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a b s t r a c t

The propagation of thermal uncertainty in composite structures has significant computational chal-
lenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency
responses of laminated composite plates by employing surrogate model which is capable of dealing with
both correlated and uncorrelated input parameters. The present approach introduces the generalized
high dimensional model representation (GHDMR) wherein diffeomorphic modulation under observable
response preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical orthogonality
of high dimensional model representation component functions. The stochastic range of thermal field
includes elevated temperatures up to 375 K and sub-zero temperatures up to cryogenic range of 125 K.
Statistical analysis of the first three natural frequencies is presented to illustrate the results and its
performance.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are being increasingly utilized in aerospace
applications due to high strength, stiffness, light weight and tail-
orable properties. They may be exposed to variation in environ-
mental (hot or cold) conditions during the service life such as
aircraft wing made of composite materials experiences a wide
range of temperature variation from take-off to level-flight
depending on altitude of flight. The stochasticity in frequency re-
sponses due to thermal effects on composites is an important cri-
terion for overall design. In specific applications, the thermal effect
acts as a fundamental factor for design consideration. These
changes of thermal environments produce uncertain responses in
the laminated composite structures. Hence the thermal condition
has significant effect on the frequency characteristics and perfor-
mance of composites. The natural frequency of composite structure
under different thermo-mechanical loading conditions relies on its
system parameters. The uncertainties of input parameters such as
temperature, ply orientation angle and material properties lead to
the uncertainties in the natural frequency of the composite struc-
tures. The stochasticity in the system's input parameters are
ansea.ac.uk (S. Dey).
considered in the analysis (for both individual and combined
variation of inputs) so that the anticipated response can be turned
out to be safe for the structure. Such engineering problems need to
efficiently establish the correlation between high dimensional
input parameters and interested output quantities. These struc-
tures can be characterized by probabilistic model using the small
set of input data obtained from laboratory/field test or numerical
simulation.

The free vibration of laminated plates with effect of environ-
ment has been considered earlier by Whitney and Ashton [1]. The
effect of environments on the material properties of composites
was studied by many researchers, for example, Strife and Prewo [2]
and Bowles and Tompkins [3] and Seng et al. [4]. Ample published
work is found on deterministic buckling analysis in conjunction to
thermal and hygrothermal behavior [5e12]. The concept of random
vibration is exhaustively utilised in many engineering application
[13e15]. Most of the literature are deterministic in nature, which
lacks in portraying the probable deviation caused by random input
parameters. Due to presence of large number of inter-dependent
factors in production of composites, the system input parameters
are generally random in nature. The allowable responses for con-
ventional material is expected to be close to their mean values as
fewer parameters are involved in their production process while in
contrast for composites, a range of random fluctuation in system
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Fig. 1. (a) Laminated composite cantilever plate. (b) Force and moment resultants
diagram.
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parameter may occur due to large number of system properties.
Even after ensuring the effective quality control of production
process in sensitive applications, the allowable responses are nor-
mally found to scatter widely with respect to the mean values. The
knowledge of input variabilities and corresponding range of sto-
chastic responses may serve to control the purposes of lightweight
design, which is one of the important characteristics for compos-
ites. Therefore the efficient computationalmodelling and analysis is
needed considering randomness in material properties and ply
orientation angle including the effect of thermal uncertainty to
ensure optimization, operational safety and reliability. Such issues
can be addressed by employing probabilistic method, which
quantifies the uncertainties in frequency responses.

The novelty of the present study includes the stochastic
analysis of natural frequencies for laminated composite plates
subjected to uncertain thermo-mechanical loading. A surrogate
model is employed by using the generalized high dimensional
model representation (GHDMR) approach wherein D-MORPH
(Diffeomorphic Modulation under Observable Response Preser-
ving Homotopy) regression is employed to ensure the hierar-
chical orthogonality of HDMR component functions [16]. Random
sampling high dimensional model representation (RS-HDMR)
was employed for uncertainty quantification of natural frequency
in composite plates considering three input parameters namely
fibre-orientation angle, elastic modulus and mass density [17],
wherein the input parameters are independent to each other. In
contrast, investigation is also carried out with a new element for
laminated composite plates [18] while stochastic modeling of
unidirectional composites is studied considering delamination
[19]. In the present study, the sources of uncertainty for natural
frequency are considered as layer wise variation of material
properties, ply orientation angle and temperature. Material
properties of fibre reinforced composites are temperature
dependent. Due to this reason, the input parameters become co-
related to each other in case of layer wise combined variation of
material properties, ply orientation angle and temperature. The
co-related input parameters cannot be mapped for the corre-
sponding output response using conventional high dimensional
model representation (HDMR) approach different variants of
HDMR can be found in available literature such as Cut-HDMR
[20], RS-HDMR [21], mp-Cut-HDMR [22], Multicut-HDMR [23],
lp-RS-HDMR [24] depending primarily on sampling scheme [16].
The present GHDMR can efficiently take care of both indepen-
dent as well as co-related input parameters under a relaxed
vanishing condition. The extended bases are used as basis func-
tions to approximated HDMR component functions and D-
MORPH regression is used to determine the coefficients in the
GHDMR algorithm. The application of GHDMR is the first attempt
of its kind in realm of laminated composites to take into account
the effect of both non-correlated and/or correlated input pa-
rameters. In the present study, a random variable approach is
employed in conjunction to finite element formulation to figure
out the random eigenvalue problem. The numerical results are
shown for first three natural frequencies with individual and
combined layerwise variation of the stochastic input parameters.
The present probabilistic approach is validated with Monte Carlo
simulation wherein a small random variation is considered as
tolerance zone.

2. Governing equations

Consider a laminated composite cantilever plate as furnished in
Fig. 1(a,b) with thickness ‘t’ consisting of n number of thin lamina,
the stress strain relations in the presence of temperature can be
represented as [25].
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where, ð~uÞ indicates the randomness of the corresponding vari-
ables and a1, a2 are the thermal expansion coefficients of lamina in
longitudinal and lateral directions and their values are considered
as �0.3 � 106 /K and 28.1 � 106 /K, respectively.
DTð~uÞ ¼ Tð~uÞ � Toð~uÞ, where Toð~uÞ is the reference variable tem-
perature in Kelvin. T is exposed random temperature in Kelvin.
Here, qð~uÞ denotes the random ply orientation angle of the lamina
with reference to x-axis. The non-mechanical in-plane stress and
moment resultants due to thermal environment are expressed as
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The force and moment resultants are modified to include the
thermal field by the constitutive equations [26,27] for the com-
posite plate are given by

fFð~uÞg ¼ ½Dð~uÞ�fεg � �Ftð~uÞ� (6)
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The non-mechanical loads due to uncertain thermal condition
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The stiffness coefficients are defined as [28].
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where Qij are the in-plane element of the stiffness matrix. From
Hamilton's principle [29], the dynamic equilibrium equation (for
free vibration) can be expressed as [30,31].

½Með~uÞ�
�
€de
�þ ½Keð~uÞ�fdeg ¼ 0 (15)

where Með~uÞ and Keð~uÞ are element mass and stiffness matrices,
respectively. Here ½Keð~uÞ� ¼ ½Kelað~uÞ� þ ½Kgeoð~uÞ� as the sum of
element elastic stiffness matrix ½Kelað~uÞ� and geometric stiffness
matrix ½Kgeoð~uÞ�. After assembling all the element matrices and the
force vectors with respect to the common global coordinates, the
resulting equilibrium equation is formulated. Considering
randomness of input parameters like temperature, ply-orientation
angle, elastic modulus etc., the equation of motion of free vibration
system after of assembling with n degrees of freedom can
expressed as

½Mð~uÞ��€d	þ ½Kð~uÞ�fdg ¼ 0 (16)

where{d} denotes the vector of generalized coordinates. The gov-
erning equations are derived based on Mindlin's Theory [32]
incorporating rotary inertia, transverse shear deformation. The
random natural frequencies [unð~uÞ] can be calculated employing
standard eigenvalue problem [33] and by solving the QR iteration
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algorithm. In the present study, an eight noded isoparametric
quadratic element with five degrees of freedom at each node (three
translations and two rotations) is considered for finite element
formulation with respect to laminated composite cantilever plate
wherein the shape functions (Ni) are as follows

Ni ¼ ð1þ xxiÞð1þ 22iÞðxxi þ 22i � 1Þ=4 ðfor i ¼ 1;2;3;4Þ
(17)
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where 2 and x are the local natural coordinates of the element. The
element stiffness matrix is given by

½Keð~uÞ� ¼
Zþ1

�1

Zþ1

�1

½B�T ½Dð~uÞ�½B�½Jc�dxd2 (20)

where, [B] is the strain displacement matrix and ½Dð~uÞ� is the
random stress-strain matrix. The strain displacement matrix,
[B] ¼ [[B1], [B2],. . . . . . . . .[B8]]
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The element mass matrix is obtained from the Integral
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inertiamatrix. The derivatives of the shape function,Niwith respect
to x, y are expressed in term of their derivatives with respect to x
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3. Formulation of GHDMR

The general high dimensional model representation (GHDMR) is
important because in real practical applications, the variables are
often correlated, for example, the cases wherein the input variables
have some relations between them. Here relation can be deter-
ministic or stochastic. For instance, large values of certain input
variables may imply large or small values of some other stochastic
input variables. Such relation may be controlled by some known or
unknown distributions. These correlations are implicitly contained
in the collected samples in practice. The GHDMR can construct a
proper model for prediction of the random output (say natural
frequency) in the stochastic domain. The present approach can
treat both independent and correlated input variables, and includes
independent input variables as a special case. The role of D-MORPH
is to ensure the component functions' orthogonality in hierarchical
manner. The present technique decomposes the function l(S) with
component functions by input parameters, S¼ (S1,S2,…,Skk). As the
input parameters are independent in nature, the component
functions are specifically projected by vanishing condition. Hence,
it has limitation for general formulation. In contrast, a novel nu-
merical analysis with component functions is portrayed in the
problem of present context wherein a unified framework for gen-
eral HDMR dealing with both correlated and independent variables
are established. For different input parameters, the output is
calculated as [16].
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X
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where l0(zeroth order component function) represents the mean
value. li(Si) and lij(Si,Sj) denote the first and second order compo-
nent functions, respectively while l12.......kk(S1,S2,…..,Skk) indicates
the residual contribution by input parameters. The subset u4
{1,2,….,kk} denotes the subset where u4kk for simplicity and
empty set, G2u. As per Hooker's definition, the correlated variables
are expressed as,

fluðSuju4kkÞg ¼ Argminfgu2L2ðRuÞ;u4kkg
Z  X

u4k

guðSuÞ� lðSÞ
!2

�wðSÞdS
(26)

cu4kk; ci2u;
Z

luðSuÞwðSÞdSidS�u ¼ 0 (27)

and
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(28)
The function l(S) can be obtained from sample data by experi-

ments or by modelling. To minimise the computational cost, the
reduction of the squared error can be realised easily. Assuming H in
Hilbert space is expanded on the basis {h1, h2, …, hkk}, the bigger
subspace H(IH) is expanded by extended basis {h1, h2,…, hkk, hkkþ1,
…, hm}. Then H can be decomposed as

H ¼ H4H⊥ (29)

where H⊥ denotes the complement subspace (orthogonal) of H [34]
within H. In the past work [35e37], the component functions are
calculated from basis functions. The component functions of Sec-
ond order HDMR expansion are estimated from basis functions {4}
as [21].
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i.e., the basis functions of lij(Si,Sj) contain all the basis functions
used in li(Si) and lj(Sj).

The HDMR expansions at Nsamp sample points of S can be rep-
resented as a linear algebraic equation system

GJ ¼ bR (32)

where G denotes a matrix (Nsamp � ~t) whose elements are basis
functions at theNsamp values of S; J is a vector with~t dimension of all
unknown combination coefficients; bR is a vector with Nsamp-
dimension wherein l-th element is l(S(l))-l0. S(l) denotes the l-th
sample of S, and l0 represents the average value of all l(S(l)). The
regression equation for least squares of the above equation can be
expressed as

1
Nsamp

GTGJ ¼ 1
Nsamp

GT bR (33)

Due to the use of extended bases, some rows of the above
equation are identical and can be removed to give an under-
determined algebraic equation system

AJ ¼ bV (34)

It has many of solutions for J composing a manifold Y2<~t . Now
the task is to find a solution J from Y to force the HDMR component
functions satisfying the hierarchical orthogonal condition. D-
MORPH regression provides a solution to ensure additional condi-
tion of exploration path represented by differential equation

dJðlÞ
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¼ cvðlÞ ¼
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�
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wherein c denotes orthogonal projector ensuring

c2 ¼ c and cT ¼ c (36)

c ¼ c2 ¼ cTc (37)

The free function vector may be selected to ensure the wide
domain for J(l) as well as to simultaneously reduce the cost k(J(l))
which can be expressed as
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(38)

Then we obtain
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The cost function can be expressed in quadratic form as

k ¼ 1
2
JTBJ (40)

where B denotes the positive definite symmetric matrix and J∞ can
be expressed as

J∞ ¼ Vt



UT
~t�r

V~t�r

��1
UT
~t�r

Aþ bV (41)

where the last columns ð~t � rÞ of U and V are denoted as U~t�r and
V~t�r which can found by decomposition of cB [38].
cB ¼ U
�
Sr 0
0 0

�
VT (42)
This unique solution J∞ in Y indicates the minimized cost
function. D-MORPH regression is used to find the J which ensures
the HDMR component functions' orthogonality in hierarchical
manner. The construction of the corresponding cost function k can
be found in previous literature [16].

4. Random input representation

The random input parameters such as ply-orientation angle and
temperature in each layer of laminate are considered for composite
cantilever plates. It is assumed that the distribution of random
input parameters exists within a certain band of tolerance with
their crisp values. The cases wherein the input variables considered
in each layer of laminate are as follows:

(a) Variation of ply-orientation angle only:
qð~uÞ ¼ fq1 q2 q3……::qi……qlg

(b) Variation of longitudinal elastic modulus only:
E1ð~uÞ ¼ fE1ð1Þ E1ð2Þ E1ð3Þ……::E1ðiÞ……E1ðlÞg

(c) Variation of shear modulus only:
G12ð~uÞ ¼ fG12ð1Þ G12ð2Þ G12ð3Þ…G12ðiÞ…G12ðlÞg

(d) Variation of temperature only:
Tð~uÞ ¼ fTð1Þ Tð2Þ Tð3Þ……::TðiÞ……TðlÞg

(e) Combined variation of ply orientation angle, elastic modulus,
shear modulus and temperature: ½q; E1;G12; Tð~uÞ� ¼
½ðq1…qlÞ; ðE1ð1Þ…E1ðlÞÞ; ðG12ð1Þ…G12ðlÞÞ; ðTð1Þ…TðlÞÞ�

where qi, E1(i), G12(i) and T(i) are the ply orientation angle, temper-
ature, respectively and ‘l’ denotes the number of layer in the
laminate. In present study, ±5� variation for ply orientation angle,
±10% volatility in material properties and ±25 K tolerance for
temperature, respectively are considered from their respective
deterministic values. Fig. 2 presents the flowchart of frequency
responses using GHDMR with D-MORPH. It is worth mentioning
that material properties such as E1 and G12 are considered as
temperature dependant in the present study. Thus in case of the
combined variation of ply orientation angle, elastic modulus, shear
modulus and temperature, correlated input variables are needed to
be mapped for natural frequencies as discussed in section-1.

5. Results and discussion

The present study considers four layered graphite-epoxy angle-
ply [(q�/-q�/q�/-q�)] and cross-ply (0�/90�/0�/90�) composite canti-
lever plates. An eight noded isoparametric plate bending element is
considered for finite element formulation. Due to paucity of space,
only a few important representative results are furnished. Table 1
presents the convergence study of non-dimensional fundamental
natural frequencies of three layered graphite-epoxy untwisted
composite plates [39]. Table 2 presents the non-dimensional nat-
ural frequencies for simply-supported graphite-epoxy symmetric
cross-ply composite plates [40]. In both the cases, close agreement
with benchmarking results are obtained at (6 � 6) mesh size. Ma-
terial properties and their variation with temperature [41] are
furnished in Table 3. Considering mean temperature T ¼ 300 K and
thickness t ¼ 0.004 m, the deterministic values of material prop-
erties are considered as E1 ¼ E2 ¼ 15.4 GPa, n ¼ 0.43,
G12 ¼ G13 ¼ G23 ¼ 3.56 GPa, r ¼ 1660 kg/m3. The present GHDMR
methodology is employed to find a predictive and representative
surrogate model relating each natural frequency to a number of
input variables. The present surrogate models are used to deter-
mine the first three natural frequencies corresponding to given
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values of input variables, instead of time-consuming deterministic
finite element analysis. The probability density function is plotted
as the benchmark of bottom line results. Due to paucity of space,
only a few important representative results are furnished. The
variation of temperature is scaled in the range with the lower and
the upper limit (tolerance limit) as ±25 K with respective mean
values while for ply orientation angle as within ±5� fluctuation (as
Table 1
Convergence study for non-dimensional fundamental natural frequencies [u¼un L2√(r/E
b/t ¼ 100, considering E1 ¼ 138 GPa, E2 ¼ 8.96 GPa, G12 ¼ 7.1 GPa, n12 ¼ 0.3.

Ply angle, q Present FEM (4 � 4) Present FEM (6 � 6) Pre

0� 1.0112 1.0133 1.0
45� 0.4556 0.4577 0.4
90� 0.2553 0.2567 0.2
per standard of composite manufacturing industry) with respective
deterministic values. Both angle-ply and cross-ply composite
cantilever plates are considered for the present analysis.

Fig. 3 presents the scatter plot which establishes the accuracy of
present model with respect to original finite element model cor-
responding to random fundamental natural frequencies for com-
bined variation of temperature and ply orientation angle. Table 4
1t2)] of three layered (q�/-q�/q�) graphite-epoxy untwisted composite plates, a/b¼ 1,

sent FEM (8 � 8) Present FEM (10 � 10) Qatu and Leissa [39]

107 1.004 1.0175
553 0.4549 0.4613
547 0.2542 0.2590



Table 2
Non-dimensional natural frequencies [u ¼ un a2 √(r/E2t2)] for simply-supported graphite-epoxy symmetric cross-ply (0�/90�/90�/0�) composite plates considering a/b ¼ 1,
T ¼ 325 K, a/t ¼ 100.

Frequency Present FEM (4 � 4) Present FEM (6 � 6) Present FEM (8 � 8) Present FEM (10 � 10) Sai Ram and Sinha [40]

1 8.041 8.061 8.023 8.001 8.088
2 18.772 19.008 18.684 18.552 19.196
3 38.701 38.981 38.597 38.443 39.324

Table 3
Material properties of glass/epoxy lamina at different temperatures, E1 ¼ E2, G12 ¼ G13 ¼ G23, mass density (r) ¼ 1660 kg/m3, n ¼ 0.43 [41].

Material properties (GPa) Temperature (K)

125 150 200 250 300 350 400

E1 15.4 15.4 15.4 15.4 15.4 14.93 14.7
G12 3.56 3.56 3.56 3.56 3.56 3.51 3.48

Fig. 3. Scatter plot for present surrogate model with respect to original FE model of
fundamental natural frequencies for combined variation of ply-orientation angle and
temperature of graphite-epoxy angle-ply (45�/�45�/45�/�45�) composite cantilever
plate, considering E1 ¼ E2 ¼ 15.4 GPa, G12 ¼ G13 ¼ G23

¼ 3.56 GPa,T ¼ 300 K,r ¼ 1660 kg/m3, t ¼ 0.004 m, n ¼ 0.43.
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presents the convergence study of present method compared to
direct Monte Carlo simulation (MCS) for first three natural fre-
quencies due to individual variation of ply-orientation angle and
temperature of angle-ply (45�/�45�/45�/�45�) composite canti-
lever plate while Table 5 represents the convergence study of the
present method with direct MCS for first three natural frequencies
Table 4
Convergence study of first three natural frequencies due to individual variation of ply
cantilever plate considering E1 ¼ E2 ¼ 15.4 GPa, G12 ¼ G13 ¼ G23 ¼ 3.56 GPa, r ¼ 1660 k

Parameter Values f1 f2

MCS (10,000) Present method (sample run) MCS (10,000)

32 64 128

qð~uÞ Max 34.8601 34.8999 34.8664 34.8783 98.1667
Min 34.2870 34.2531 34.2767 34.2941 84.9534
Mean 34.6546 34.6468 34.6509 34.6561 92.0607
SD 0.1061 0.1095 0.1068 0.1068 2.4501

Tð~uÞ Max 34.6904 34.6996 34.6932 34.6922 93.0976
Min 34.4488 34.4591 34.4536 34.4554 88.24453
Mean 34.5872 34.5879 34.5877 34.5872 90.7581
SD 0.0422 0.0428 0.0429 0.04287 0.8561
due to combined variation of temperature, ply-orientation angle,
elastic modulus and shear modulus of angle-ply (45�/�45�/45�/
�45�) composite cantilever plate. Fig. 4(aei) presents the
comparative probability density function plot with respect to first
three natural frequencies due to individual and combined variation
of stochastic input parameters of angle-ply (45�/�45�/45�/�45�)
composite cantilever plate for both MCS as well as present method.
In present analysis, a sample size of 64 is considered for layerwise
individual variation of stochastic input parameters, while due to
increment of number of input variables for combined random
variation, the subsequent sample size of 512 is adopted to meet the
convergence criteria. Here, although the same sampling size as in
direct MCS (10,000 samples) is considered, the number of actual FE
analysis is much less compared to original MCS and is equal to
number representative sample required to construct the surroagte
model. The surrogatemodel is formed onwhich the full sample size
of direct MCS is conducted. Hence, the computational time and
effort expressed in terms of FE calculation is reduced compared to
full scale direct MCS. This provides an efficient affordable way for
simulating the uncertainties in natural frequency.

A comparative study on variation of stochastic natural fre-
quencies is carried out for angle-ply (45�/�45�/45�/�45�) and
cross-ply (0�/90�/0�/90�) composite cantilever plate due to indi-
vidual variation of elastic modulus, shear modulus as furnished in
Fig. 5(aef). From Fig. 5, it is observed that the mean fundamental
natural frequency for angle-ply laminate is found to be slightly
lower than that of the same for cross-ply laminate while a signifi-
cant highermean values are obtained at second and thirdmodes for
angle-ply compared to cross-ply. Considering only variation of
temperature of angle-ply (45�/�45�/45�/�45�) and cross-ply (0�/
90�/0�/90�) composite cantilever plate, the probability density
-orientation angle and temperature of angle-ply (45�/�45�/45�/�45�) composite
g/m3, t ¼ 0.004 m, n ¼ 0.43, Tmean ¼ 300 K.

f3

Present method (sample run) MCS (10,000) Present method (sample run)

32 64 128 32 64 128

98.4748 98.6176 98.5928 216.7606 217.8250 216.7751 217.1431
84.8309 84.8548 84.9552 205.8846 204.4143 205.7557 206.1325
92.0099 92.0172 92.0485 213.6560 213.4836 213.5772 213.6981
2.4564 2.4550 2.4673 2.0449 2.1606 2.0635 2.0517

93.1461 93.1307 93.1468 214.4427 214.6334 214.5056 214.4707
88.3375 88.3098 88.3482 209.4478 209.5902 209.5364 209.5452
90.7659 90.7653 90.7634 212.3069 212.3222 212.3173 212.3069
0.8707 0.8710 0.8686 0.8882 0.9011 0.9034 0.9016



Table 5
Convergence study of the present method with direct Monte Carlo simulation (MCS) for first three natural frequencies due to combined variation of temperature, ply-
orientation angle, elastic modulus and shear modulus of angle-ply (45�/�45�/45�/�45�) composite cantilever plate.

Frequency Method Sample size Parameters

Max Min Mean Standard deviation

f1 MCS 10,000 34.8508 34.2855 34.5996 0.1187
Present method 32 34.9831 34.0428 34.5836 0.1019

64 34.9002 34.2454 34.5978 0.0985
128 35.0770 34.0130 34.6000 0.1403
256 34.8492 34.2701 34.5999 0.1187
512 34.8511 34.2638 34.5997 0.1195
1024 34.8521 34.2628 34.5996 0.1198

f2 MCS 10,000 96.4222 84.7779 90.7088 2.4025
Present method 32 99.0099 79.0589 90.4359 2.0766

64 96.9819 84.2358 90.6973 1.9971
128 97.0225 83.4915 90.6970 2.4065
256 96.3939 84.6852 90.7179 2.4068
512 96.4816 84.4608 90.7116 2.4215
1024 96.4883 84.4624 90.7110 2.4225

f3 MCS 10,000 216.6953 205.2277 212.2366 2.4307
Present method 32 219.6954 200.6440 211.9285 2.1035

64 218.1019 204.7512 212.1888 1.9985
128 224.9086 197.1597 212.2513 3.3649
256 216.7612 205.1236 212.2363 2.4305
512 216.7192 204.7821 212.2321 2.4455
1024 216.7172 204.7808 212.2319 2.4414
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function (PDF) with respect to first three natural frequencies are
plotted in Fig. 6(aef) wherein it is found that as the temperature
increases the variabilities of first three natural frequencies of angle-
ply laminate are increased and the probability density function
curves become more steeper as the temperature increases. This can
be attributed to the fact that due to rise in temperature influences
the thermo-mechanical loading due to random variation leading to
change in the system properties. In contrast, the reverse trend is
Fig. 4. (aei) Probability density function with respect to first three natural frequencies (Hz) d
modulus and temperature of angle-ply (45�/�45�/45�/�45�) composite cantilever plate at
identified for cross-ply laminated composite plates due to reduc-
tion effect of 0� and 90� on effective stiffness of the laminate. On the
other hand, Fig. 7(aec) presents the ply level quantification of
uncertainty in first three natural frequencies in terms of Probability
density function for angle-ply [(q�/�q�/q�/�q�) where q ¼ Ply
orientation angle] and cross-ply (0�/90�/0�/90�) composite canti-
lever plate. Due to random variation of ply orientation angle, the
elastic stiffness of the laminated composite plate is found to be
ue to individual and combined variation of ply orientation angle, elastic modulus, shear
mean temperature (Tmean) ¼ 300 K.



Fig. 5. (aef) Probability density function with respect to first three natural frequencies (Hz) due to individual variation of elastic modulus, shear modulus of angle-ply (45�/�45�/
45�/�45�) and cross-ply (0�/90�/0�/90�) composite cantilever plate at mean temperature (Tmean) ¼ 300 K.

Fig. 6. (aef) Probability density function with respect to first three natural frequencies (Hz) due to individual variation of temperature of angle-ply (45�/�45�/45�/�45�) and cross-
ply (0�/90�/0�/90�) composite cantilever plate.
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Fig. 7. (a¡c)Probability density function with respect to first three natural frequencies (Hz) due to individual variation of ply orientation angle of angle-ply [(q�/�q�/q�/�q�) where
q¼0� ,15� ,30� ,45� ,60� ,75� and 90�] and cross-ply(0�/90�/0�/90�) composite cantilever plate at mean temperature (Tmean) ¼ 300 K.
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varied which in turn influence the frequency responses irrespective
of laminate configuration. The effect of combined variation of input
parameters is also carried out in addition to individual variation of
inputs in conjunction to stochastic natural frequencies for com-
posite laminated plates as furnished in Fig. 8(aec). The ply orien-
tation angle, elastic modulus, shear modulus and temperature of
angle-ply (45�/�45�/45�/�45�) and cross-ply (0�/90�/0�/90�) are
considered as random input variables wherein the upper and lower
bounds of volatility in natural frequencies are found to be wider
than that of individual variation of inputs irrespective of laminate
configuration. This corroborates with the fact that the combined
effect of random input parameters leads to increase the variation in
outputs compared to individual cases.

In the present study, the relative coefficient of variance (RCV)
(normalized mean to standard deviation ratio) due to variation of
temperature is also quantified for each layer for angle-ply and
cross-ply laminate as furnished in Fig. 9(a,b). The two outer-most
layers of the angle-ply laminate is found to be most sensitive to
temperature variation for first three modes while the maximum
sensitiveness of temperature is observed only at bottom layer of the
cross-ply laminate. In contrast, the least sensitivity to temperature
variation is identified at third intermediate layer for first three
modes irrespective of laminate configuration. The layerwise ply-
level sensitiveness to temperature variation for fundamental
mode is studied to map the sensitivity of each layer due to the
influence of ply orientation angle on variation of temperature as
furnished in Fig. 10(aed). The least sensitivity is observed at
qð~uÞ ¼ 45� for outer layers of the angle-ply laminate.

6. Conclusions

This present study illustrates the layer-wise thermal uncer-
tainty propagation with laminated composite plates. The ranges of
variation in first three natural frequencies are analyzed consid-
ering both individual and combined stochasticity of input pa-
rameters. A generalized high dimensional model representation
(GHDMR) model in conjunction with diffeomorphic modulation
under observable response preserving homotopy (D-MORPH)
regression is employed to map the input parameters (both
correlated and uncorrelated) and natural frequencies. After uti-
lizing the aforementioned surrogate modelling approach, the
number of finite element simulations is found to be exorbitently
reduced compared to original Monte Carlo simulation without
compromising the accuracy of results. The computational expense
is reduced by (1/156) times (individual stochasticity) and (1/19)
times (combined stochasticity) of original Monte Carlo simulation.
It is observed that as the temperature increases the variabilities of
first three natural frequencies of angle-ply laminate are increased



Fig. 8. (aec) Probability density function with respect to first three natural frequencies (Hz) due to combined variation of ply orientation angle, elastic modulus, shear modulus and
temperature of angle-ply (45�/�45�/45�/�45�) and cross-ply(0�/90�/0�/90�) composite cantilever plate at mean temperature (Tmean) ¼ 300 K.

Fig. 9. (a,b) Relative coefficient of variance (RCV) offirst three natural frequencies due to variation of temperature (layerwise) for angle-ply (45�/�45�/45�/�45�) and cross-ply(0�/
90�/0�/90�) composite cantilever plate at mean temperature (Tmean) ¼ 300 K.
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and the probability density function become steeper. The two
outer-most layers of the angle-ply laminate is found to be most
sensitive to temperature variation for first three modes while the
maximum sensitivity of temperature is observed at bottom layer
of the cross-ply laminate. It is found that stochastic variation of
temperature influences the natural frequencies and thus it is a
crucial design parameter from the operational safety and
serviceability point of view. The numerical results obtained in this
study provide a comprehensive idea for design and control of
laminated composite structures. The results presented could serve
as reference solutions to explore more complex systems in future
course of research.



Fig. 10. (a¡d)Relative coefficient of variance (RCV) of fundamental mode due to variation of temperature (layerwise) for angle-ply (q�/�q�/q�/�q�) (q ¼ Ply orientation angle)
composite cantilever plate at mean temperature (Tmean) ¼ 300 K.
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