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Abstract In this study, vibration characteristics of a piezoelectric nanobeam embedded in a viscoelastic
medium are investigated based on nonlocal Euler–Bernoulli beam theory. In doing this, the governing equa-
tions of motion and boundary conditions for vibration analysis are first derived using Hamilton’s principle,
where nonlocal effect, piezoelectric effect, flexoelectric effect, and viscoelastic medium are considered simul-
taneously. Subsequently, the transfer function method is employed to obtain the natural frequencies and cor-
responding mode shapes in closed form for the embedded piezoelectric nanobeam with arbitrary boundary
conditions. The proposed mechanics model is validated by comparing the obtained results with those available
in the literature, where good agreement is achieved. The effects of nonlocal parameter, boundary conditions,
slenderness ratio, flexoelectric coefficient, and viscoelastic medium on vibration responses are also examined
carefully for the embedded nanobeam. The results demonstrate the efficiency and robustness of the developed
model for vibration analysis of a complicated multi-physics system comprising piezoelectric nanobeam with
flexoelectric effect, viscoelastic medium, and electrical loadings.

1 Introduction

Piezoelectric nanobeams have various practical applications in smart devices and systems due to their excep-
tional electromechanical coupling effect [1,2], such as nanotransducers, nanoresonators, nanosensors, and
nanogenerators [3–6]. It is thus essential to quantify and understand the vibration behaviors of piezoelectric
nanobeams. As a universal electromechanical mechanism in all piezoelectric materials, flexoelectricity has
been reported to have strong influence on the vibration responses of piezoelectric nanobeams [7–9]. As a
result, the study of the flexoelectric effect on the vibration responses of embedded piezoelectric nanobeams
may provide valuable information for the above-mentioned potential applications of piezoelectric nanobeams.

Numerous studies have been performed so far by researchers to examine the mechanical properties of
piezoelectric nanobeams with flexoelectric effect. Based on the flexoelectricity theory and strain gradient
theory, a size-dependent bending model was developed by Qi et al. [10] to investigate the static bending of an
electro-elastic bilayer nanobeam. The influence of flexoelectric effect on the static bending and free vibration
was examined byYan and Jiang [11] for a simply supported piezoelectric nanobeam. In this study, the governing
equations of motion were derived using Hamilton’s principle and the explicit expressions of deflection and
natural frequencies were also obtained. A modified couple stress theory and Euler–Bernoulli beam theory
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were proposed by Li and Luo [6] to study the effects of couple stress, flexoelectricity and piezoelectricity
on vibration characteristics of piezoelectric microbeams. In this study, the results showed that the effective
bending rigidity of the piezoelectric microbeam was hardened due to enhanced flexoelectric effect. Liang et
al. [9] examined the effects of surface and flexoelectricity on static bending of piezoelectric nanobeams based
on Euler–Bernoulli beam theory and variational principle. The study pointed out that the flexoelectric effect
had a momentous influence on the bending rigidity of the piezoelectric nanobeam. A microscale Timoshenko
beammodel was developed by Yue et al. [12] to investigate the static bending and free vibration problems for a
piezoelectric nanobeam with simply supported boundary conditions. Here, the governing equations of motion
and related boundary conditions were derived by using the variational principle and Hamilton’s principle. It
is noted that in the above studies the size effect was taken into account by considering the flexoelectric effect
of piezoelectric nanobeams based on strain gradient theory.

However, some researchers point out that nonlocal elasticity theory should be incorporated to the strain
gradient theory for the more accurate prediction of a mechanical behavior of nanostructures [13–15]. On this
basis, to include the nonlocal effect in vibration analysis of piezoelectric nanobeams, Ebrahimi and Barati [8]
investigated the vibration characteristics of a flexoelectric nanobeam resting onWinkler–Pasternak elastic foun-
dation based on nonlocal elasticity theory. In this study, Hamilton’s principle was used to derive the governing
equations of motion and a Galerkin-based method was applied to obtain the natural frequencies. Based on non-
local Timoshenko beam theory, Ke and Wang [16] derived the governing equations and boundary conditions
for vibration analysis of piezoelectric nanobeams by utilizing Hamilton’s principle and computed the natural
frequencies for various boundary conditions by using differential quadrature method. Nonlocal Timoshenko
beam theory was also used by Ke et al. [17] to investigate the nonlinear vibration of piezoelectric nanobeams,
which were subjected to an applied voltage and a uniform temperature change. Thermo-electro-mechanical
vibration was examined by Ansari et al. [18] for a postbuckled piezoelectric Timoshenko nanobeam based
on nonlocal elasticity theory. In the study, the governing equations of motion were derived using Hamilton’s
principle and then solved via generalized differential quadrature (GDQ) method.

It is noted that piezoelectric nanobeams are often embedded in a medium in many of their nanotechnology
applications, such as nanosensors and nanogenerators [5,8,19]. In particular, some media employed in the
nanotechnology applications normally exhibit viscoelastic behavior. To the best of the present authors’ knowl-
edge, the vibration responses of piezoelectric nanobeams with both flexoelectric effect and nonlocal effect
have not been reported in the literature when the surrounding viscoelastic medium is taken into account. The
information, however, is essential for the engineering applications of piezoelectric nanobeams in nanotechnol-
ogy. Hence, the objective of the present work is to study the vibration responses of a piezoelectric nanobeam
with flexoelectric and nonlocal effects, which is embedded in viscoelastic medium and subjected to electrical
loadings. Here, the nonlocal Euler–Bernoulli beam model is employed to derive the governing equations and a
numerical approach named the transfer functionmethod (TFM) is proposed to calculate the natural frequencies
of nanobeams with arbitrary boundary conditions. Subsequently, a detailed parametric study is conducted to
investigate the effects of nonlocal parameter, boundary conditions, slenderness ratio, flexoelectric coefficient,
and viscoelastic medium on the vibration responses of piezoelectric nanobeams.

2 Mathematical modeling

Here let us consider a piezoelectric nanobeam with flexoelectric and nonlocal effects, which is embedded in
a viscoelastic medium and subjected to electrical loadings, as shown in Fig. 1. The piezoelectric nanobeam is
modeled as nonlocal Euler–Bernoulli beam with length L , thickness h and width b. The viscoelastic medium
is described by a visco-Pasternak foundation model, whose Winkler’s modulus parameter is kw, Pasternak’s
modulus parameter is kG and damping parameter is ct . A Cartesian coordinate system oxyz is also defined,
in which the x-, y- and z-axes are taken along the length, width, and thickness directions of the nanobeam,
respectively. To account for the flexoelectric effect, the electric Gibbs free energy density Gb can be written
as [6]

Gb = −1

2
κi j Ei E j − 1

2
bi jkl Ei, j Ek,l + 1

2
ci jklεi jεkl − ei jk Eiε jk − μi jkl

(
Ekεi j,l − εi j Ek,l

)
, (1)

where κi j , bi jkl , ci jkl , ei jk and μi jkl are dielectric constant tensor, nonlocal electrical coupling coefficient
tensor, elastic stiffness tensor, piezoelectric coefficient tensor, and flexoelectric coefficient tensor, respectively.
In addition, Ei and E j are electric field vectors, εi j , and εkl are strain tensors, and εi j,l and Ek,l are the gradients
of strain and electric field, respectively.
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Fig. 1 Schematic of a piezoelectric nanobeam embedded in viscoelastic medium under electrical field

For an Euler–Bernoulli beam, the displacement field can be expressed as

u = −z
∂w

∂x
, v = 0, w = w (x, t) , (2)

where u, v, and w are the displacement components along the x-, y-, and z-directions on the cross section.
Accordingly, the components of strains and strain gradients are given as

εxx = −z
∂2w

∂x2
, εxx,z = −∂2w

∂x2
. (3)

Based on nonlocal Euler–Bernoulli beam theory [20,21], the constitutive equations for piezoelectric nanobeams
with flexoelectric effect can be derived in terms of the electric Gibbs free energy density as

(
1 − (e0a)2 ∇2) σxx = c11εxx − e31Ez + μ31Ez,z, (4)

(
1 − (e0a)2 ∇2) τxxz = −μ31Ez, (5)
(
1 − (e0a)2 ∇2) Dz = κ33Ez + e31εxx + μ31εxx,z, (6)

(
1 − (e0a)2 ∇2) Qzz = b33Ez,z − μ31εxx , (7)

where σxx , τxxz , Dz and Qzz denote the nonlocal stress, higher-order stress, electric displacement, and electric
quadrupole, respectively. Moreover, e0a is the nonlocal parameter and ∇ denotes the Hamilton arithmetic
operator. In addition, the poling direction of the piezoelectric material is assumed to coincide with the z-
direction, and only the electric field in the z-direction is considered [12], i.e.,

Ez = −∂Φ

∂z
, (8)

where Φ is the electric potential. In the absence of free electric charges, Gauss’s law requires

− ∂2Qzz

∂z2
+ ∂Dz

∂z
= 0. (9)

Substituting Eqs. (6) and (7) into Eq. (9) yields

κ33Ez,z + e31εxx,z + 2μ31εxx,zz − b33Ez,zzz = 0. (10)

In addition, the boundary conditions of electric potential Φ are given by

Φ

(
−h

2

)
= 0, Φ

(
h

2

)
= V . (11)
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From Eqs. (3), (10), and (11), the expression of electric potential Φ can be determined as

Φ = − e31
2κ33

∂2w

∂x2
z2 − μ31

2κ33

∂2w

∂x2
z + V

h
z + e31h2

8κ33

∂2w

∂x2
+ V

2
+ e31

η2κ33

eηz + e−ηz

eηz/2 + e−ηz/2

∂2w

∂x2

+ μ31h

4η2κ33

eηz − e−ηz

eηz/2 − e−ηz/2

eηz + e−ηz

eηz/2 + e−ηz/2 , (12)

where η = √
κ33/b33. For simplification of analysis, the high-order nonlocal electrical coupling effect in Eq.

(12) is neglected by taking b33 = 0, and we have [6]

Φ = − e31
2κ33

∂2w

∂x2
z2 − μ31

2κ33

∂2w

∂x2
z + V

h
z + e31h2

8κ33

∂2w

∂x2
+ V

2
. (13)

Substituting Eq. (13) into Eqs. (4)–(8) leads to

Ez = e31
κ33

∂2w

∂x2
z + μ31

2κ33

∂2w

∂x2
− V

h
, (14)

Ez,z = e31
κ33

∂2w

∂x2
, (15)

(
1 − (e0a)2 ∇2) σxx = − c11

∂2w

∂x2
z − e231

κ33

∂2w

∂x2
z + e31μ31

2κ33

∂2w

∂x2
+ e31

V

h
, (16)

(
1 − (e0a)2 ∇2) τxxz = − e31μ31

κ33

∂2w

∂x2
z − μ2

31

2κ33

∂2w

∂x2
+ μ31

V

h
, (17)

(
1 − (e0a)2 ∇2) Dz = − μ31

2

∂2w

∂x2
− κ33

V

h
. (18)

The governing equations and boundary conditions for vibration analysis of piezoelectric nanobeams can be
obtained by using Hamilton’s principle, i.e.,

∫ t

0
(δΠk + δΠF − δΠs) dt = 0, (19)

where the strain energy Πs, kinetic energy Πk and external work ΠF can be calculated by the following
equations

Πs = 1

2

∫ L

0

∫

A

(
σxxεxx + τxxzεxx,z

)
dAdx = −1

2

∫ L

0

(
Mxx

∂2w

∂x2
+ Pxxz

∂2w

∂x2

)
dx, (20)

Πk = 1

2

∫ L

0
ρA

(
∂w

∂t

)2

dx, (21)

ΠF = −1

2

∫ L

0

[

bNQw + Nxx

(
∂w

∂x

)2
]

dx . (22)

Here Mxx is the internal bending moment, Pxxz is the higher-order axial couple, Nxx is the internal stress
resultant and NQ is the reaction of the viscoelastic medium, which can be expressed as

Mxx =
∫

A
σxx zdA, Pxxz =

∫

A
τxxzdA, Nxx =

∫

A
σxxdA, (23)

NQ = kww − kG∇2w + ct
∂w

∂t
. (24)

Substituting Eqs. (20)–(22) into Hamilton’s principle (19), the governing equation of embedded piezoelectric
nanobeams with flexoelectric effect can be derived by integrating it by parts and setting the coefficients in
front of δw to zero:

∂2Mxx

∂x2
+ ∂2Pxxz

∂x2
+ Nxx

∂2w

∂x2
− b

(
kww − kG∇2w + ct

∂w

∂t

)
= ρA

∂2w

∂t2
. (25)
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The corresponding boundary conditions also can be obtained as follows:

w = 0 or
∂Mxx

∂x
+ ∂Pxxz

∂x
+ Nxx

∂w

∂x
= 0, (26)

∂w

∂x
= 0 or Mxx + Pxxz = 0. (27)

From Eqs. (3), (16), and (17), we have

(
1 − (e0a)2 ∇2) Mxx = −

(

c11 + e231
κ33

)
bh3

12

∂2w

∂x2
, (28)

(
1 − (e0a)2 ∇2) Pxxz = −μ2

31bh

2κ33

∂2w

∂x2
+ μ31bV, (29)

(
1 − (e0a)2 ∇2) Nxx = e31bV . (30)

Inserting Eqs. (28)–(30) into the governing equation (25) leads to

− (
M̄xx + P̄xxz

) ∂4w̄

∂ x̄4
+ N̄xx

∂2w̄

∂ x̄2
−

(
1 − α2 ∂2

∂ x̄2

) (
k̄ww̄ − k̄G

∂2w̄

∂ x̄2
+ c̄t

∂w̄

∂ι

)

=
(
1 − α2 ∂2

∂ x̄2

)
η
∂2w̄

∂ι2
, (31)

in which the dimensionless terms are defined for the sake of convenience and generality as follows:

x̄ = x

L
, w̄ = w

L
, α = e0a

L
, c̄11 = c11L , η = h

L
, k̄w = kwL2

c̄11
, k̄G = kG

c̄11
, c̄t = ct L√

ρLc̄11
,

ι = t

L

√
c̄11
ρL

, P̄xxz = μ2
31η

2κ33c̄11L
, N̄xx = e31V

c̄11
, M̄xx =

(

1 + e231L

κ33c̄11

)
η3

12
. (32)

Using these dimensionless terms, the boundary conditions can be rewritten as

w̄ = 0 or
(
M̄xx + P̄xxz

) ∂3w̄

∂ x̄3
− N̄xx

∂w̄

∂ x̄
= 0, (33)

∂w̄

∂ x̄
= 0 or

(
M̄xx + P̄xxz

) ∂2w̄

∂ x̄2
− μ31V

c̄11L
= 0. (34)

The governing equation (31) satisfying the boundary conditions in Eqs. (33) and (34) can be solved by assuming
the solutions in the form

w̄ (x̄) = W̄ (x̄) eiΩι, (35)

where Ω is the dimensionless angular frequency, and W̄ is the corresponding mode shape. Also, the dimen-
sionless angular frequency Ω can be given by

Ω = ωL

√
ρL

c̄11
. (36)

Substituting Eq. (35) into Eqs. (31), (33) and (34), one has

− (
M̄xx + P̄xxz

) ∂4W̄

∂ x̄4
+ N̄xx

∂2W̄

∂ x̄2
−

(
1 − α2 ∂2

∂ x̄2

)(
k̄wW̄ − k̄G

∂2W̄

∂ x̄2
+ iΩ c̄t W̄

)

= − Ω2
(
1 − α2 ∂2

∂ x̄2

)
ηW̄ , (37)
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W̄ = 0 or
(
M̄xx + P̄xxz

) ∂3W̄

∂ x̄3
− N̄xx

∂W̄

∂ x̄
= 0, (38)

∂W̄

∂ x̄
= 0 or

(
M̄xx + P̄xxz

) ∂2W̄

∂ x̄2
− μ31V

c̄11L
= 0. (39)

It should be noted the proposed mechanics model above is a simplified model, which is only available for
vibration analysis of piezoelectric nanobeams as the electric field and strain gradient are homogeneous in the
direction of width b. In addition, the governing Eq. (37) is a fourth-order ordinary differential equation for W̄ ,
and the coefficients in front of W̄ and its derivatives are the functions of Ω . In the next section, the natural
frequencies and corresponding mode shapes in closed form are calculated for the embedded piezoelectric
nanobeam with arbitrary boundary conditions by using the TFM.

3 Transfer function method

To achieve the eigenvalues and frequency response functions, the state vector η (x̄, Ω) is defined as

η (x̄, Ω) =
[
W̄ ,

dW̄

dx̄
,
d2W̄

dx̄2
,
d3W̄

dx̄3

]T
, (40)

where the superscript “T” denotes the matrix transpose. Then the governing equation (37) can be rewritten in
matrix form as

dη (x̄, Ω)

dx̄
= F (Ω) η (x̄, Ω) , (41)

where

F (Ω) =
⎡

⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
f1 0 f2 0

⎤

⎥
⎦ (42)

and

f1 = Ω2η − k̄w − iΩ c̄t
M̄xx + P̄xxz + α2k̄w

, f2 = N̄xx + k̄G + α2k̄w + α2iΩ c̄t − α2Ω2η

M̄xx + P̄xxz + α2k̄w

. (43)

Also, the boundary conditions can be expressed in matrix form as

M (Ω) η (0,Ω) + N (Ω) η (1, Ω) = 0, (44)

where M (Ω) and N (Ω) are the boundary condition set matrices at the left and the right ends of the nanobeam,
respectively. To demonstrate the approach, several typical boundary condition set matrices are given as exam-
ples in the following.

1. For clamped-clamped (C–C) boundary conditions, we have

M (Ω) =
⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎦ , N (Ω) =

⎡

⎢
⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤

⎥
⎦ . (45)

2. For simply supported–simply supported (S–S) boundary conditions, one has

M (Ω) =
⎡

⎢
⎣

1 0 0 0
0 0 M1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎦ , N (Ω) =

⎡

⎢
⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 M1 0

⎤

⎥
⎦ , (46)
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where

M1 = μ31V

c̄11L
(
M̄xx + P̄xxz

) . (47)

3. For clamped-free (C–F) boundary conditions, M (Ω) is given by Eq. (45), and N (Ω) can be expressed as

N (Ω) =
⎡

⎢
⎣

0 0 0 0
0 0 0 0
0 0 M1 0
0 −N̄xx 0 M̄xx + P̄xxz

⎤

⎥
⎦ . (48)

The solution of Eq. (41) can be calculated as

η (x̄, Ω) = eF(Ω)x̄η (0,Ω) . (49)

Substituting Eqs. (49) into (44), one has
[
M (Ω) + N (Ω) eF(Ω)

]
η (0,Ω) = 0. (50)

Thus the dimensionless frequenciesΩ of the nanobeamcan be obtained by solving the following transcendental
characteristic equation

det
[
M (Ω) + N (Ω) eF(Ω)

]
= 0. (51)

In addition, the mode shape corresponding to the dimensionless frequency Ω j can be expressed as

η
(
x̄, Ω j

) = eF(Ω j)x̄η
(
0,Ω j

)
. (52)

According to Eq. (36), the natural frequencies ω of the embedded piezoelectric nanobeam with flexoelectric
effect can be calculated from

ω = Ω

L

√
c̄11
ρL

. (53)

4 Numerical results and discussion

In this section, the formulation achieved above is first validated by comparing the obtained results with those
available in the literature. This is followed by a detailed parametric study of the effects of nonlocal parameter,
boundary conditions, slenderness ratio, flexoelectric coefficient and viscoelastic medium on the vibration
responses of nanobeams. In doing this, the material of the piezoelectric nanobeam with flexoelectric effect is
assumed to be BaTiO3. Unless otherwise stated, the values of some parameters used for numerical calculations
are given as follows: The length of the nanobeam L = 40 nm, thickness h = 2 nm, width b = h nm, mass
density ρ = 7500 kg/m3, elastic stiffness c11 = 131GPa, flexoelectric coefficient μ31 = 1×10−6 C/m,
dielectric constant κ33 = 12.56 × 10−9 C/Vm and piezoelectric coefficient e31 = − 4.35C/m2. These
geometrical and material properties of the piezoelectric nanobeam are adopted from the papers [6,11,12].

The dimensionless fundamental frequencies of piezoelectric nanobeams with various boundary conditions
and slenderness ratios L/h in comparison with those of Ref. [17] are listed in Table 1. In this calculation,
the values of basic parameters are the same as those in the paper [17], and the effects of flexoelectricity and
viscoelastic medium are omitted by takingμ31 = 0, kw = 0, kG = 0 and ct = 0. Table 1 shows that the results
of this study are in good agreement with those in the literature, which verifies the accuracy and efficiency of
the proposed method for vibration analysis of piezoelectric nanobeams.

For future comparisons with other researchers, Table 2 presents the first three dimensionless frequencies
of piezoelectric nanobeams in the absence of medium (i.e., kw = 0, kG = 0 and ct = 0) and in the presence of
viscoelasticmedium (kw = 1GPa/nm, kG = 0.25GPa/nm and ct = 10−4 GPans/nm) under typical boundary
conditions, including C–F, S–S and C–C. From Table 2, we can observe that the imaginary parts related to
damping ratios appear in the natural frequencies of nanobeams when the viscoelastic medium is considered.
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Table 1 Dimensionless fundamental frequencies of piezoelectric nanobeams with various boundary conditions and slenderness
ratios L/h in comparison with those of Ref. [17]

BCs L/h

6 8 10 16 20 30

S–S
Present 0.4571 0.3428 0.2743 0.1714 0.1371 0.0914
Ke et al. [17] 0.4570 0.3428 0.2742 0.1714 0.1371 0.0914

C-S
Present 0.7079 0.5309 0.4248 0.2655 0.2124 0.1416
Ke et al. [17] 0.7077 0.5310 0.4250 0.2658 0.2127 0.1420

Table 2 First three dimensionless frequencies of piezoelectric nanobeams with different boundary conditions and nonlocal
parameter α

BCs In the absence of medium In the presence of viscoelastic medium

α = 0.0 α = 0.1 α = 0.2 α = 0.0 α = 0.1 α = 0.2

C–F 1.5331 1.5399 1.5607 2.9086+0.0319i 2.9121+0.0319i 2.9232+0.0319i
9.6082 8.6976 7.0049 9.9219+0.0319i 9.0429+0.0319i 7.4294+0.0319i

26.9033 21.1570 14.4468 27.0176+0.0319i 21.3022+0.0319i 14.6586+0.0319i
S–S 4.3036 4.1058 3.6440 4.9835+0.0319i 4.7930+0.0319i 4.4039+0.0319i

17.2145 14.5761 10.7191 17.3921+0.0319i 14.7853+0.0319i 11.0019+0.0319i
38.7327 28.1868 18.1521 38.8125+0.0319i 28.2964+0.0319i 18.3218+0.0319i

C–C 9.7557 8.8189 7.0870 10.0648+0.0319i 9.1597+0.0319i 7.5069+0.0319i
26.8912 21.1150 14.4430 27.0067+0.0319i 21.2952+0.0319i 14.6549+0.0319i
52.7197 35.4709 21.8228 52.7787+0.0319i 35.5585+0.0319i 21.9649+0.0319i

The reason for this is that the damping effect of the viscoelastic medium is introduced into the system. It
also can be seen that boundary conditions have strong influence on the real parts of natural frequencies but
have no effect on the imaginary parts. Furthermore, nonlocal parameter α has no effect on the imaginary parts
of natural frequencies. This is because that the imaginary parts of natural frequencies are only related to the
damping of the viscoelastic medium, in which nonlocal effect is not taken into account.

Since nonlocal parameter α has no effect on the imaginary parts of natural frequencies for embedded
piezoelectric nanobeams, only the effect of nonlocal parameter α on the real parts of the first three natural
frequencies are presented in Figs. 2, 3 and4. Here the frequency ratios Re(ωNL/ωL) in the vertical axis are used
to denote the real part of the ratios ωNL/ωL between the two frequencies ωNL and ωL, which are the damped
frequencies obtained based on the nonlocal and local (classical) mechanics theories, respectively. Figure 2
shows that the real parts of the first frequency ratios ωNL/ωL decrease significantly with rising nonlocal
parameter α for both S–S and C–C nanobeams but increase slightly for C–F nanobeams. This suggests that
the rigidity of the embedded nanobeam is reduced due to enhanced nonlocal effect for S–S and C–C boundary
conditions but hardened for C–F boundary conditions. A similar phenomenon was also described by Lei et al.
[20] and Lu et al. [22]. Furthermore, such an effect of nonlocal parameter α turns out to be less pronounced
when the viscoelastic medium is considered. For example, as α increases from 0 to 0.2 the real parts of the first
frequency ratios ωNL/ωL for S–S nanobeams decrease about 15.33% in the absence of viscoelastic medium
but about 10.99% in the presence of viscoelastic medium. The strong influence of boundary conditions on
vibration responses of nanobeams also is observed in Fig. 2. The values of the first frequency ratios ωNL/ωL
follow the order: C–C<S–S<C–F, which implies that the nonlocal effect on the natural frequencies is more
substantial when the stronger constrains are imposed on the boundaries. The effect of nonlocal parameter α
on the higher frequency ratios ωNL/ωL is also investigated in Figs. 3 and 4. It can be seen from the figures that
the real parts of the higher frequency ratios ωNL/ωL decrease significantly with α no matter what boundary
conditions are imposed on the boundaries. In addition, the nonlocal effect on the higher frequency ratios turns
out to be much larger than its effect on the fundamental ones. For instance, as α changes from 0 to 0.2 the
real parts of the second frequency ratios ωNL/ωL for S–S nanobeams with and without viscoelastic medium
decrease about 52.79 and 53.14%, respectively, in Fig. 3 much larger than the values shown above for the
first frequency ratios. As expected, the effect of viscoelastic medium on the frequency ratios becomes less
pronounced as the mode number increases.
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Fig. 2 Effect of nonlocal parameter α on the real parts of the first frequency ratios ωNL/ωL for piezoelectric nanobeams with
various boundary conditions
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Fig. 3 Effect of nonlocal parameter α on the real parts of the second frequency ratios ωNL/ωL for piezoelectric nanobeams with
various boundary conditions
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Fig. 4 Effect of nonlocal parameter α on the real parts of the third frequency ratios ωNL/ωL for piezoelectric nanobeams with
various boundary conditions

Figure 5 depicts the effect of slenderness ratio L/h on the imaginary parts of the first dimensionless
frequencies for embedded S–S piezoelectric nanobeams with various flexoelectric coefficientμ31. In this case,
the thickness of the nanobeam is taken as h = 2 nm and the length L changes to satisfy different slenderness
ratio L/h. Figure 5 shows that the imaginary parts of the first dimensionless frequencies increase almost linearly
with an increase in slenderness ratio L/h. The possible reason for this is that the damping effect of viscoelastic
medium introduced into the system becomes more pronounced as the length L increases. Both flexoelectric
coefficient μ31 and nonlocal parameter α have no effect on the imaginary parts of natural frequencies. Hence,
the effect of slenderness ratio L/h on the real parts of the first three natural frequencies is mainly examined in
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Fig. 5 Effect of slenderness ratio L/h on the imaginary parts of the first dimensionless frequencies for S–S piezoelectric
nanobeams with various flexoelectric coefficient μ31
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Fig. 6 Effect of slenderness ratio L/h on the real parts of the first dimensionless frequencies for S–S piezoelectric nanobeams
with various flexoelectric coefficient μ31

Figs. 6, 7, and 8. From the figures, we can find that the real parts of the first three natural frequencies decrease
significantly as slenderness ratio L/h increases for various flexoelectric coefficient μ31. This is because the
rigidity of the nanobeam is reduced with rising slenderness ratio L/h. In addition, the effect of slenderness
ratio L/h turns out to be more substantial as flexoelectric coefficient μ31 and mode number increase. For
example, as L/h increases from 5 to 25 the first and the second natural frequencies decrease about 12.73 and
54.93 at μ31 = 1µ C/m but about 40.91 and 165.17 at μ31 =3 µC/m. The significant effect of the flexoelectric
coefficient μ31 is also observed in Figs. 6, 7, and 8, where the real parts of the first three natural frequencies
increase significantly with rising μ31. This effect of μ31 is found to be less pronounced as slenderness ratio
L/h increases. For instance, as μ31 changes from 1 to 3µC/m, the real parts of the first natural frequencies
increase about 34.43 at L/h = 5 but only about 6.25 at L/h = 25.

Figures 9, 10, and 11 present the effect of flexoelectric coefficient μ31 on the real parts of the first three
dimensionless frequencies for embedded S–S piezoelectric nanobeams with various nonlocal parameter α
and electric voltage V . From the figures, it can be observed that flexoelectric coefficient μ31 has a strong
influence on the natural frequencies of piezoelectric nanobeams. The real parts of the first three dimensionless
frequencies increase almost linearly as flexoelectric coefficient μ31 increases. This implies that the rigidity of
the embedded nanobeam is hardened due to enhanced flexoelectric effect. In addition, the effect of flexoelectric
coefficient μ31 turns out to be more substantial as nonlocal parameter α decreases or mode number increases.
For example, as μ31 increases from 1 to 2µC/m the first and the third natural frequencies with V = 10V
increase, respectively, about 3.35 and 18.01 at α = 0.2 but about 4.06 and 38.57 at α = 0. Compared with
the nonlocal parameter α, the effect of the electric voltage V on the sensibility of natural frequencies to the
flexoelectric coefficient μ31 is small.

As the final numerical example, the effect of viscoelastic medium on the vibration responses of embedded
piezoelectric nanobeams is examined. To this end, Figs. 12 and 13 show the variations of the first two complex
natural frequencies versus damping parameter ct for S–S piezoelectric nanobeams. Figures 12 and 13 show that
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Fig. 8 Effect of slenderness ratio L/h on the real parts of the third dimensionless frequencies for S–S piezoelectric nanobeams
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Fig. 9 Effect of flexoelectric coefficientμ31 on the real parts of the first dimensionless frequencies for S–Spiezoelectric nanobeams
with various nonlocal parameter α and electric voltage V

the real parts of the first two natural frequencies remain zero as damping parameter ct is larger than a certain
value, which is denoted by (ct )crit to represent the critical value of ct for nonoscillatory eigenfrequencies.
Accordingly, a sharp change also can be observed in the imaginary parts of the first two natural frequencies.
In addition, the value of (ct )crit increases significantly with an increase in Winkler’s modulus parameter kw,
flexoelectric coefficient μ31 and mode number or a decrease in nonlocal parameter α and electric voltage V .
It also can be seen from the figures that as damping parameter ct is smaller than (ct )crit, the real parts of the
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Fig. 11 Effect of flexoelectric coefficient μ31 on the real parts of the third dimensionless frequencies for S–S piezoelectric
nanobeams with various nonlocal parameter α and electric voltage V
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Fig. 12 Variation of the first dimensionless frequencies for S–S piezoelectric nanobeams with damping parameter ct . a The real
parts of dimensionless frequencies, b the imaginary parts of dimensionless frequencies
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Fig. 13 Variation of the second dimensionless frequencies for S–S piezoelectric nanobeams with damping parameter ct . a The
real parts of dimensionless frequencies, b the imaginary parts of dimensionless frequencies

first two natural frequencies decrease nonlinearly with rising damping parameter ct , but the imaginary parts
increase almost linearly.

5 Conclusions

Based on nonlocal Euler–Bernoulli beam theory, the transverse vibration was investigated for a piezoelectric
nanobeam embedded in viscoelastic medium with various boundary conditions. Considering nonlocal effect,
piezoelectric effect, and flexoelectric effect simultaneously, the governing equations of motion and boundary
conditions for vibration analysis are first derived by using Hamilton’s principle. Subsequently, the natural
frequencies and corresponding mode shapes in closed form for embedded piezoelectric nanobeams with
arbitrary boundary conditions were obtained by utilizing the transfer function method (TFM). In benchmark
cases, the proposedmodel was validated by comparing the obtained results with those available in the literature,
where good agreement has been achieved. In addition, a detailed parametric study was also conduced to
investigate the effects of nonlocal parameter, boundary conditions, slenderness ratio, flexoelectric coefficient,
and viscoelastic medium on the vibration responses of nanobeams. Some of the key contributions made in this
study include:

• The novelty of this work includes the simultaneous consideration of nonlocal effect, piezoelectric effect,
flexoelectric effect, viscoelastic surrounding medium and electrical loadings for nanobeam dynamics.

• An the increase in the nonlocal parameter α leads to a significant decrease in the fundamental frequencies
of both C–C and S–S nanobeams, but an increase in those of C–F nanobeams. This effect of α becomes
more substantial with rising frequency modes and boundary condition stiffness.

• The flexoelectric coefficient μ31 has a strong influence on the vibration responses of nanobeams. The
natural frequencies of the embedded nanobeams increase significantly as μ31 increases. This effect of μ31
turns out to be less pronounced as the nonlocal parameter α and the slenderness ratio L/h increase or the
mode number decreases.

• The nonlocal parameter α, boundary conditions, flexoelectric coefficient μ31 and mode numbers have no
effect on the imaginary parts of the natural frequencies, which are only related to the damping of the
viscoelastic surrounding medium.

• The critical values of the damping parameter ct to obtain nonoscillatory eigenfrequencies also can be
determined by using the proposed method. Moreover, the value of (ct )crit increases significantly as kw,μ31
and the mode number increase or α and V decrease.

Acknowledgements This research is supported by the National Natural Science Foundation of China (Grant Nos. 11272348
and 11302254).



2392 D. P. Zhang et al.

References

1. Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Thermo-electro-mechanical vibration of piezoelectric nanoplates
based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

2. Zhang, S.J., Xia, R., Lebrun, L., Anderson, D., Shrout, T.R.: Piezoelectric materials for high power, high temperature
applications. Mater. Lett. 59, 3471–3475 (2005)

3. Asemi, S.R., Farajpour, A.,Mohammadi,M.: Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators
based on nonlocal elasticity theory. Compos. Struct. 116, 703–712 (2014)

4. Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246
(2006)

5. Song, S., Hou, Y., Guo, M., Wang, L., Tong, X., Wu, J.: An investigation on the aggregate-shape embedded piezoelectric
sensor for civil infrastructure health monitoring. Constr. Build. Mater. 131, 57–65 (2017)

6. Li, X.J., Luo, Y.: Flexoelectric effect on vibration of piezoelectric microbeams based on a modified couple stress theory.
Shock Vib. 2017, 1–7 (2017)

7. Ma,W., Cross, L.E.: Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81(18),
3440–3442 (2002)

8. Ebrahimi, F., Barati, M.R.: Surface effects on the vibration vehavior of flexoelectric nanobeams based on nonlocal elasticity
theory. Eur. Phys. J. Plus 132(19), 1–13 (2017)

9. Liang, X., Hu, S.L., Shen, S.P.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23,
035020 (2014)

10. Qi, L., Zhou, S.J., Li, A.Q.: Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain
gradient elastic effect. Compos. Struct. 135, 167–175 (2016)

11. Yan, Z., Jiang, L.Y.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J.
Phys. D Appl. Phys. 46, 355502 (2013)

12. Yue, Y.M., Xu, K.Y., Chen, T.: A micor scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface
effects. Compos. Struct. 136, 278–286 (2016)

13. Ebrahimi, F., Barati, M.R., Dabbagh, A.: A nonlocal strain gradient theory for wave propagation analysis in temperature-
dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

14. Li, L., Li, X.B., Hu, Y.J.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material.
Int. J. Eng. Sci. 201, 77–92 (2016)

15. Li, L., Hu, Y.J., Ling, L.:Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect undermagnetic
field based on nonlocal strain gradient theory. Physica E 75, 118–124 (2016)

16. Ke, L.L., Wang, Y.S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart
Mater. Struct. 21, 025018 (2012)

17. Ke, L.L.,Wang, Y.S.,Wang, Z.D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos.
Struct. 94, 2038–2047 (2012)

18. Ansari, R., Oskouie, M.F., Gholami, R., Sadeghi, F.: Thermo-electro-mechanical vibration of postbuckled piezoelectric
Timoshenko nanobeams based on the nonlocal elasticity theory. Compos. Part B 89, 316–327 (2016)

19. Stassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C.F., Canavese, G.: Flexible piezoelectric energy nanogenerator based
on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy 13(36), 474–481 (2015)

20. Lei, Y., Murmu, T., Adhikari, S., Friswell, M.I.: Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli
beams. Eur. J. Mech. A Solids 42, 125–136 (2013)

21. Zhang, D.P., Lei, Y., Shen, Z.B.: Vibration analysis of horn-shaped single-walled carbon nanotubes embedded in viscoelastic
medium under a longitudinal magnetic field. Int. J. Mech. Sci. 118, 219–230 (2016)

22. Lu, P., Lee, H.P., Lu, C.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510
(2006)


	Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory
	Abstract
	1 Introduction
	2 Mathematical modeling
	3 Transfer function method
	4 Numerical results and discussion
	5 Conclusions
	Acknowledgements
	References




