b Institut A für Mechanik, University of Stuttgart, Pfaffenwaldring 9, D-70550 Stuttgart, Germany

Received 12 December 2003; accepted 9 August 2004
Abstract

Time-domain analysis of multiple-degree-of-freedom linear non-viscously damped systems is considered. It is

assumed that the non-viscous damping forces depend on the past history of velocities via convolution integrals over

exponentially decaying kernel functions. A direct time-domain integration method is proposed. The proposed approach

is based on an extended state-space representation of the equations of motion. The state-space method, in turn, is based

on introduction of a set of internal variables. The numerical method for the calculation of the displacements eliminates

the need for explicit calculation of the velocities and usually large number of internal variables at each time step. This

fact particularly makes this method numerically efficient. The proposed method is illustrated by two numerical

examples.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In structural dynamics often viscous damping model

(proposed by Lord Rayleigh [1] in 1877) is used to model

the energy dissipation. It is however, well known that

the classical viscous damping model is a mathematical

idealization and the �true� damping model is likely to

be different. Such �modelling errors� can have significant

effect in the dynamics of light space structures [2]. More-

over, increasing use of modern composite materials and
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active control mechanisms in aerospace and automotive

industries demands sophisticated treatment of dissipa-

tive forces for proper analysis and design. For these rea-

sons there has been an increase in interest in the recent

years on non-viscous damping models with an aim to

represent dissipative forces in a more general manner

compared to the limited scope offered by a viscous

damping model. Majority of the linear non-viscous

damping models, like fractional derivative models [3–6]

and heriditary/viscoelastic/convolution integral models

[7,2,8,9], are based on the fact that the dissipative force

can depend on quantities other than only the generalized

velocities as assumed in the viscous damping model.

Exponential damping model is a special case of

non-viscous damping models described by convolu-

tion integrals [7,2,8,9]. The equation of motion of a
ed.
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N-degree-of-freedom linear system with exponential

damping can be expressed by

M€uðtÞ þ
Xn

k¼1

Z t

0

lke
�lk ðt�sÞCk _uðsÞds þ KuðtÞ ¼ fðtÞ; ð1Þ

together with the initial conditions

uðt ¼ 0Þ ¼ u0 2 RN and _uðt ¼ 0Þ ¼ _u0 2 RN : ð2Þ

Here uðtÞ 2 RN is the displacement vector, M 2 RN�N is

the mass matrix, K 2 RN�N is the stiffness matrix and

fðtÞ 2 RN is the forcing vector. The constants lk 2 Rþ

are known as the relaxation parameters, Ck 2 RN�N

are known as the damping coefficient matrices and n de-

notes the number relaxation parameters used to describe

the damping behavior. A physical justification (using the

principles of mechanics and thermodynamics) as to why

a general structure should always have this type of

damping is hard to provide. From this point of view this

damping model is on a similar footing to that of the vis-

cous model. However, based on engineering judgement

and intuition several reasons behind the selection of this

model could be given:

• In the context of viscoelastic materials, the physical

basis for exponential models has been well estab-

lished—as in the words of Cremer and Heckl [10]:

�Of the many after-effect functions that are possible

in principle, only one—the so-called relaxation func-

tion—is physically meaningful.�
• In a large engineering structure it is possible to have

different damping in different parts of a structure.

For example, various members of a space-frame

may have different damping properties, each charac-

terized by a relaxation parameter lk. Then the asso-

ciated coefficient matrix Ck would have non-zero

blocks corresponding to the relevant elements only.

One could perform experiments for individual mem-

bers and use the finite element method to obtain

the element damping matrix, say C
ðeÞ
k . Using standard

approach it is possible to assemble all the element

matrices associated with relaxation parameter lk to

obtain a global damping matrix Ck. This procedure

may be repeated for all damping types present in

the structure to obtain lk and Ck for all k.
• In a recent work Adhikari and Woodhouse [11] have

proposed a method to identify lk and Ck from vibra-

tion measurements when n = 1 in Eq. (1). It was also

noted [12] that when the damping is non-viscous,

forceful fitting of viscous damping may produce

non-physical result (for example, a non-symmetric

coefficient matrix). Thus, from parameter estimation

point of view damping model in Eq. (1) gives addi-

tional flexibility to fit measured data obtained from

modal testings.
Because most vibration analysis textbooks, finite ele-

ment packages and modal analysis softwares only allow

viscous damping, it is useful to relate the exponential

damping model with the viscous damping model. From

Eq. (1) it may be observed that in the limit when

lk! 1, " k then the equation of motion reduces to

that of a viscously damped system with an equivalent

viscous damping matrix

C ¼
Xn

k¼1

Ck : ð3Þ

Thus, the exponential damping model is a further gener-

alization of the more familiar viscous damping model.

The purpose of this paper is to propose an efficient

numerical method to solve Eq. (1) together with the ini-

tial conditions in (2).

In recent years some authors have considered systems

similar to (1). Muravyov [13,14] and Muravyov and

Hutton [15,16] have considered a similar system where

the exponential kernel function is associated with the

stiffness term. Recently Wagner and Adhikari [17] have

proposed a state-space approach for the analysis of lin-

ear systems with exponential damping. Their method

was based on representing Eq. (1) in terms of two sym-

metric matrices in an augmented state-space. The dy-

namic response of the system was obtained by mode

superposition method using the state-space eigensolu-

tions. Although the method gives exact results, it re-

quires significant computation because the size of the

eigenvalue problem in the extended state-space is usually

very large. In this article an alternative approach based

on direct integration in the time-domain has been pro-

posed. This approach utilizes the state-space representa-

tion proposed in the earlier work [17]. Two physically

realistic cases, namely, (a) when all the damping coeffi-

cient matrices are of full rank, and (b) when the damping

coefficient matrices are rank deficient, have been pre-

sented. The proposed method is illustrated by numerical

examples.
2. Review of the state-space formalism

In a recent paper Wagner and Adhikari [17] have

proposed a state-space method for exponentially

damped systems. Here we briefly outline the main

results.
2.1. Case A: All Ck matrices are of full rank

In this case it is considered that

rankðCkÞ ¼ N ; 8k ¼ 1; . . . ; n: ð4Þ

We introduce the internal variables ykðtÞ 2 RN ,

" k = 1, . . . , n through following relationship:
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ykðtÞ ¼
Z t

0

lke
�lkðt�sÞ _uðsÞds: ð5Þ

Differentiating Eq. (5) one obtains the evolution

equation:

_ykðtÞ þ lkykðtÞ ¼ lk _uðtÞ: ð6Þ

Using additional state-variables

vðtÞ ¼ _uðtÞ; ð7Þ

Eq. (2) can be represented in the first-order form as

B _zðtÞ ¼ AzðtÞ þ rðtÞ; ð8Þ

where

B ¼

Pn
k¼1Ck M �C1=l1 � � � �Cn=ln

M O O O O

�C1=l1 O C1=l2
1 O O

..

.
O O . .

.
O

�Cn=ln O O O Cn=l2
n

266666664

377777775 2 Rm�m;

ð9Þ

A ¼

�K O O O O

O M O O O

O O �C1=l1 O O

O O O . .
.

O

O O O O �Cn=ln

266666664

377777775 2 Rm�m;

ð10Þ

rðtÞ ¼

fðtÞ
0

0

..

.

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
2 Rm and zðtÞ ¼

uðtÞ
vðtÞ
y1ðtÞ
..
.

ynðtÞ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
2 Rm:

ð11Þ

In the above equations z(t) is the extended state-vector,

A and B are the system matrices in the extended state-

space, r(t) is the force vector in the extended state-space,

and O is a N · N null matrix. Clearly, the order of the

system, m, is given by

m ¼ 2N þ nN : ð12Þ

Because it is assumed that M, K and Ck, " k are sym-

metric matrices, B is a symmetric matrix and A is a

block-diagonal, therefore, also a symmetric matrix.
2.2. Case B: Ck matrices are rank deficient

In this section we assume that in general

rk ¼ rankðCkÞ 6 N ; 8k ¼ 1; . . . ; n: ð13Þ
This implies that the number of non-zero eigenvalues of

Ck is rk. We introduce a matrix Rk 2 RN�rk whose col-

umns are the eigenvectors corresponding to the rk
non-zero eigenvalues of Ck. Defining a set of internal

variables of reduced dimension ~ykðtÞ 2 Rrk using the

rectangular transformation matrix Rk by

ykðtÞ ¼ Rk~ykðtÞ; ð14Þ

it can be shown that [17] Eq. (1) can be represented in a

first-order form aseB _~zðtÞ ¼ eA~zðtÞ þ ~rðtÞ: ð15Þ

Here

eB ¼

Pn
k¼1Ck M �C1R1=l1 � � � �CnRn=ln

M ON ;N ON ;r1 � � � ON ;rn

�RT
1C1=l1 OT

N ;r1
RT

1C1R1=l2
1 � � � Or1 ;rn

..

. ..
. ..

. . .
. ..

.

�RT
1Cn=ln OT

N ;rn
OT

r1 ;rn
� � � RT

nCnRn=l2
n

266666664

377777775 2 R~m�~m;

ð16Þ

eA ¼

�K ON ;N ON ;r1 � � � ON ;rn

ON ;N M ON ;r1 � � � ON ;rn

OT
N ;r1

OT
N ;r1

�RT
1C1R1=l1 � � � Or1 ;rn

..

. ..
. ..

. . .
. ..

.

OT
N ;rn

OT
N ;rn

OT
r1 ;rn

� � � �RT
nCnRn=ln

266666664

377777775 2 R~m�~m;

ð17Þ

~rðtÞ ¼

fðtÞ
0N

0r1

..

.

0rn

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
2 R~m and ~zðtÞ ¼

uðtÞ
vðtÞ
~y1ðtÞ
..
.

~ynðtÞ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
2 R~m:

ð18Þ

In the above equations

~m ¼ 2N þ
Xn

k¼1

rk ; ð19Þ

is the order of the system, Oij are i · j null matrices and

0j are vectors of j zeros. The terms ~ð�Þ are corresponding
to terms (•) defined in Eq. (8). When all Ck matrices are

of full rank, that is, when rk = N, " k, then one can

choose each Rk matrix as the identity matrix and Eq.

(15) reduces to Eq. (8).
3. Direct time-domain approach

First consider the full rank case. The linear

approximations

uðtÞ ¼ uj 1� t
h

� �
þ ujþ1

t
h

ð20Þ
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and

vðtÞ ¼ vj 1� t
h

� �
þ vjþ1

t
h
; ð21Þ

for the displacements u(t) and the velocities v(t) are used.

In addition, the internal variables yk(t) have also been

interpolated in a linear manner

ykðtÞ ¼ ykj 1� t
h

� �
þ ykjþ1

t
h
; k ¼ 1; . . . ; n: ð22Þ

Here the step size h = T/Nd, where T is the time up to

which the response calculation is required and Nd is

the number of divisions in the time axis. In order to sim-

plify the formulas only constant time-steps throughout

the whole time axis are used. The next and the last step

concerns the integration of the system (8) with respect to

the time interval with t/h 2 [j, j + 1]. This integration, ex-

act where it is possible and by using the linear approxi-

mation where it is necessary, leads to a totally

discretized one-step formulation which allows zj+1 to

be calculated by means of zj

Bðzjþ1 � zjÞ ¼
h
2
Aðzjþ1 þ zjÞ þ ir; ir ¼

Z ðjþ1Þh

jh
rðtÞdt

ð23Þ

or

B� h
2
A

� �
zjþ1 ¼ Bþ h

2
A

� �
zj þ ir; ð24Þ

where

zT0 ¼ ½uT0 ; vT0 ; 0
T; . . . ; 0T�: ð25Þ

The initial values for the internal variables follow from

their definition in Eq. (5). Eq. (24) can now be used to

compute z(t) at discrete points. The result in Eq. (24)

is also identical with the transition process based on a

P11 Padé-expansion of an exponential representation

proposed by Ruge and Wagner [18]. A result similar

to Eq. (24) can also be obtained for the rank deficient

case.
4. Numerical realization

From Eq. (24) note that factorization (LU factoriza-

tion for example) of the matrix S ¼ B� h
2
A is required

to compute each zj. The order of the matrix S is often

too large to do efficient numerical computations. For

example, for a three DOF system with four exponential

terms, factorization of a 18 · 18 matrix may be required

at each time step. Therefore, although the numerical

method outlined the previous section is very simple, it

is required to reduce the computational effort in order

to put the method into practice. Following Ruge [19],

the most important properties required for an effective

numerical scheme are as follows:
• The coefficient matrix S of the time-stepping scheme

Sx = p finally to be solved should contain the original

system matricesM, Ck, K in their original form with-

out any mass scaling form M�1K or products like

MK.

• Any special properties of M, Ck, K like sparsity or

symmetry should be preserved when generating S.

• The column x of unknowns finally to be solved for

should contain nothing but the N nodal quantities

u. Thus, S should be of order N · N.

An essential advantage of the P11-scheme employed

here is the possibility of satisfying these requirements.

In the following section we outline how one can achieve

them. It may be noted that in some problems the use of

variable time-steps may be desired. Variable time-step-

ping algorithms have not been considered in this paper

and our discussions are confined to fixed time-stepping

algorithm only.

4.1. Case A: All Ck matrices are of full rank

The second row in (24) is used to eliminate the

velocities

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð26Þ

All succeeding rows in (24) are employed to express the

internal variables in terms of the displacements as

Ck

lk
yk;jþ1 ¼

2lk

2þ lkh
Ck

lk
ðujþ1 � ujÞ þ

Ck

2l2
k

ð2� lkhÞyk;j
� �

:

ð27Þ

Substituting (26) and (27) into the first row of Eq. (24)

leads to a totally discretized one-step formulation of or-

der N as

2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
ujþ1

¼ 2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
uj þ 2Mvj

� 2h
Xn

k¼1

Ck

2þ lkh
yk;j þ

Z ðjþ1Þh

jh
fðtÞdt: ð28Þ

Simplifying Eq. (27) we also have

2þ lkh
2l2

k

Ckyk;jþ1 ¼
2� lkh
2l2

k

Ckyk;j þ
1

lk
Ck ½ujþ1 � uj� ð29Þ

or

yk;jþ1 ¼
2� lkh
2þ lkh

yk;j þ
2lk

2þ lkh
½ujþ1 � uj�: ð30Þ

Eq. (28) together with Eqs. (26) and (30) allow uj+1 to be

calculated by means of uj, yk,j " k = 1, . . . , n. Note that
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this scheme meets all the requirements for an effective

numerical scheme just mentioned.

4.2. Case B: Ck matrices are rank deficient

We rewrite Eq. (24) for the rank deficient case as

eB � h
2
eA� �

~zjþ1 ¼ eB þ h
2
eA� �

~zj þ~ir; ð31Þ

where

~zT0 ¼ ½uT0 ; vT0 ; 0
T
r1
; . . . ; 0Trn � ð32Þ

and

~ir ¼
Z ðjþ1Þh

jh

~rðtÞdt: ð33Þ

From the second row in (31), the velocities can be elim-

inated by using (26). All succeeding rows in (31) are em-

ployed to express the internal variables in terms of the

displacements

CkRk

lk

~yk;jþ1 ¼
2lk

2þ lkh
Ck

lk
ðujþ1 � ujÞ þ

CkRk

2l2
k

ð2� lkhÞ~yk;j
� �

:

ð34Þ

Substituting (26) and (34) into the first row of (31) again

leads to a totally discretized one-step formulation of or-

der N, which allows uj+1 to be calculated by means of uj,

yk,j " k = 1, . . . , n as

2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
ujþ1

¼ 2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
uj þ 2Mvj

� 2h
Xn

k¼1

CkRk

2þ lkh
~yk;j þ

Z ðjþ1Þh

jh
fðtÞdt; ð35Þ

with

2þ lkh
2l2

k

RT
kCkRk~yk;jþ1 ¼

2� lkh
2l2

k

RT
kCkRk~yk;j

þ 1

lk
RT

kCk ½ujþ1 � uj�; ð36Þ

or

½RT
kCkRk �~yk;jþ1 ¼

2� lkh
2þ lkh

½RT
kCkRk �~yk;j

þ 2lk

2þ lkh
RT

kCk ujþ1 � uj
� �

ð37Þ

and

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð38Þ

It should be noted that at the most n additional factor-

izations regarding the internal variables RT
kCkRk needs
to be computed when rk = rank(Ck) < N,

" k = 1, . . . , n. Nevertheless the order of those matrices

is always less than N.

Recall that the computation of each Rk matrix re-

quires the solution of an eigenvalue problem involving

the matrix Ck. This is a significant computation for sys-

tems with many exponential terms. Now it will be shown

that these additional decompositions can be avoided.

We start with the first step t 2 [0,h]

2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
u1

¼ 2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
u0 þ 2Mv0

� 2h
Xn

k¼1

CkRk

2þ lkh
~yk;0 þ

Z h

0

fðtÞdt; ð39Þ

2þ lkh
2l2

k

RT
kCkRk~yk;1 ¼

2� lkh
2l2

k

RT
kCkRk~yk;0

þ 1

lk
RT

kCk ½u1 � u0�;

alternatively

CkRk~yk;1 ¼
2� lkh
2þ lkh

CkRk~yk;0 þ
2lk

2þ lkh
Ck ½u1 � u0� ð40Þ

and

v1 ¼
2

h
½u1 � u0� � v0: ð41Þ

Since yk,0 = 0 " k, Eqs. (39) and (40) are simplified to

2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
u1

¼ 2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
u0

þ 2Mv0 þ
Z h

0

fðtÞdt; ð42Þ

and

CkRk~yk;1 ¼
2lk

2þ lkh
Ck ½u1 � u0� ¼: sk;1; ð43Þ

where auxiliary quantities sk are introduced conven-

iently. All succeeding steps t 2 [jh, (j + 1)h], jP 1

2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
ujþ1

¼ 2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
uj þ 2Mvj

� 2h
Xn

k¼1

sk;j

2þ lkh
þ
Z ðjþ1Þh

jh
fðtÞdt; ð44Þ
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sk;jþ1 ¼
2� lkh
2þ lkh

sk;j þ
2lk

2þ lkh
Ck ½ujþ1 � uj� ð45Þ

and

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð46Þ

From this analysis it can be seen that it is not necessary

to compute the matrices Rk unless one is interested in ~yk
explicitly. If, and only if, that is the case, then additional

decompositions RT
kCkRk must be computed and ~yk

should be obtained from (36). The full rank scenario fol-

lows directly from (35) and (36) by substituting Rk = I.

Finally, because the modulus of the eigenvalues of the

associated amplification matrix is one, the linear inter-

polation scheme proposed here is unconditionally stable.
5. Summary of the method

Following the procedure outlined in the previous sec-

tions, the time-domain response of an exponentially

damped linear system can be obtained in an efficient

manner. Here we briefly summarize the steps to be

followed:

(1) Select a sufficiently small step size h = T/Nd and

construct the symmetric matrices

S1 ¼
2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck þ

h
2
K

" #
ð47Þ

and

S2 ¼
2

h
Mþ

Xn

k¼1

2lk

2þ hlk
Ck �

h
2
K

" #
¼ S1 � hK: ð48Þ

(2) Rank deficient [yes/no]: if yes step [3] else step [6]

(3) Explicit computation of ~yk [yes/no]: if yes step [4]

else step [5]

(4) Explicit computation of ~yk :
(a) Solve the eigenvalue problem

CkUk ¼ Uk
dk O1k

OT
1k O2k

� �
for all k. Normalize the

eigenvector matrix Uk so that UT
kUk ¼ I and parti-

tion Uk = [U1kjU2k]. Select Rk ¼ U1k 2 RN�rk .

(b) For all j solve the displacements from

S1ujþ1 ¼ S2uj þ 2Mvj � 2h
Xn

k¼1

CkRk

2þ lkh
~yk;j

þ
Z ðjþ1Þh

jh
fðtÞdt: ð49Þ

(c) Velocities from

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð50Þ

(d) Solve for the internal variables
½RT
kCkRk �~yk;jþ1 ¼

2� lkh
2þ lkh

½RT
kCkRk �~yk;j

þ 2lk

2þ lkh
RT

kCk ½ujþ1 � uj�: ð51Þ

(5) Explicit computation of ~yk is omitted: for all j

(a) Solve for displacements

S1ujþ1 ¼ S2uj þ 2Mvj � 2h
Xn

k¼1

sk;j

2þ lkh
þ
Z ðjþ1Þh

jh
fðtÞdt:

ð52Þ

(b) Velocities

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð53Þ

(c) Auxiliary variables

sk;jþ1 ¼
2� lkh
2þ lkh

sk;j þ
2lk

2þ lkh
Ck ½ujþ1 � uj�; ð54Þ

where sk,1 are defined in Eq. (43).

(6) Full rank scenario: for all j

(a) Solve for displacements

S1ujþ1 ¼ S2uj þ 2Mvj � 2h
Xn

k¼1

Ckyk;j

2þ lkh
þ
Z ðjþ1Þh

jh
fðtÞdt:

ð55Þ

(b) Velocities

vjþ1 ¼
2

h
½ujþ1 � uj� � vj: ð56Þ

(c) Solve for the internal variables

yk;jþ1 ¼
2� lkh
2þ lkh

yk;j þ
2lk

2þ lkh
½ujþ1 � uj�: ð57Þ

Numerical efficiency is mainly governed by the spe-

cial properties of S1 2 RN�N . If S1 is symmetric positive

definite a Cholesky decomposition S1 = LL
T is used. It is

a factor of two faster than alternative methods for solv-

ing linear equations. Once S1 is decomposed, the trian-

gular factor L can be used to solve (49), (52) and (55)

by backsubstitution. However, if time-step adaptation

is considered the decomposition S1 has to be done at

each time when h is modified. Finally, recall that because

the viscous damping model is a special case of the expo-

nential damping model, the proposed algorithm is also

applicable to linear systems with non-proportional vis-

cous damping.
6. Numerical examples

6.1. Example 1

A three DOF system with double exponential model

is considered [17]. The equations of motion of this model
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system can be represented by Eq. (1) with n = 2. The

mass and the stiffness matrices of the system are given by

M ¼
mu 0 0

0 mu 0

0 0 mu

264
375 and K ¼

2ku �ku 0

�ku 2ku �ku
0 �ku 2ku

264
375:

ð58Þ

The damping coefficient matrices are given by

C1 ¼
c1 0 0

0 c1 0

0 0 0

264
375 and C2 ¼

0 0 0

0 c2 �c2
0 �c2 c2

264
375:

ð59Þ

For the numerical calculation we have assumed

mu = 3.0kg, ku = 2.0N/m, c1 = 0.6Ns/m, c2 = 0.2Ns/m,

l1 = 1.0s�1 and l2 = 5.0s�1. Both the damping coeffi-

cient matrices have rank deficiency because

r1 = rank(C1) = 2 6 3 and r2 = rank(C2) = 1 6 3. The or-

der of the system matrices in the state-space, expressed

by Eq. (19), can be obtained as m = 2 · 3 + (2 + 1) = 9.

The attention is focused on the dynamic response of

the system subjected to an unit initial displacement at

the first DOF, that is, �fðixÞ ¼ 0, u0 = {1,0,0}T and
_u0 ¼ 0. The responses of the three masses are obtained

using the direct time-domain approach outlined in Sec-

tion 4 with time step h = 0.02s. Fig. 1 shows the re-

sponse of the first DOF as a function of time.

To verify the numerical accuracy of the proposed

method, the same quantity is obtained using the exact

state-space mode superposition method [17] and shown

in the same figure. It may be noted that the results ob-

tained using both the approaches match with excellent

accuracy. For numerical calculation a total of 100 steps

with step-size h = 0.5s have been used. The time-domain

method proposed here, however, is more efficient be-
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Fig. 1. Displacement at the first DOF.
cause the computation of state-space eigensolutions is

avoided.

6.2. Example 2

We consider a fixed-free axially vibrating rod with

double-exponential damping. A finite element model of

the rod, shown in Fig. 2, with N linear elements is used.

The element stiffness matrix and the corresponding

(consistent) element mass matrix for a rod element are

well known

Me ¼
qAle
6

2 1

1 2

� �
and Ke ¼

EA
le

1 �1

�1 1

� �
: ð60Þ

Here q is the mass density, A is the area, E is the

Young�s modulus, and le = L/N is the length of an

element. Numerical values of these quantities are as-

sumed to be A = 6.25 · 10�4m2, E = 2.1 · 1011N/m2,

q = 7.8 · 103kg/m3 and the length of the rod L = 4m.

The global stiffness matrix, K and the global mass ma-

trix, M can be obtained using the usual finite-element

assembly procedure. For numerical calculations 80 ele-

ments have been used so that the degrees-of-freedom

of the system N = 80. Thus the response vector

u(t) = {u1(t),u2(t), . . . , u80(t)}
T and the (discretized)

equation of motion of this rod with double-exponential

damping can be expressed as

M€uðtÞ þ
Z t

0

½l1e
�l1ðt�sÞC1 þ l2e

�l2ðt�sÞC2� _uðsÞds þ KuðtÞ

¼ fðtÞ: ð61Þ

Here numerical values of the relaxation parameters l1

and l2 are conveniently selected as

l1 ¼
1

c1Tmin

and l2 ¼
1

c2Tmin

; ð62Þ

with c1 = 1, c2 = 2 and Tmin is the minimum time period

given by Tmin = 2p/xmax. For an axially vibrating rod,

the highest undamped natural frequency xmax ¼ffiffi
E
q

q
2N�1
2L p. The global damping coefficient matrices C1

and C2 are assumed to be proportional to the mass

and stiffness matrices respectively

C1 ¼ aM and C2 ¼ bK: ð63Þ
ρ,µ , µ
1

1

x,u(x,t) 

80

E,A,L,
2

Fig. 2. Axially vibrating free-fixed rod with double-exponential

damping.
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The proportionality constants a and b are assumed to be

a ¼ 2n
x1x2

x1 þ x2

and b ¼ 2n
1

x1 þ x2

; ð64Þ

where the damping factor n = 0.05 (i.e., 5% damping)

and jth undamped natural frequency xj ¼
ffiffi
E
q

q
2j�1

2L p.
The interest here is to obtain the time-domain re-

sponse of the free end of the rod subjected to an unit ini-

tial velocity at the same end. For this problem the

forcing vectors f(t) = 0 and the initial conditions

u0 = 0, v0 = e1 (unit vector). The problem is solved by

the time-stepping procedure developed in this paper. Be-

cause we have assumed proportional damping andM, K

are symmetric positive definite, the matrices C1 and C2,

are of full rank. Figs. 3 and 4 show the tip displacement

u(x = 0, t) = u1(t) and the tip velocity _uðx ¼ 0; tÞ ¼ v1ðtÞ
as a function of time.
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Fig. 3. Tip displacement of the axially vibrating rod.
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Fig. 4. Tip velocity of the axially vibrating rod.
For numerical computations a total of 8000 steps

with step-size h = 1.5 · 10�6 s have been used.
7. Conclusions

Time-domain analysis of linear systems with expo-

nentially decaying damping memory kernels has been

considered. The proposed method is based on an ex-

tended state-space representation of the equations of

motion. The novelty of the proposed method is that

the coefficient matrix of the time-stepping scheme finally

to be solved contain nothing but a linear combination of

the original system matrices M, Ck and K. This is useful

because we can benefit from the special properties ofM,

Ck and K, like sparsity or symmetry. Thus, although the

problem is originally formulated in the extended state-

space, in effect the actual solution is carried out in the

original reduced space. This implies that the extra effort

needed to handel non-viscous damping model like the

one considered here is small compared to a viscous

damping model. The proposed algorithm also extends

to the physically realistic case when some or all damping

coefficient matrices Ck are rank-deficient. If the interest

is limited to the evolution of displacements and veloci-

ties only (not the internal variables), the proposed algo-

rithm allows to bypass the expensive process of

factorization of the Ck matrices for the rank-deficient

case. The proposed algorithm currently allows only uni-

form time-steps. In principle it can be extended to vari-

able time-steps but at additional computational cost.

Research is underway to develop efficient numerical

algorithms for variable time stepping.
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[19] Ruge P. Restricted Padé scheme in computational struc-

tural dynamics. Comput Struct 2001;79(20–21):1913–21.


	Direct time-domain integration method for exponentially damped linear systems
	Introduction
	Review of the state-space formalism
	Case A: All Ck matrices are of full rank
	Case B: Ck matrices are rank deficient

	Direct time-domain approach
	Numerical realization
	Case A: All Ck matrices are of full rank
	Case B: Ck matrices are rank deficient

	Summary of the method
	Numerical examples
	Example 1
	Example 2

	Conclusions
	References


